

Prostate Cancer: Diagnostic & Therapeutic Updates

January 20, 2024

Karine Tawagi, MD

Assistant Professor of Medicine, Division of Hematology/Oncology, Genitourinary Oncology | UIC Program Director, Division of Hematology/Oncology | UIC

Outline

Biochemical Recurrence

• Updates

MCSPC

• Intensification

mCRPC

• The era of personalization, PARPi, PSMA & more

Clinical States

Death from Prostate Cancer

- 1. Crook et al, NEJM, 2012 [NCIC PR07]
- 2. Sweeney et al, *NEJM*, 2015 [CHAARTED]
- 3. Fizazi et al, *NEJM*, 2017 [LATITUDE]
- 4. Ryan et al, Lanc Onc, 2015 [COU-302]
- 5. Scher et al, NEJM, 2012 [AFFIRM]
- 6. deBono et al, *Lancet*, 2010 [TROPIC]
- 7. Smith et al, JCO, 2016 [COMET-I]
- 8. Mateo et al, *NEJM*, 2015 [TOPARP]

Modified from Scher, ASCO 2015

Biochemically Recurrent PCa – EMBARK 11/16/23

ORIGINAL ARTICLE FREE PREVIEW

Improved Outcomes with Enzalutamide in Biochemically Recurrent Prostate Cancer

Stephen J. Freedland, M.D., Murilo de Almeida Luz, M.D., Ugo De Giorgi, M.D., Ph.D., Martin Gleave, M.D., Geoffrey T. Gotto, M.D., M.P.H., Christopher M. Pieczonka, M.D., Gabriel P. Haas, M.D., Choung-Soo Kim, M.D., Miguel Ramirez-Backhaus, M.D., Antti Rannikko, M.D., Ph.D., Jamal Tarazi, M.D., M.P.A., Swetha Sridharan, M.B., B.S., et al.

- Phase 3
- High risk BCR (PSA DT <9 months)
- 1:1:1 enza + ADT; enza alone, ADT alone
- Primary endpoint: MFS in combo vs. ADT alone
- Secondary endpoint: MFS in mono vs. ADT alone

Biochemically Recurrent PCa - EMBARK

EMBARK

Key Findings and Conclusions

- In patients with high-risk BCR, enza monotherapy showed clinically meaningful delays in time to: distant metastasis (HR 0.61; 95% CI: 0.41, 0.92; P=0.017), symptomatic progression (HR 0.62; 95% CI: 0.49, 0.79; P<0.0001), and first symptomatic skeletal event (HR 0.42; 95% CI: 0.23, 0.79; P=0.006) versus leuprolide alone.
- After treatment suspension, the time to resumption of any hormonal therapy was shorter for enza monotherapy versus leuprolide alone (HR 1.66; 95% CI: 1.38, 1.98; P<0.0001).
- Time to first deterioration of Functional Assessment of Cancer Therapy-Prostate (FACT-P) total score was comparable in enza monotherapy and leuprolide alone cohorts (HR 1.17; 95% CI: 0.98, 1.39; P=0.09).
- Enza monotherapy represents a potential new treatment option for patients with high-risk BCR that improves outcomes relative to the current standard of care.

Freedland et al, NEJM, 2023

- Enzalutamide monotherapy group: better sexual function but high rate of gynecomastia
- In the PSMA PET era, how to utilize?
 - Most patients will have PSMA+ disease to treat...

mCSPC: Changing Landscape

SYSTEMIC THERAPY FOR CASTRATION-SENSITIVE PROSTATE CANCER^{rr}

• Oligometastatic tx?

Criteria for "triplet"

- Benefit has been most convincingly shown in males with high-risk/highvolume metastatic disease:
 - 1. Visceral metastases AND at least one bone lesion
 - 2. OR at least four bone lesions with at least one outside the axial skeleton
 - 3. OR Gleason score 8 disease
 - 4. OR de novo metastatic disease
 - 5. *Fit for chemotherapy, agreeable to port placement (institution dependent)

Local Tx in Metastatic Disease

- Consider prostate RT with systemic therapy for males with a low burden of bone metastases:
 - Four or fewer bone metastases, with none outside the vertebral bodies or pelvis)
 - No visceral metastases

 -> STAMPEDE subgroup: OS was improved with RT in the males with a low metastatic burden at diagnosis

3-year survival 81% versus 73%, HR for death 0.68, 95% CI 0.52-0.90 but not in those with a high metastatic burden (HR 1.07, 95% CI 0.90-1.28)

- -> PEACE-1 subgroup: Combining prostate RT to systemic treatment did not improve OS in men with de novo mCSPC and low metastatic burden
- -> SWOG 1802 trial (open at UIC) will help answer this:

Phase III Randomized Trial of Standard Systemic Therapy (SST) Versus Standard Systemic Therapy plus Definitive Treatment (Surgery or Radiation) of the Primary Tumor in Metastatic Prostate Cancer

Select mHSPC trials with triplets

Name	ARPI	Study Design	3 rd agent	Biomarker
TALAPRO-3	Enzalutamide	Phase III	Talazoparib	HRR+
AMPLITUDE	Abiraterone	Phase III	Niraparib	HRR+
PSMAddition	Any ARPI	Phase III	Lu177-PSMA-617	PSMA PET+
CABIOS	Abiraterone	Phase Ib	Cabozantinib Nivolumab	
CASCARA	Abiraterone	Phase II	Cabazitaxel Carboplatin	
Capitello-281	Abiraterone	Phase III	Capivasertib	PTEN deficiency
CYCLONE-3	Abiraterone	Phase III	Abemaciclib	

Precision medicine in PCa – the future?

FIG 2. Potential precision therapy approaches in mHSPC. ADT, androgen deprivation therapy; ARPI, androgen receptor pathway inhibitor; BiTEs, bispecific Tcell engager; CAR T cell, chimeric antigen receptor T cell; CDK4/6, cyclin D Kinase 4/6; HRR, homologous recombination repair; mHSPC, metastatic hormonesensitive prostate cancer; MSI, microsatellite instability; PARPi, poly (ADP-ribose) polymerase inhibitor; PD-1, programmed cell death protein 1; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen;

TMB, tumor mutational burden.

Published in: Anis A. Hamid; Nicolas Sayegh; Bertrand Tombal; Maha Hussain; Christopher J. Sweeney; Julie N. Graff; Neeraj Agarwal; American Society of Clinical Oncology Educational Book 2023 43e390166. DOI: 10.1200/EDBK_390166 Copyright © 2023 American Society of Clinical Oncology

mCSPC -> mCRPC: Changing Landscape

Figure 1.

Treatment landscape for advanced prostate cancer.

Abbreviations: ADT, androgen deprivation therapy; Doce, docetaxel; mCRPC, metastatic castration-resistant prostate cancer.

Data from NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Prostate Cancer, Version 1.2023. To view the most recent and complete version of these guidelines, visit <u>www.nccn.org</u>.

Citation: Journal of the National Comprehensive Cancer Network 21, 5.5; 10.6004/jnccn.2023.5004

HRD mutations are prevalent in prostate cancer

BRCA1/2m+ in prostate cancer have worse outcomes

- Tested for: ATM, BRCA1/2, BRIP1, CDK12, CHECK2, FANCA, HDAC2, PALB2, RAD51B, and RAD54L
- BRCA1/2 13.2%
 Worse PFS, OS
- Irrespective of germline vs somatic; mono- vs bi-allelic

Summary of outcomes by subgroup

BRCA < HRR non-BRCA < All < non-BRCA

CAPTURE Olmos et al ASCO 2023

PARP inhibitors in Prostate cancer

- Poly (ADP-ribose) polymerase (PARP)
 - Involved in DNA damage response (DDR) pathways
 - Nucleotide excision repair, base excision repair, mismatch repair, homologous recombination (HR), etc
 - PARP Inhibition prevents cells from repairing damaged DNA
 - Accumulation of single-strand breaks
 - Entrapment of PARP-DNA complex
 - In cells harboring HR deficiencies: Synthetic Lethality

Figure 3. The principle of synthetic lethality—using PARP inhibitors (PARPi) to kill cancer cells with defects in DNA repair. (**A**) Normal cells without *BRCA* mutations have a functioning homologous recombination (HR) repair pathway and a functional base excision repair (BER) pathway. These cells remain alive when treated with PARPi. (**B**) Cancer cells with *BRCA* mutations have a non-functional HR pathway, but a functional BER pathway. When treated with PARPi, these cells are not able to repair DNA damage and subsequently undergo apoptosis.

Skelding et al, Cancers 2021

Guidelines support germline and somatic testing in most patients

^b Family history of prostate cancer should not include relatives with clinically localized Grade Group 1 disease.

^c Acinar prostate adenocarcinoma with invasive cribriform pattern, intraductal carcinoma of prostate, or ductal adenocarcinoma component have increased genomic instability, and germline testing may be considered.

