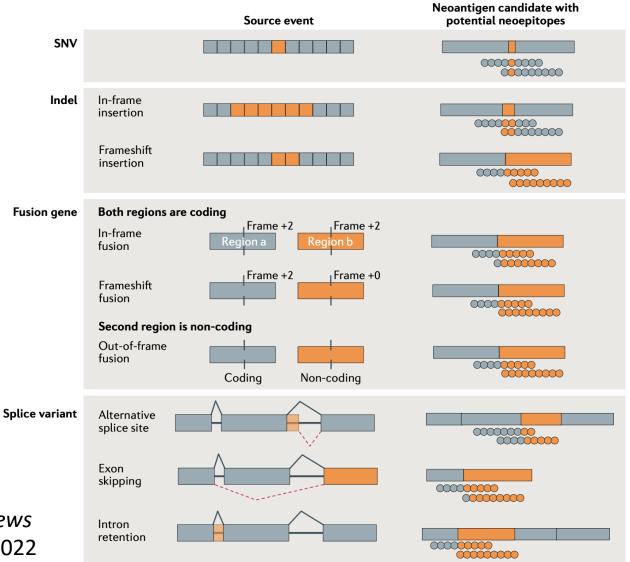

MCM Tampa Bay Edition: January 2024 Fostering Multidisciplinary Care in the Era of Complex Cancer Treatments


Neoantigen Vaccines for Melanoma: Déjà Vu All Over Again?

Jeffrey S Weber MD PhD
Laura and Isaac Perlmutter Cancer Center
New York, NY

What are neoantigens? They are <u>usually</u> generated by mutations within tumors, not present in normal tissue

Not all neoantigens are single nucleotide variants!

Lang F et al. *Nature Reviews Drug Discovery.* 21:261 2022

What is the direct <u>clinical</u> evidence that neoantigens are tumor rejection antigens in humans?

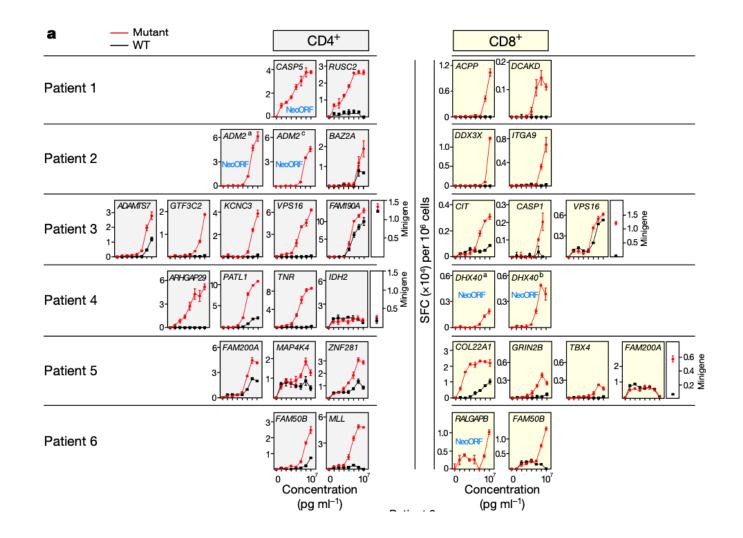
Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer

Eric Tran, Simon Turcotte, Alena Gros, Paul F. Robbins, Yong-Chen Lu, Mark E. Dudley, Hohn R. Wunderlich, Robert P. Somerville, Katherine Hogan, Christian S. Hinrichs, Maria R. Parkhurst, James C. Yang, Steven A. Rosenberg

Limited evidence exists that humans mount a mutation-specific T cell response to epithelial cancers. We used a whole-exomic-sequencing-based approach to demonstrate that tumor-infiltrating lymphocytes (TIL) from a patient with metastatic cholangiocarcinoma contained CD4+ T helper 1 (T_H 1) cells recognizing a mutation in erbb2 interacting protein (ERBB2IP) expressed by the cancer. After adoptive transfer of TIL containing about 25% mutation-specific polyfunctional T_H 1 cells, the patient achieved a decrease in target lesions with prolonged stabilization of disease. Upon disease progression, the patient was retreated with a >95% pure population of mutation-reactive T_H 1 cells and again experienced tumor regression. These results provide evidence that a CD4+ T cell response against a mutated antigen can be harnessed to mediate regression of a metastatic epithelial cancer.

