

The management of Waldenström macroglobulinemia in 2024

Jorge J. Castillo, MD Associate Professor of Medicine Harvard Medical School JorgeJ_Castillo@dfci.harvard.edu

Case

A 66-year-old asymptomatic man had a high serum protein level. SPEP detected an IgM *kappa* monoclonal paraprotein. CBC was normal. Serum IgM was 3500 mg/dL, serum albumin was 4 g/dL, and serum β2-microglobulin was 2.5 mg/L. A bone marrow biopsy showed 40% involvement by κ-restricted lymphoplasmacytoid cells with positive CD20 and CD38 and negative CD5 and CD10, consistent with lymphoplasmacytic lymphoma. *MYD88 L265P* mutation was detected by PCR.

CT scans of the showed lymphadenopathy or organomegaly.

Funduscopic examination showed no evidence of hyperviscosity-related changes.

Diagnostic criteria

- IgM monoclonal protein in serum protein electrophoresis and immunofixation
- Lymphoplasmacytic
 lymphoma in the bone
 marrow
- *3. MYD88 L265P* mutation by AS-PCR or NGS

Alaggio et al. Leukemia 2022; ASH Image Bank 2022

Why not treat everybody at diagnosis?

- WM is incurable
- Treatment promotes resistance
- Treatment comes with toxicity
- No evidence that treating early prolongs survival
- WM patients enjoy decades of life

Progression Risk Stratification of Asymptomatic Waldenström Macroglobulinemia

AWM Patient Risk Calculator 1

Asymptomatic Waldenström Macroglobulinemia Developed by Dana-Farber Cancer Institute

https://awmrisk.com

Manifestations of Waldenstrom Macroglobulinemia

Case

The patient was followed expectantly. Three years later, the patient presented with recurrent nosebleeds and progressive fatigue.

Hemoglobin was 9.2 g/dL, platelets were 115 K/uL, and serum IgM was 5500 mg/dL. Fundoscopy revealed engorged retinal vessels and scattered retinal hemorrhages.

A bone marrow biopsy showed 80% involvement by LPL. *MYD88 L265P* was detected by PCR, and *CXCR4 T318fs* (frameshift) by NGS.

CT scans showed generalized lymphadenopathy, with maximum diameter of 3 cm, without hepatosplenomegaly.

TREATMENT OPTIONS

Rituximab combination regimens

Regimen	n	ORR	Major	PFS (mo)
Cyclophosphamide-dex-R	72	83%	76%	35
Fludarabine-R	43	95%	86%	51
Bendamustine-R	69	97%	96%	69
Bortezomib-dex-R	59	85%	68%	42
Carfilzomib-dex-R	31	87%	68%	46
Ixazomib-dex-R	26	96%	77%	40

Dimopoulos et al. Blood 2014; Treon et al. Blood 2015; Laribi et al. Br J Haematol 2019; Dimopoulos et al. Blood 2013; Treon et al. Blood 2014; Castillo et al. Blood Adv 2020

Two years Rituximab maintenance versus observation after first line treatment with Bendamustine plus Rituximab in patients with Waldenström Macroglobulinemia

	All	R +	R-	PFS
Total (n)	218	109	109	
Age (median)	66	67	65	
Hemoglobin <11 g/dl	149 (68%)	70 (64%)	79 (72%)	0.25 -
IgM g/I (median)	32.7	32.7	31.3	0 12 24 36 48 60 72 84 96 108 120 132 Time (months)
β ₂ -Microglobulin	3.5	3.3	3.7	
B-symptoms	75 (34%)	43 (39%)	32 (29%)	
Rummel et al. ASH 20)19			
				0.25 -

Time (months)

132

MYD88 mutations

2% non-L265P MYD88 mutations

Treon et al. N Engl J Med 2012 Xu et al. Blood 2013

Study		Method	%
Xu		AS-PCR	94%
Gachard		PCR	70%
Varettoni		AS-PCR	100%
Landgren		Sanger	90%
Jimenez	- (1)	AS-PCR	86%
Poulain		PCR	80%
Argentou		PCR-RFLP	92%
Willenbacher		Sanger	86%
Mori		AS-PCR	80%
Ondrejka		AS-PCR	100%
Ansell		WES/AS-PCR	97%
Patkar	۲	AS-PCR	85%
Cao	*)	AS-PCR	92%
Giuliani	0	AS-PCR	95%
Riva	GELL	AS-PCR	89%

