

Triple Negative Breast Cancer: Optimal Strategies

Tampa, FL January, 2024

Mark Pegram, M.D. Susy Yuan-Huey Hung Professor of Oncology Medical Director, Clinical and Translational Research Unit Associate Dean for Clinical Research Quality Stanford University School of Medicine

COI declaration relevant to topic: Roche/GNE, AZ/Daiichi Sankyo, Gilead

Predictors of Chemotherapy Use (N=8,601) Stage I Triple-negative Breast Cancer

Variables **significantly associated** (all p<0.02) with the use of chemotherapy at multivariate logistic regression were:

- Younger age (<50 vs. >64, OR=5.19)
- Married status (vs. Single, OR=1.28)
- Ductal histology (vs. Other, OR=2.05)
- High tumor grade (vs. low grade, OR=4.89)
- Larger tumors (Reference T1mic, T1a OR=2.91, T1b OR=19.16, T1c OR=31.49)

Systemic treatment for stage I TNBC is limited to chemotherapy, although its benefit and utilization currently remain unclear.

#ASCO23

BCSS in Patients With T1b & T1c TNBC

- No BCSS improvement in T1b TNBC (adjusted HR=0.87; p=0.619)
- Significant BCSS improvement in T1c TNBC (adjusted HR=0.64; p=0.002)

Conclusions/Key Take-Away:

- In a large cohort of stage I TNBC, 5-year BCSS was favorable
- Chemotherapy use increased over time for T1b and T1c TNBC
- Chemotherapy significantly increased BCSS for T1c TNBC, (p=0.002)

Limitations: retrospective, lack of recurrence data, small #s for T1a/T1mic

BCSS in Patients With T1mi & T1a TNBC

KN-522 study:

EFS results after a median follow-up of 63.1 months, including results in key subgroups and EFS event types

pCR (ypT0 ypN0 and ypT0/Tis)

Safety

pCR, EFS, and OS in PD-L1+ population

Neoadjuvant phase: starts from the first neoadjuvant treatment and ends after definitive surgery (posttreatment included)

Adjuvant phase: starts from the first adjuvant treatment and includes radiation therapy as indicated (posttreatment included)

KEYNOTE-522: PD-L1 IHC Did <u>Not</u> Predict Benefit (pCR) From Neoadjuvant Pembrolizumab

Dent. ESMO Asia 2020. Abstr 10. Schmid. NEJM. 2020;382:810.

KN-522 study EFS Endpoint

Most common immune-mediated AEs: IRR 18.0 vs 11.6%; hypothyroidism 15.2 vs 5.7%; hyperthyroidism 52. vs 1.8%; severe skin rxn 5.7 vs 1.0%; adrenal insufficiency 2.6 vs 0%, chemo + pembro vs chemo + placebo, respectively. Schmid P, et al. SABCS 2023

Adjuvant Atezolizumab:

Alexandra/IMpassion030 3 open-label study

Ignatiadis M, et al. SABCS 2023

BCT1902/IBCSG 61-20 Neo-N study (non-anthracycline chemo + nivo)

Loi S, et al. SABCS 2023

- pCR rates exceeding 50% support a 12 week neoadjuvant nonanthracycline chemotherapy regimen with nivolumab for Stage I/II TNBC;
 - Total 53% (90%CI 44-61%)
 - Lead-in 51% (90%CI 39-63%)
 - Concurrent 55% (90%CI 43-66%)
 - PD-L1 71% positive vs 33% negative; sTILs 67% high vs 47% low
- No evidence of pCR advantage was seen with Lead-in N;

Loi S, et al. SABCS 2023

Select Ongoing Phase III Trials with IO in TNBC

S2212: Shorter Anthracycline-free Chemoimmunotherapy Adapted to pathological Response in Early TNBC (SCARLET)

Randomized non-inferiority trial

Hypothesis: In patients with early stage TNBC, carboplatin-taxane chemoimmunotherapy is non-inferior to taxane-platinum-anthracycline-based chemoimmunotherapy

^g No Further Adjuvant chemotherapy. Co-enrollment in adjuvant NCTN de-escalation trials will be allowed after discussion with CTEP/study team

Phase III Trial: Optimice-RD/ASCENT-05 Residual disease in TNBC

OptimICE-pCR

Residual invasive TNBC disease in breast or positive node(s) after anthracycline, taxane, and checkpoint inhibitor-based neoadjuvant therapy N = 1514

A: Sacituzumab Govitecan x 8 cycles + Pembrolizumab x 8 cycles

B: Pembrolizumab x 8 cycles (add-on capecitabine per physician's choice)