The evolution of neoantigen vaccines

LETTER


An immunogenic personal neoantigen vaccine for patients with melanoma

Patrick A. Ott^{1,2,3*}, Zhuting Hu^{1*}, Derin B. Keskin^{1,3,4}, Sachet A. Shukla^{1,4}, Jing Sun¹, David J. Bozym¹, Wandi Zhang¹, Adrienne Luoma⁵, Anita Giobbie–Hurder⁶, Lauren Peter^{7,8}, Christina Chen¹, Oriol Olive¹, Todd A. Carter⁴, Shuqiang Li⁴, David J. Lieb⁴, Thomas Eisenhaure⁴, Evisa Gjini⁹, Jonathan Stevens¹⁰, William J. Lane¹⁰, Indu Javeri¹¹, Kaliappanadar Nellaiappan¹¹, Andres M. Salazar¹², Heather Daley¹, Michael Seaman⁷, Elizabeth I. Buchbinder^{1,2,3}, Charles H. Yoon^{3,13}, Maegan Harden⁴, Niall Lennon⁴, Stacey Gabriel⁴, Scott J. Rodig^{9,10}, Dan H. Barouch^{3,7,8}, Jon C. Aster^{3,10}, Gad Getz^{3,4,14}, Kai Wucherpfennig^{3,5}, Donna Neuberg⁶, Jerome Ritz^{1,2,3}, Eric S. Lander^{3,4}, Edward F. Fritsch^{1,4}†, Nir Hacohen^{3,4,15} & Catherine J. Wu^{1,2,3,4}

8 patients NED at baseline, 4 remained NED at median of 25 months; 2 recurrent patients had a CR with PEMBRO

Ott P et al. *Nature* 547: 217 2017

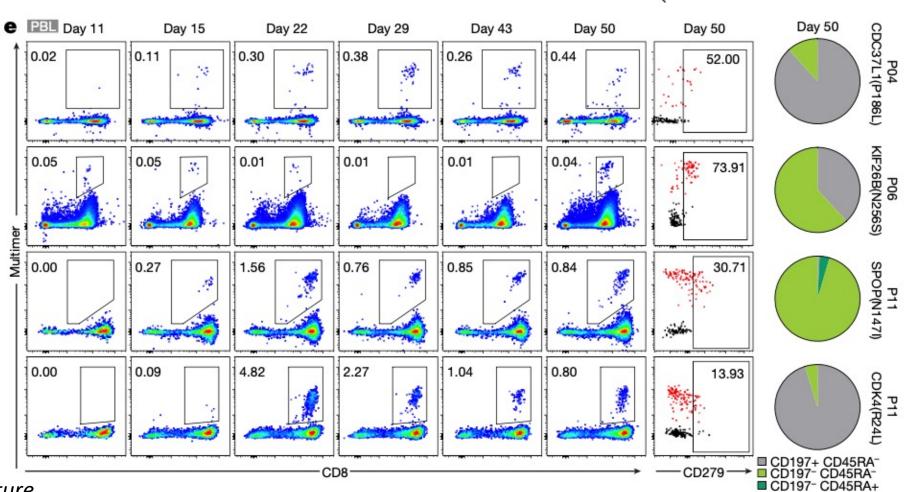
Vaccine-induced T cells discriminate mutated vs wild-type antigens and detect endogenously processed and presented peptides

Ott P et al. *Nature*

547: 217 2017

Strong selectivity for MT vs WT peptides

LETTER


Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

Ugur Sahin^{1,2,3}, Evelyna Derhovanessian¹, Matthias Miller¹, Björn-Philipp Kloke¹, Petra Simon¹, Martin Löwer², Valesca Bukur^{1,2}, Arbel D. Tadmor², Ulrich Luxemburger¹, Barbara Schrörs², Tana Omokoko¹, Mathias Vormehr^{1,3}, Christian Albrecht², Anna Paruzynski¹, Andreas N. Kuhn¹, Janina Buck¹, Sandra Heesch¹, Katharina H. Schreeb¹, Felicitas Müller¹, Inga Ortseifer¹, Isabel Vogler¹, Eva Godehardt¹, Sebastian Attig^{2,3}, Richard Rae², Andrea Breitkreuz¹, Claudia Tolliver¹, Martin Suchan², Goran Martic², Alexander Hohberger³, Patrick Sorn², Jan Diekmann¹, Janko Ciesla⁴, Olga Waksmann⁴, Alexandra-Kemmer Brück¹, Meike Witt¹, Martina Zillgen¹, Andree Rothermel², Barbara Kasemann², David Langer¹, Stefanie Bolte¹, Mustafa Diken^{1,2}, Sebastian Kreiter^{1,2}, Romina Nemecek⁵, Christoffer Gebhardt^{6,7}, Stephan Grabbe³, Christoph Höller⁵, Jochen Utikal^{6,7}, Christoph Huber^{1,2,3}, Carmen Loquai³* & Özlem Türeci⁸*

13 patients, 102 days median prep time

Rapid expansion of neo-epitope- specific T cells with central and effector memory phenotypes by vaccination.