CXCR4 mutations

Study		Method	%
Hunter		WGS	27%
Roccaro		AS-PCR	28%
Poulain		NGS/Sanger	25%
Schmidt		Sanger	36%
Xu		AS-PCR/Sanger	40%
Ballester		Sanger	25%
Cao	*1	Sanger	24%
Shin		Target capture	19%

Milanesi et al. Int J Mol Sci 2020

Regimen	Ν	ORR	Major	PFS
Ibrutinib (RR)	63	91%	73%	54% at 5 years
Ibrutinib (R-refractory)	31	90%	71%	Median 39 months
Ibrutinib (TN)	30	100%	87%	76% at 4 years
Ibrutinib-R (INNOVATE)	75	92%	76%	68% at 4.5 years
Acalabrutinib	106	93%	80%	Median 68 months
Zanubrutinib (ASPEN)	101	94%	77%	78% at 42 months

Treon et al. J Clin Oncol 2021; Trotman et al. Clin Cancer Res 2021; Castillo et al. Leukemia 2022; Buske et al. J Clin Oncol 2022; Owen et al. EHA 2022; Dimopoulos et al. J Clin Oncol 2023

Long-Term Follow-Up of Ibrutinib Monotherapy Symptomatic, Previously Treated Patients With Waldenström Macroglobulinemia

	MYD88 ^{MUT} CXCR4 ^{WT}	MYD88 ^{MUT} CXCR4 ^{MUT}	MYD88 ^{₩T} CXCR4 ^{₩T}
N=	36	21	5
ORR	100%	86%	60%
Major (>PR)	97%	68%	0%
VGPR	47%	9%	0%
TTR (mos.)	1.0	1.0	1.0
TTMR (mos.)	2.0	6.0	N/A

Treon et al. J Clin Oncol 2020

Phase II

RR

Long-term follow-up of ibrutinib monotherapy in treatmentnaive patients with Waldenstrom macroglobulinemia

Ibrutinib Plus Rituximab Versus Placebo Plus Rituximab for Waldenström's Macroglobulinemia: Final Analysis From the Randomized Phase III iNNOVATE Study

Phase III

TN/RR

Ibrutinib Plus Rituximab Versus Placebo Plus Rituximab for Waldenström's Macroglobulinemia: Final Analysis From the Randomized Phase III iNNOVATE Study

Buske et al. J Clin Oncol 2022

Phase III

TN/RR

Phase II TN/RR NCCN

Acalabrutinib monotherapy in patients with Waldenström macroglobulinemia: a single-arm, multicentre, phase 2 study

[®]Zanubrutinib Versus Ibrutinib in Symptomatic Waldenström Macroglobulinemia: Final Analysis From the Randomized Phase III ASPEN Study

Dimopoulos et al. J Clin Oncol 2023

Phase III

TN/RR

Patients with CXCR4 mutations

Tam et al. ASCO 2022: 7521

Dose reductions in patients with Waldenström macroglobulinaemia treated with ibrutinib

Sarosiek et al. Br J Haematol 2023

Dana-Farber Cancer Institute

	Total (n)	Resolved or improved after dose reduction <i>n</i> (%) ^a
Rheumatologic (myalgias, arthralgias, muscle cramping)	28	20 (71)
Cardiac (arrhythmia, hypertension, palpitations)	17	11 (65)
Nail/skin/hair changes	16	9 (56)
Cytopenias	16	9 (56)
Gastrointestinal symptoms (diarrhoea, nausea, reflux)	13	10 (77)
Bleeding/bruising	12	4 (33)
Mucosal symptoms (dry mouth, oral ulcers, lip swelling)	8	6 (75)
Infection	8	7 (88)
Fatigue	8	5 (63)
Ocular (pemphigoid, dry eyes)	2	2 (100)

The response was maintained or deepened in 79% of patients who dose-reduced ibrutinib.