PI: Sara Tolaney Alliance Foundation Trial

Olympia: Updated Endpoints Median FU 3.5 years, 2nd IA

- **Neoadjuvant Group**
- TNBC: non-pCR
- Hormone receptor-positive: non-pCR and CPS+EG score \geq 3

Olaparib (75 deaths, 70 due to breast cancer)

12

844

843

6

862

868

Placebo (109 deaths, 103 due to breast cancer)

18

809

808

Stratified hazard ratio 0.68 (98.5% CI: 0.47, 0.97); P = 0.009 crossing the significance boundary of 0.015

24

773

752

Time since randomisation (months)

30

672

647

36

560

530

42

437

423

48

335

333

54

228

218

Adjuvant Group

- *TNBC*: \geq pT2 or \geq pN1
- Hormone receptor-positive: \geq 4 positive lymph nodes

40

20

921

915

No. at risk

Olaparib

Placebo

- No increase in MDS/AML compared to placebo
- Most toxicity grade 1/2; nausea most common
- Grade 3
 - Anemia 9%, fatigue 2%, neutropenia 5%

Tutt et al. N Engl J Med. 2021;384(25):2394-2405; Tutt et al. ESMO Plenary 2022.

Keynote-355: Chemotherapy* +/- Pembrolizumab for Unresectable or Metastatic TNBC in the First-line Setting

*Chemotherapy of physician choice

Nab-paclitaxel (~1/3) Paclitaxel (~10-15%) Gem/carbo (~50%)

Combined PD-L1 positive cells, including tumor cells, lymphocytes, and macrophages. Cortes J, et al. Lancet 2020;396:1817-1828.

KEYLYNK-009 study

ITT Population 271 pts Induction Post-induction R Key Eligibility Criteria Olaparib 300 mg twice daily^{a,b} Α Locally recurrent inoperable Ν or metastatic TNBC not Carboplatin AUC 2 on days 1 and D Pembro 200 mg Q3W up to 35 cycles previously treated in the 0 8 of each 21-day cycle and including induction^b metastatic setting gemcitabine 1000 mg/m² on days Μ 1 and 8 of each 21-day cycle Measurable disease per Ζ **RECIST v1.1 by local** A T Pembro 200 mg Q3W radiology review Carboplatin AUC 2 on days 1 and 8 of each Interval between treatment (4 to 6 cycles) 21-day cycle and gemcitabine 1000 mg/m² with curative intent and 0 on days 1 and 8 of each 21-day cycle^b recurrence ≥6 months Nc Confirmed PD-L1 status (1:1)Pembro 200 mg Q3W for up to 35 cycles including induction^b Primary Endpoints^a Randomization was stratified by PFS per RECIST v1.1 by BICR in ITT Induction response (CR or PR vs SD) population Tumor PD-L1 status (CPS ≥1 vs <1) H2: OS H1: PES Initial alpha: Initial alpha: Genomic tumor status (BRCAm vs BRCAwt) α=0.025 $\alpha = 0$ OS in ITT populatic All a=2.5% will be allocated to PFS first, and if

All α =2.5% will be allocated to PFS first, and if superiority is demonstrated, the full alpha 2.5% from the superiority test for PFS will be passed to the superiority test for OS

KEYLYNK-009 study

%

PFS,

1st line TNBC: ATRACTIB study (Atezolizumab + Paclitaxel + Bevacizumab)

mPFS 11.0 months (95% Cl, 9.0 - 13.2)

Estimated 18-month OS# 69.4% (95% CI, 58.4% - 78.1%)

Tumor response, n (%)	Confirmed	Unconfirmed		
ORR	55.0% (95% Cl, 44.7% - 65.0%)	63.0% (95% Cl, 52.8% - 72.4%)		
CR	11	13		
PR	44	50		
SD ≥24 w	22	16		
SD <24 w	12	10		
PD	8	8		
NE	4	3		
CBR	77.0% (95% Cl, 67.5% - 84.8%)	79.0% (95% Cl, 69.7% - 86.5%)		
Duration of response (median), months				
10.0 (95% CI, 7.2 - 13.8)				

Best percentage change in sum of target lesions (%) Summary of TEAEs, most frequent TEAEs (>25%) and irAEs n(%)