8/13
patients
were NED, 5
had
metastases;
2 responses
seen of 5

Some responses occurred by 2-4 weeks

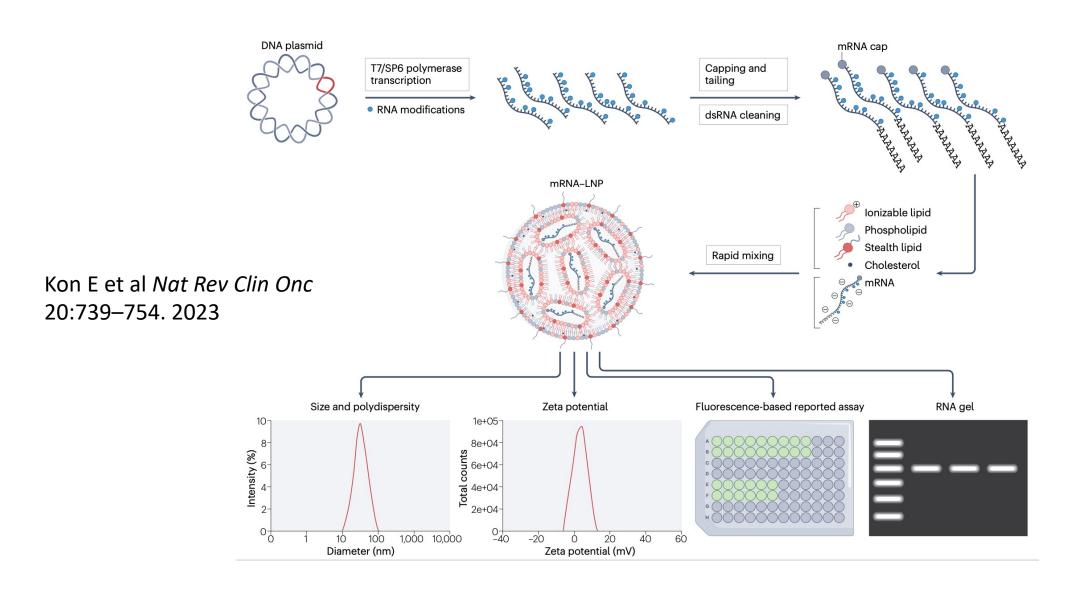
Sahin U et al Nature

547:222, 2017

ARTICLES

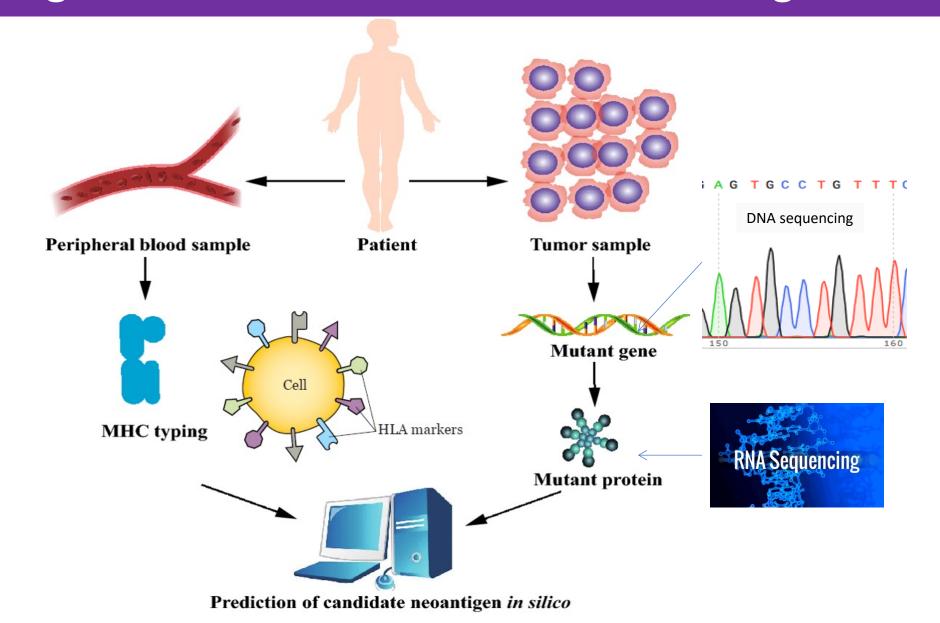
https://doi.org/10.1038/s41591-020-01206-4

Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma

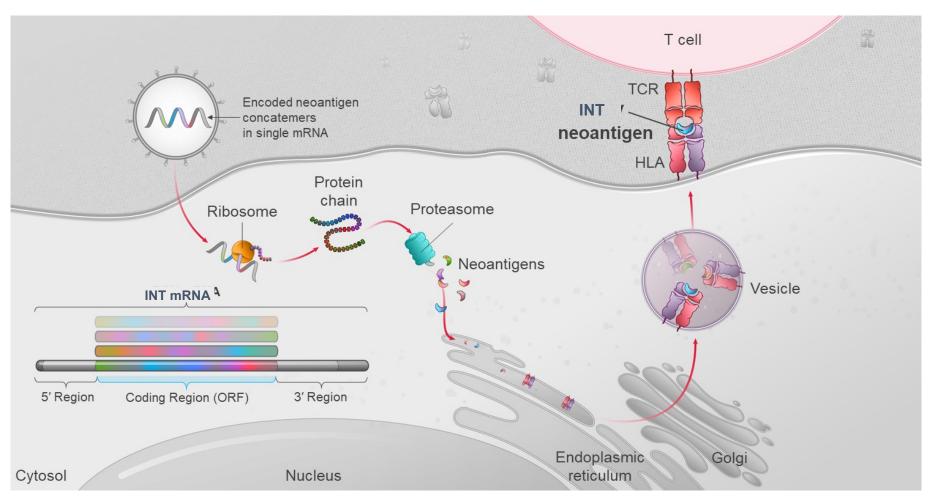

```
Zhuting Hu<sup>1,20</sup>, Donna E. Leet <sup>1,2,20</sup>, Rosa L. Allesøe<sup>3,20</sup>, Giacomo Oliveira<sup>1</sup>, Shuqiang Li<sup>4,5</sup>, Adrienne M. Luoma<sup>6</sup>, Jinyan Liu<sup>7</sup>, Juliet Forman<sup>1,4,5</sup>, Teddy Huang<sup>5</sup>, J. Bryan lorgulescu <sup>1,2,8</sup>, Rebecca Holden<sup>9</sup>, Siranush Sarkizova<sup>4</sup>, Satyen H. Gohil<sup>1,4,10</sup>, Robert A. Redd <sup>11</sup>, Jing Sun<sup>1</sup>, Liudmila Elagina<sup>4</sup>, Anita Giobbie-Hurder<sup>11</sup>, Wandi Zhang<sup>1</sup>, Lauren Peter <sup>7</sup>, Zoe Ciantra<sup>12</sup>, Scott Rodig<sup>8,12</sup>, Oriol Olive<sup>1</sup>, Keerthi Shetty<sup>1</sup>, Jason Pyrdol<sup>6</sup>, Mohamed Uduman<sup>11,12</sup>, Patrick C. Lee<sup>1,2</sup>, Pavan Bachireddy<sup>1,2,4,13</sup>, Elizabeth I. Buchbinder<sup>1,2,13</sup>, Charles H. Yoon<sup>2,14</sup>, Donna Neuberg<sup>11</sup>, Bradley L. Pentelute <sup>4,9,15</sup>, Nir Hacohen<sup>2,4,16</sup>, Kenneth J. Livak <sup>1,5</sup>, Sachet A. Shukla<sup>1,4,5</sup>, Lars Rønn Olsen<sup>17,18</sup>, Dan H. Barouch <sup>2,7,19</sup>, Kai W. Wucherpfennig<sup>2,6</sup>, Edward F. Fritsch <sup>1,4</sup>, Derin B. Keskin<sup>1,4,5</sup>, Catherine J. Wu <sup>1,2,4,13,21</sup> and Patrick A. Ott <sup>1,2,4,13,21</sup>
```

5 of 8 patients relapsed after vaccination

What were the hurdles to overcome with mRNA vaccines?