CANCER GENETICS

original

reports

Germline Variant Spectrum Among African American Men Undergoing Prostate Cancer Germline Testing: Need for Equity in Genetic Testing

Veda N. Giri, MD^{1,2}; Rebecca Hartman, MPH³; Mary Pritzlaff, MS, CGC⁴; Carrie Horton, MS, CGC⁴; and Scott W. Keith, PhD³

- 427 men tested using the 14-gene PCA panel: AA (n = 237, 56%) and White (n = 190, 44%)
- Pathogenic variant rate of 8.2%
 - AA men with lower rates then White (5.91% v 11.05%, P = .05).
- Difference in rates of variants of uncertain significance (VUSs) between AA and White men (25.32% v 16.32%; P = .02) and for carrying multiple VUSs (5.1% v 0.53%, P = .008).
- Germline evaluation in a cohort enriched for AA men highlights the narrower spectrum of germline contribution to PCA with significantly higher rates of multiple VUSs in DNA repair genes.

FDA approved PARPi Regimens in 1L mCRPC

	Olaparib	Rucaparib	Olaparib + Abiraterone	Talazoparib + enzalutamide	Niraparib + Abiraterone
Trial	PROfound NCT02987543	TRITON2 NCT02952534	Propel NCT03732820	Talapro-2 NCT03395197	MAGNITUDE NCT03748641
FDA approval	May 19, 2020	May 15, 2020	May 31, 2023	June 20, 2023	August 11, 2023
Biomarkers	HRRm+ Cohort A: BRCA1/2, ATM Cohort B: BARD1, BRIP1, CDK12, CHEK1/2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L	BRCA1/2m	BRCA1/2m (n=85, 11% of ITT population)	HRRm+ ATM, ATR, BRCA1, BRCA2, CDK12, CHEK2, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C	BRCA1/2m

Not all mutations respond equally to PARPi

Fig. S6. Gene-by-Gene Analysis of Overall Survival in Patients with Alterations in a Single HRR Gene. Data at the End of Each Bar are Median Overall Survival in Months (95% CI).

Note that for secondary and exploratory outcomes, which were not alpha controlled, definitive treatment effects may not be inferred. CI, confidence interval; HR, hazard ratio; HRR, homologous recombination repair; NC, not calculable; n, number of patients

PARPi Toxicities

Event

Olaparib (N=256)

	All Grades	Grade≥3
		number
Adverse event		
Any	244 (95)	130 (51)
Anemia†	119 (46)	55 (21)
Nausea	106 (41)	3 (1)
Fatigue or asthenia	105 (41)	7 (3)
Decreased appetite	77 (30)	3 (1)
Diarrhea	54 (21)	2 (<1)
Vomiting	47 (18)	6 (2)
Constipation	45 (18)	0
Back pain	35 (14)	2 (<1)
Peripheral edema	32 (12)	0
Cough	28 (11)	0
Dyspnea	26 (10)	6 (2)
Arthralgia	24 (9)	1 (<1)
Urinary tract infection	18 (7)	4 (2)

• 45% dose interruption

- 22% dose reduce
- 18% d/c for AE
- 4% death from AE

Additional Treatment Nuances for PARPi

- Which genes benefit?
 - Not all respond equally role in non-HRR mutated?
 - How can we maximize/synergize?
- When and How to treat?
 - Local, CSPC, CRPC? More efficacy / increased synergy if used in earlier stages / pre androgen resistance?
 - Concurrent or sequential with ARPI?
- Mechanisms of Resistance
 - Restoration of HR capacity, diminished PARPi trapping, drug efflux, cell cycle control alterations, miRNA, etc...
- Better, more selective PARP? Other DDR strategies?

Select mCRPC PARPi trials

Drug Therapy	Study Name	Study Design	Trial Population	Homologous Recombina tion Repair Mutations	Primary Endpoint(s)
Olaparib + pembrolizumab vs. enza./AAP	KEYLYNK-010	Phase III, randomized	mCRPC	Unselected	overall survival, rPFS
Olaparib + durvalumab	NCT03810105	Phase II, single arm	Biochemically recurrent nmCRPC	Selected	# of patients with undetectable PSA
Olaparib + 177Lu-PSMA	LuPARP	Phase I, single arm	mCRPC	N/A	DLT, recommended phase II dose
Olaparib + Radium-223 vs. Radium 223	COMRADE	Phase I/II, randomized	mCRPC	N/A	rPFS, maximum tolerated dose
Niraparib + Radium-223	NiraRad	Phase Ib, single arm	mCRPC	Unselected	DLT
Olaparib + AZD6738 (ATR inhibitor)	ТКАР	Phase II, nonrandomized	mCRPC	Selected	Rate of response, PSA response >50% decline