Venetoclax in Previously Treated Waldenström Macroglobulinemia

Phase II

RR

NCCN

Ibrutinib and venetoclax as primary therapy in symptomatic treatment naïve Waldenström macroglobulinemia

Castillo et al. Blood 2024

Dana-Farber Cancer Institute

Ibrutinib and venetoclax as primary therapy in symptomatic treatment naïve Waldenström macroglobulinemia

Adverse event	Grade 2	Grade 3	Grade 4	Grade 5
Alanine aminotransferase increase		1		
Arthralgia	5	1		
Atrial fibrillation	1	2		
Bruising	2			
Diarrhea	11	3		
Gastroesophageal reflux disease	12			
Hyperphosphatemia	8			
Hypertension	2	1		
Intracranial hemorrhage		1		
Lung infection	2			
Mucositis	9	4		
Nausea	5			
Neutropenia	2	13	4	
Platelet decrease		1		
Skin rash	5			
Soft tissue infection	2	1		
Tumor lysis syndrome		3		
Urinary tract infection	5			
Ventricular arrhythmia	1		1	2

Castillo et al. Blood 2024

Efficacy of Pirtobrutinib, a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor in Relapsed/Refractory Waldenström Macroglobulinemia: Results from the Phase 1/2 BRUIN Study

Response Evaluable WM Patients	Prior cBTKi n=63	cBTKi Naïve n=17
Major Response Rate ^a , %	67 (54-78)	88 (64-98)
CR + VGPR Rate, %	24 (14-36)	29 (10-56)
Best Response		
VGPR, n (%)	15 (23.8)	5 (29.4)
PR, n (%)	27 (42.9)	10 (58.8)
MR, n (%)	9 (14.3)	0 (0)
SD, n (%)	9 (14.3)	2 (11.8)

Palomba et al. ASH 2022: 229

received prior cBTKi was 14 months

Efficacy of Pirtobrutinib, a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor in Relapsed/Refractory Waldenström Macroglobulinemia: Results from the Phase 1/2 BRUIN Study

	All Doses and Patients (N=773)				
	Treatment-Emerge	Treatment-Emergent AEs, (≥15%), %		elated AEs, %	
Adverse Event (AEs)	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3	
Fatigue	28.7%	2.1%	9.3%	0.8%	
Diarrhea	24.2%	0.9%	9.3%	0.4%	
Neutropenia	24.2%	20.4%	14.7%	11.5%	
Contusion	19.4%	0.0%	12.8%	0.0%	
Cough	17.5%	0.1%	2.3%	0.0%	
Covid-19	16.7%	2.7%	1.3%	0.0%	
Nausea	16.2%	0.1%	4.7%	0.1%	
Dyspnea	15.5%	1.0%	3.0%	0.1%	
Anemia	15.4%	8.8%	5.2%	2.1%	
AEs of Special Interest	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3	
Bruising	23.7%	0.0%	15.1%	0.0%	
Rash	12.7%	0.5%	6.0%	0.4%	
Arthralgia	14.4%	0.6%	3.5%	0.0%	
Hemorrhage/Hematoma	11.4%	1.8%	4.0%	0.6%	
Hypertension	9.2%	2.3%	3.4%	0.6%	
Atrial fibrillation/flutter	2.8%	1.2%	0.8%	0.1%	

Palomba et al. ASH 2022: 229

Selected clinical trials in WM

ClinicalTrials.Gov ID	Agents	Phase	Eligibility
NCT04061512	Ibrutinib, rituximab vs. DRC	II	TN
NCT04263480	Ibrutinib, carfilzomib vs. ibrutinib	П	TN
NCT04624906	Acalabrutinib, bendamustine, rituximab	П	TN
NCT05099471	Venetoclax, rituximab vs. DRC	Ш	TN
NCT02952508	lopofosine 131	П	RR
NCT04728893	Nemtabrutinib	Ш	RR
NCT05006716	BGB-16673	1/11	RR
NCT05190705	Loncastuximab tesirine	Ш	RR
NCT05360238	MB-106	П	RR
NCT05734495	Pirtobrutinib, venetoclax	П	RR
NCT05952037	Sonrotoclax	II	RR

Conclusions

- Diagnosis: IgM elevation, LPL infiltration, and MYD88 mutation
- Reserve therapy for symptomatic patients
- Chemoimmunotherapy, proteasome inhibitors, BTK inhibitors, and BCL2 antagonists are safe and effective
- Clinical trials are evaluating BTKi combinations, triplets, fixed-duration regimens, and immunotherapy

The management of Waldenström macroglobulinemia in 2024

Jorge J. Castillo, MD Associate Professor of Medicine Harvard Medical School JorgeJ_Castillo@dfci.harvard.edu