- Negatively charged phosphodiester backbone makes it hard to cross cell membranes
 - Lipid nanoparticle encasement to neutralize the RNA charge
- RNAses are ubiquitous and destroy RNA
 - Lipid nanoparticle encasement to protect the molecule
- RNA molecules elicit immune responses
 - Substitute N1-methylated pseudouridine for uridine to stabilize, increase protein production and decrease inflammatory reactivity via TLR7/8
 - N1-methylated pseudouridine also protects RNA from enzymatic degradation

Generation of mRNA-vaccine lipid nanoparticles



The first randomized trial of a neoantigen vaccine to demonstrate clinical benefit

Screening and selection of candidate neoantigens

mRNA Neoantigen Vaccine: Mechanism of Action

mRNA-4157 (V940) is a **customizable** individualized neoantigen therapy encoding up to 34 neoantigens

Targeting of neoantigens
by T-cells has been demonstrated to
drive antitumor responses¹

The modified mRNA

platform was implemented for the
COVID-19 vaccine
(mRNA-1273), demonstrating its

utility and adaptability²

mRNA-4157-P201/KEYNOTE-942 (NCT03897881) Study Design

Key eligibility criteria Combination treatment arm: mRNA-4157 (V940) + pembrolizumab Up to 1 year of pembrolizumab treatment Resected stage IIIB,^a **Primary endpoint:** mRNA-4157 (V940) 1 mg IM Q3W for up to 9 doses + RFSc,d IIIC, IIID, or IV pembrolizumab 200 mg IV Q3W for up to 18 cycles cutaneous melanoma (n = 107)Secondary randomization · Complete surgical endpoints: resection within DMFS,e 13 weeks prior to safety, tolerability Stratified by disease stage^b first pembrolizumab dose Disease free at study Follow-up: Control treatment arm: pembrolizumab monotherapy entry up to 3 years Up to 1 year of pembrolizumab treatment following the first dose ECOG PS score 0–1 pembrolizumab 200 mg IV Q3W for up to 18 cycles of pembrolizumab (n = 50) Tissue available for NGS

Designed with 80% power to detect an HR of 0.5 with ≥40 RFS events (with a 1-sided alpha of 0.1) DMFS analysis was prespecified for testing following positive RFS in the ITT population follow-upg: 23 months for mRNA-4157 (V940) + pembrolizumab 24 months for pembrolizumab monotherapy

Patients with stage IIIB disease were eligible only if relapse occurred within 3 months of prior surgery of curative intent; ^bAccording to the 8th edition of the American Joint Committee on Cancer Staging Manual; ^cThe primary endpoint was investigator-assessed RFS (defined as the time from first dose of pembrolizumab until the date of first recurrence [local, regional, or distant metastasis], a new primary melanoma, or death from any cause) in the ITT population; ^dThe primary analysis for RFS was specified to occur after all patients completed ≥12 months on study and ≥40 RFS events were observed. Descriptive analysis was specified to occur when ≥51 RFS events were observe; ^eInvestigator-assessed DMFS was defined as the time from first dose of pembrolizumab until the date of first distant recurrence or death from any cause; ^eThe stratified log-rank test was used for comparison; ^eTime of database cutoff was November 14, 2022. DMFS, disease metastasis-free survival; ECOG PS, Eastern Cooperative Oncology Group performance status; IM, intramuscular; ITT, intent-to-treat; IV, intravenous; mRNA, messenger RNA; NGS, next-generation sequencing; Q3W, every 3 weeks; RFS, recurrence-free survival.

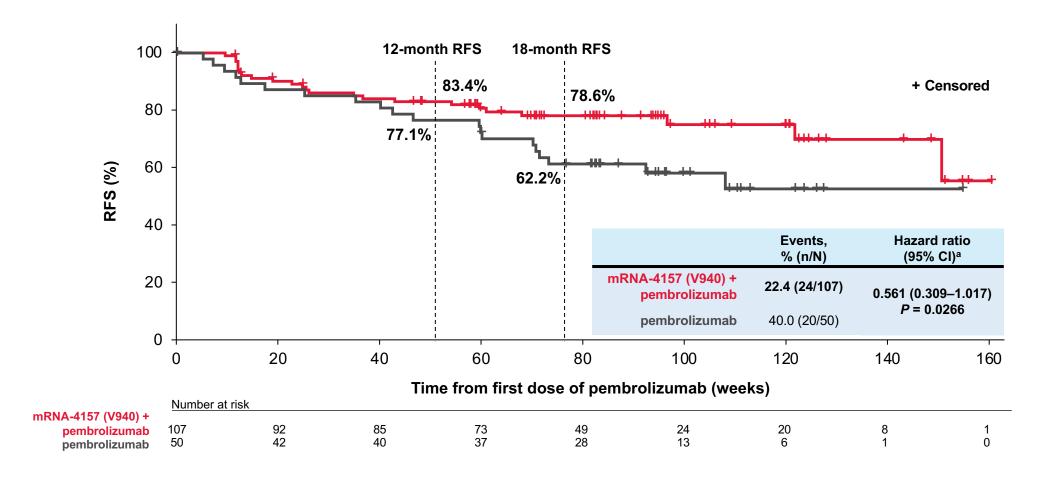
mRNA-4157-P201/KEYNOTE-942 Patient Demographics