TEAEs, n (%)	Overall (N=100)	Treatment-related
Any TEAEs	100 (100.0%)	97 (97.0%)
Grade 3/4 TEAEs	61 (61.0%)	47 (47.0%)
Any serious TEAEs	34 (34.0%)	18 (18.0%)
ECIs	42 (42.0%)	42 (42.0%)
TEAEs leading to treatment discontinuation of:		
Atezolizumab	14 (14%)	
Bevacizumab	15 (15%)	
Paclitaxel	40 (40%)	
TEAEs leading to death	0 (0.0%)	0 (0.0%)
Dose adjustments		
Reduction of Paclitaxel	22 (22.0%)	22 (22.0%)
Most frequent TEAEs, n (%)	Any grade	Grade 3/4
Non-hematologic		
Peripheral neuropathy [‡]	68 (68.0%)	13 (13.0%)
Fatigue	62 (62.0%)	7 (7.0%)
Diarrhea	42 (42.0%)	3 (3.0%)
Alopecia	41 (41.0%)	0 (0.0%)
Stomatitis	37 (37.0%)	3 (3.0%)
Nausea	31 (31.0%)	0 (0.0%)
Hypertension	30 (30.0%)	9 (9.0%)
Hematologic		
Neutropenia	27 (27.0%)	12 (12.0%)
irAEs, n (%)	Any grade	Grade 3/4
Any irAEs	12 (12.0%)	5 (5.0%)
Thyroid disorders	6 (6.0%)	0 (0.0%)
Immune-mediated hepatitis	3 (3.0%)	3 (3.0%)
Nephritis	2 (2.0%)	2 (2.0%)
Addison's disease	1 (1.0%)	0 (0.0%)

*Patients with only non-target lesions. **Three patients discontinued before post-baseline assessment due to Progressive Disease in one patient and to withdrawal of consent in two patients. * Peripheral neuropathy (SMQ), includes Neuropathy peripheral, Neurotoxicity, Polyneuropathy, and Toxic neuropathy (MedDRA v.25.1).

ATZ, atezolizumab; BVZ, bevacizumab; BOR, best overall response; CBR, Clinical Benefit Rate; CI, confidence interval; CR, Complete Response; ECI, events of clinical interest; NE, Not Evaluable; PR, Partial Response; PTX, paditaxel; SD, Stable Disease; TEAEs, treatment-emergent adverse events.

Antibody-drug conjugate

ASCENT: A phase III Trial of Antibody-Drug Conjugate Sacituzumab Govitecan vs TPC in Metastatic Triple Negative Breast Cancer – Level One Evidence for OS Benefit

Ongoing Phase III Trials ASCENT 3 and 4 will test SG and SG ± pembro in 1L MBC.

Bardia A, et al. N Engl J Med 2021; 384:1529-1541.

Trastuzumab Deruxtecan in HER2-low TNBC: Updated Efficacy in the HR– Cohort (Exploratory Analyses)

Med 32 mo followup

Overall Survival

Progression-Free Survival (by Investigator)

- There was a 42% reduction in risk of death and 71% reduction in risk of disease progression or death for HRpatients receiving T-DXd compared with TPC
- Most common AEs (≥20%): N/V/D, anorexia, cytopenias, inc LFTs, hypokalemia, MS pain and resp infection

Modi S, et al. ESMO 2023.

Sequencing **Antibody-Drug Conjugate after Antibody-Drug Conjugate in Metastatic Breast** Cancer (A3 study): Multi-Institution **Experience** and **Biomarker Analysis**

to-ADC Characteristics

100%

CONCLUSIONS AND FUTURE DIRECTIONS

- This multi-institution update of patients receiving ADC after ADC includes biomarker data from tissue sequencing.
- Cross-resistance to ADC2 appears to be driven by antibody target in some patients versus payload in others.
- Mechanisms of resistance to ADCs are likely heterogeneous given the complex structure of ADCs.
- Tumor sequencing identified candidate resistance mutations including variants in TOP family.
- These data emphasize the ongoing role of tissue samples in determining resistance mutations to novel agents.

Abelman RO, et al. SABCS 2023.

Conclusions

Questions/Comments/Debate/Discussion/Criticism

Future Directions:

1. Better diagnostics for ICI response

2. STING agonists

At day 35 Ahn, et al. Cancer Cell 2018:33;862-73.

3. CD47/SIRP α M Φ checkpoint inhibition

T Cell InteractPrint predicts response to anti-

I-SPY2 Trial Samples (HR+ and TNBC)

p-value = 0.0243

T Cell InteractPrin
PD-L1 Expression

Specificity (%)

PD-1 therapy in I-SPY2

In this trial, T Cell

InteractPrint predicted response to anti-PD-1 +

neoadjuvant chemo with an AUC of 84.0 $(p < 1 \times 10^{-6})$. This was a significant improvement over PD-L1 (assessed by average

PD-L1 transcript levels

p < 0.05).

Color Scale Min = 6.78e5 Max = 1.60e8

THANK YOU!