mCRPC: Changing Landscape with MANY options

SYSTEMIC THERAPY FOR M1 CRPC: ADENOCARCINOMA^{iii,kkk,III} No prior docetaxel/no prior novel hormone therapymmm Prior novel hormone therapy/no prior docetaxel^{mmm,ttt} Preferred regimens Preferred regimens → Docetaxel (category 1)fff Abiraterone^{u,nnn,ooo} (category 1) Useful in certain circumstances ► Docetaxel^{fff,ppp} (category 1) Cabazitaxel/carboplatin^{fff,jjj} ► Enzalutamide^u (category 1) • Niraparib/abiraterone^{u,fff,zzz} for BRCA mutation (category 2B) Useful in certain circumstances → Olaparib for HRRm^{uuu} (category 1) Niraparib/abiraterone^{u,fff,zzz} for BRCA mutation (category 1) Olaparib/abiraterone^{u,fff,nnn,qqq} for BRCA mutation (category 1) → Radium-223^{rrr} for symptomatic bone metastases (category 1) ► Rucaparib for BRCA mutation^{VVV} → Radium-223^{rrr} for symptomatic bone metastases (category 1) ▶ Sipuleucel-T^{fff,sss} Sipuleucel-T^{fff,sss} (category 1) ► Talazoparib/enzalutamide for HRRm^{u,fff,yyy} (category 2B) ► Talazoparib/enzalutamide for HRRm^{u,fff,yyy} (category 1) Other recommended regimens Other recommended regimens ► Abiraterone^{u,nnn} Other secondary hormone therapy^u Abiraterone^u + dexamethasone^{nnn,www} Enzalutamide^u ➤ Other secondary hormone therapy^u Prior docetaxel and prior novel hormone therapymmm,ttt Prior docetaxel/no prior novel hormone therapy^{mmm} Useful in certain circumstances Preferred regimens Lutetium Lu 177 vipivotide tetraxetan (Lu-177–PSMA-617) for PSMA-➤ Abiraterone^{u,nnn} (category 1) positive metastases^{XXX} (category 1) Cabazitaxel^{fff} (The following systemic therapies are category 2B if visceral metastases are ► Enzalutamide^u (category 1) present) Useful in certain circumstances Preferred regimens Cabazitaxel/carboplatin^{fff,jjj} ➤ Cabazitaxel^{fff,ooo} (category 1) Mitoxantrone for palliation in symptomatic patients who cannot Docetaxel rechallenge^{fff} tolerate other therapies^{fff} Useful in certain circumstances ▶ Niraparib/abiraterone^{u,fff,zzz} for BRCA mutation Cabazitaxel/carboplatin^{fff,jjj} Olaparib/abiraterone^{u,fff,nnn,qqq} for BRCA mutation > Mitoxantrone for palliation in symptomatic patients who cannot tolerate ▶ Radium-223^{rrr} for symptomatic bone metastases (category 1) other therapies^{fff} ▶ Sipuleucel-T^{fff,sss} → Olaparib for HRRm^{000,uuu} (category 1) ▶ Talazoparib/enzalutamide for HRRm^{u,fff,yyy} Other recommended regimens ▶ Radium-223^{rrr} for symptomatic bone metastases⁰⁰⁰ (category 1) Other secondary hormone therapy^u ► Rucaparib for BRCA mutation^{VVV} Other recommended regimens ▶ Abiraterone^{u,nnn} Enzalutamide^u Other secondary hormone therapy^u

See Footnotes for Systemic Therapy M1 CRPC (PROS-15A).

23

March 23, 2022:

FDA approval of **177Lu-PSMA-617** for **PSMA+ mCRPC** who have received **prior ARPI** and **taxane**

PSMA PET/CT

PSMA: cell membrane protein highly expressed on surface of PCa

Diagnostic radiotracers:

- -Ga-68 PSMA-11
- -F-18 piflufolast

Obtain scans in high, very high risk PCa, biochemical recurrence, mCRPC prior to PSMA-radioligand – replacing conventional imaging (bone scan + CT)

~15% of PCa lesions are PSMA-negative

PSMA-Imaging Nuances

- Most recommended test for BCR/BCP

 Detect pelvic and extra-pelvic disease
 False positives can occur
 Discuss findings if atypical
- Threshold of PSA 0.2 ng/mL
- Can affect outcomes of next steps

177LuPSMA Radioligand

- Beta particle radiation taken up by PSMA-positive cells and surrounding tissues
- Internalization of radioligand results in accumulation of radioactivity in tumor tissue and irradiation

o 6 injections (~20 minutes) q4-6 weeks

• Hydration is important

• AEs: salivary gland xerostomia, long-term renal toxicities

VISION: 177-Lu-PSMA-617 for Late Stage mCRPC

*Two additional cycles (up to six cycles in total) could be administered, at the discretion of the treating physician, in patients who had evidence of response.