Khattak A, et al. Previously presented at the American Society of Clinical Oncology (ASCO) Annual Meeting; June 2-6, 2023; Chicago, IL, USA. Oral presentation LBA9503.

Characteristic, n (%)	mRNA-4157 (V940) + pembrolizumab (n = 107)	pembrolizumab (n = 50)
Sex		
Male Female	70 (65.4) 37 (34.6)	31 (62.0) 19 (38.0)
Age, years		
Mean (SD) Median (range)	61.3 (13.50) 63 (26–83)	59.4 (14.25) 61.5 (24–89)
Age group		
<65 years ≥65 years	59 (55.1) 48 (44.9)	28 (56.0) 22 (44.0)
ECOG PS score ^a		
0 1	90 (84.1) 15 (14.0)	40 (80.0) 9 (18.0)
Stage ^b		
IIIC IIID IV	89 (83.2) 2 (1.9) 16 (15.0)	42 (84.0) 2 (4.0) 6 (12.0)
LDH, U/L	,	,
Median (range) >ULN	189.5 (118–528) 5 (4.7)	185.5 (113–1180) 3 (6.0)
Lymph node dissection PD-L1 status	34 (31.8)	15 (30.0)
Positive Negative Indeterminate ^c	69 (64.5) 13 (12.1) 25 (23.4)	27 (54.0) 5 (10.0) 18 (36.0)
BRAF ^d		
V600K or V600E mutation WT ^e	41 (38.3) 66 (61.7)	20 (40.0) 30 (60.0)
Tumor mutational burden ^f		
<10 mutations/Mb ≥10 mutations/Mb	26 (24.3) 79 (73.8)	19 (38.0) 30 (60.0)

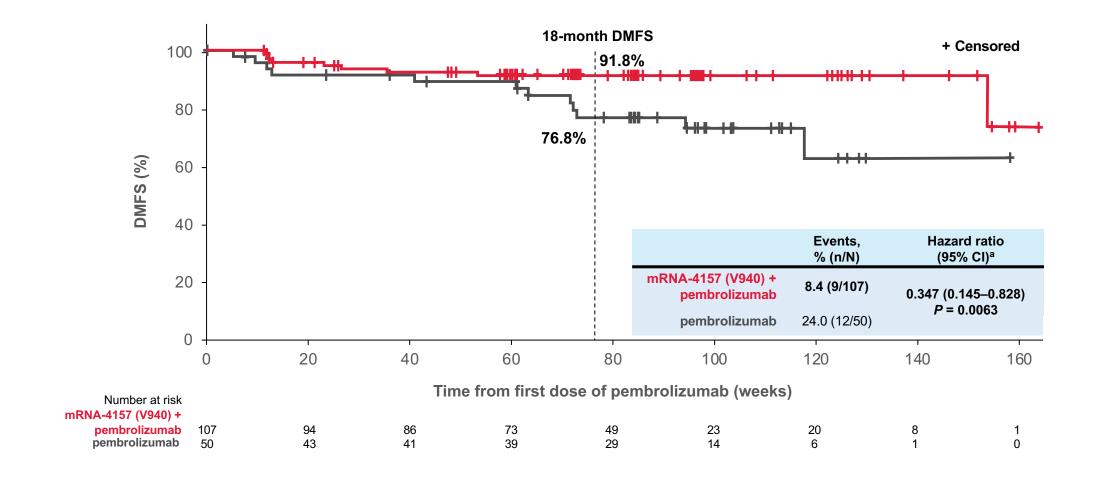
^aThree patients were not treated and therefore had no baseline ECOG PS; ^bAccording to the 8th edition of the American Joint Committee on Cancer staging manual; ^cPatients for whom there was no sample to send for PD-L1 evaluation or for whom sample quality or quantity was too low to perform the assay; ^dBRAF status determined by whole exome sequencing on baseline tumor samples; ^eWT refers to position 600 on BRAF gene; ^fAvailable for 154 patients.

ECOG PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; mRNA, messenger RNA; PD-L1, programmed death ligand 1; ULN, upper limit of normal; WT, wild type.


Safety Profile Reflects Individual Components With Infrequent Additional Clinically Significant AEs Over Pembrolizumab Alone

	mRNA-4157 (V940) + pembrolizumab (n = 104)		pembrolizumab (n = 50)	
Event, n (%)	Any grade	Grade ≥3	Any grade	Grade ≥3
Any AE	104 (100.0)	36 (34.6)	47 (94.0)	18 (36.0)
Any treatment-related AE	104 (100.0)	26 (25.0)	41 (82.0)	9 (18.0)
Serious AEs ^a	15 (14.4)	13 (12.5)	5 (10.0)	4 (8.0)
Immune-mediated AEs	37 (35.6)	11 (10.6)	18 (36.0)	7 (14.0)
mRNA-4157 (V490) or combination-rela	nted AEs ^b occurring in >	20% of patients		
Any	98 (94.2)	12 (11.5)	-	-
Fatigue	63 (60.6)	5 (4.8)	-	-
Injection-site pain	58 (55.8)	0	-	-
Chills	52 (50.0)	0	-	-
Pyrexia	50 (48.1)	1 (1.0)	-	-
Headache	33 (31.7)	0	-	-
Injection-site erythema	33 (31.7)	0	-	-
Influenza-like illness	32 (30.8)	0	-	-
Nausea	26 (25.0)	0	-	-
Myalgia	22 (21.2)	1 (1.0)	-	-
pembrolizumab or combination-related AEs ^c occurring in >20% of patients				
Any	101 (97.1)	24 (23.1)	41 (82.0)	9 (18.0)
Fatigue	72 (69.2)	6 (5.8)	20 (40.0)	0
Diarrhea	31 (29.8)	2 (1.9)	5 (10.0)	0
Pruritus	30 (28.8)	0	10 (20.0)	0
Nausea	23 (22.1)	0	5 (10.0)	0
Chills	22 (21.2)	0	1 (2.0)	0
Pyrexia	22 (21.2)	0	0	0

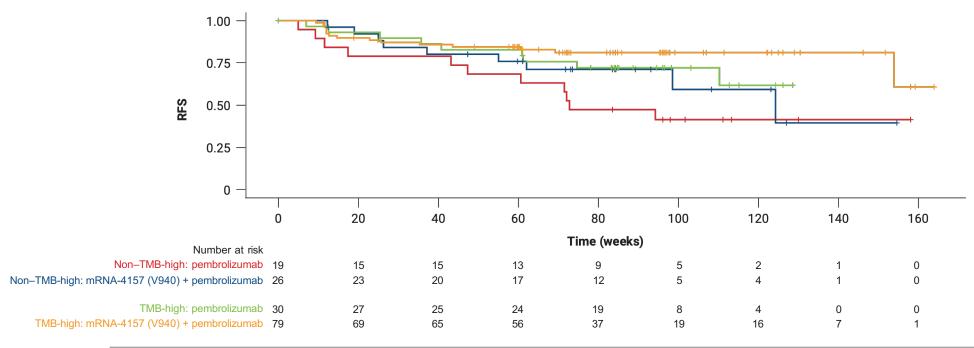
Safety analyses were conducted in the safety population, which was defined as all randomly assigned patients who received ≥1 dose of treatment. Grading per National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0. ^aSerious AEs included grade 1 fever, attributed to mRNA-4157, and grade 3 muscular weakness and grade 3 autoimmune nephritis, attributed to both mRNA-4157 (V940) and pembrolizumab; ^bmRNA-4157 (V940) treatment-related AEs included events attributed by the investigator to mRNA-4157 (V940) alone as well as events attributed to both mRNA-4157 (V940) and pembrolizumab include events attributed by the investigator to pembrolizumab alone and events attributed to both mRNA-4157 (V940) and pembrolizumab. AE, adverse event; mRNA, messenger RNA.


Khattak A, et al. Previously presented at the American Association for Cancer Research® (AACR) Annual Meeting; April 14-19, 2023; Orlando, FL, USA. Oral presentation CT001.