Sartor O, et al. N Engl J Med. 2021.

VISION: 177-Lu-PSMA-617 for Late Stage mCRPC

Sartor O, et al. N Engl J Med. 2021.

TheraP: randomized Ph2 in mCRPC

LuPSMA resulted in higher response rates (BCR, imaging), longer PFS, and reduced G3/4 toxicities compared to cabazitaxel

TheraP: PSMA Intensity as a Predictive Biomarker

PSMA radioligand pre-chemo: PSMAfore

rPFS: primary endpoint was met

Primary HR:0.41 (95% CI: 0.29, 0.56); p < 0.001 Updated HR:0.43 (95% CI: 0.33, 0.54)

Figure. The PSMAfore trial met its primary endpoint, with a significant improvement in rPFS with 177Lu-PSMA-617 compared with ARPI change in mCRPC (ESMO Congress 2023, LBA13)

Outstanding questions

- How to monitor response on therapy?
- What is the role of imaging in treatment selection?
 - And re-treatment?
- What is the optimal dose?
 - Adaptive strategies?
- How to sequence with other therapies?
- How to manage toxicities?
- How to prevent and overcome resistance?
 - 1/3 do not respond
- What is the role of other radioligands?
 - Alpha: higher energy transfer/more potent
- Equitable Access to Theranostics*
 - Availability, NM access, cost

RADIONUCLIDE THERAPEUTIC AGENTS

[177Lu]Lu-PSMA-617 [177Lu] Lu-PSMA-I&T

[177Lu]Lu-J591

[177Lu]Lu-DOTA-rosopatamab (NCT0487665) [177Lu]Lu-rhPSMA-10.1 (NCT05413850) [225Ac]Ac-PSMA-617 (NCT04597411) [225Ac]Ac-PSMA-1&T (NCT05219500) [225Ac]Ac-J591 (NCT03276572) [161 Tb]Tb-PSMA-1&T (NCT05521412) [1311]I-1095 (NCT03939689) [227Th]Th-BAY2315497 (NCT03724747) [67Cu]Cu-SAR- bisPSMA (NCT04868604) 213Bi-PSMA

Gopanath Gnanasegaran IUCS 2023

PSMA radioligand in earlier settings

Drug Therapy	Study Name	Study Design	Trial Population
LuPSMA before prostatectomy	Lutectomy	Phase I/II	High-risk localized or locoregional PCa
LuPSMA before SBRT vs. SBRT alone	LUNAR	Phase II	Oligorecurrent PCa
LuPSMA + EBRT	ProstACT TARGET	Phase II	Oligorecurrent PCa
LuPSMA + SABR vs. SABR alone	POPSTAR II	Phase II	Oligomestastatic PCa
LuPSMA + SOC vs. SOC alone	PSMAddition	Phase III	mHSPC
LuPSMA + Docetaxel vs Docetaxel alone	UpfrontPSMA	Phase II	mHSPC
LuPSMA vs. SOC	Bullseye	Phase II	Oligometastatic mHSPC

Tawagi and Reizine 2023

Improve efficacy in more homogenous population?

PSMA radioligand in combination regimens

Drug Therapy	Study Name	Study Design	Trial Population
Enzalutamide + LuPSMA vs Enzalutamide alone	ENZA-p	Phase II	mCRPC
LuPSMA after ARSI progression	SPLASH	Phase III	mCRPC
LuPSMA vs ARSI	ECLIPSE	Phase III	mCRPC
Abemaciclib before LuPSMA	UPLIFT	Phase I/II	mCRPC
LuPSMA vs LuPSMA with Ipilimumab + Nivolumab	EVOLUTION/ANZUP2001	Phase II	mCRPC
LuPSMA + Pembrolizumab	PRINCE	Phase I/II	mCRPC
LuPSMA + Cabazitaxel	LuCAB	Phase I/II	mCRPC
LuPSMA + Cabozantinib	CaboLu	Phase Ib	mCRPC
LuPSMA + Olaparib	LuPARP	Phase I	mCRPC

Tawagi and Reizine 2023

PSMA upregulation? Timing/significance of sequencing with other therapies?

Clinical Trials and Novel Therapies in PC

Presented by Elena Castro IUCS 2023

& special thanks to Dr. Natalie Reizine for her input with this presentation

Karine Tawagi - <u>ktawagi@uic.edu</u> @drkarinetawagi

Dr. Karine Tawagi - Updates in Prostate CA - Jan 2024