Primary Efficacy Endpoint: Recurrence-Free Survival

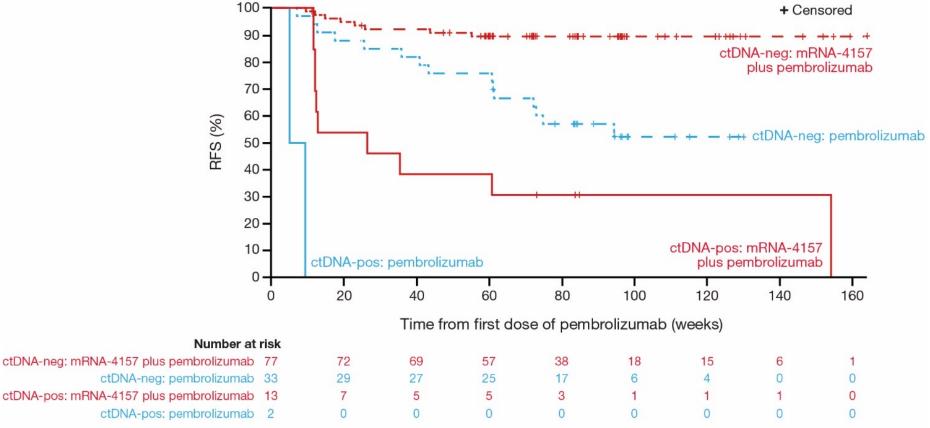
^aThe hazard ratio and 95% CI for mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab alone are estimated using a Cox proportional hazards model with treatment group as a covariate, stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization. The *P* value is based on a 1-sided log-rank test stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization. mRNA, messenger RNA; RFS, recurrence-free survival.

Secondary Efficacy Endpoint: Distant Metastasis-Free Survival

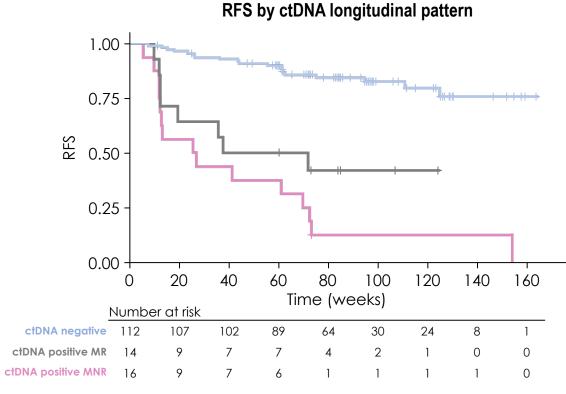


^aThe hazard ratio and 95% CI for mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab alone are estimated using a Cox proportional hazards model with treatment group as a covariate, stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization. The *P* value is based on a 1-sided log-rank test stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization. At 18 months, the estimated DMFS rates were 91.8% (95% CI, 84.2-95.8) versus 76.8% (95% CI, 61.0-86.8) in the combination and monotherapy arms, respectively.

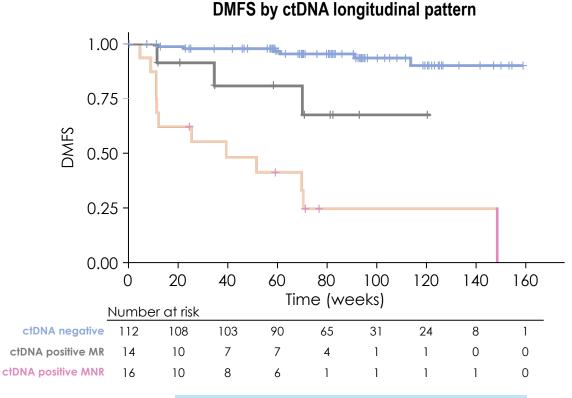
DMFS, disease metastasis-free survival; mRNA, messenger RNA.


RFS Improved With mRNA-4157 and Pembrolizumab Irrespective of TMB Status

RFS by treatment arm stratified by TMB-high and non-TMB-high subgroups


	mRNA-4157 (V940) + pembrolizumab versus pembrolizumab Hazard ratio (95% CI)	mRNA-4157 (V940) + pembrolizumab Events, n/N (%)	pembrolizumab Events, n/N (%)
TMB-high	0.652 (0.284–1.494)	15/79 (19.0)	9/30 (30.0)
non-TMB-high	0.586 (0.243–1.415)	9/26 (34.6)	11/19 (57.9)
	TMB-high versus non–TMB-high Hazard ratio (95% CI)	TMB-high Events, n/N (%)	Non–TMB-high Events, n/N (%)
mRNA-4157 (V940) + pembrolizumab	0.536 (0.234–1.225)	15/79 (19.0)	9/26 (34.6)
pembrolizumab			

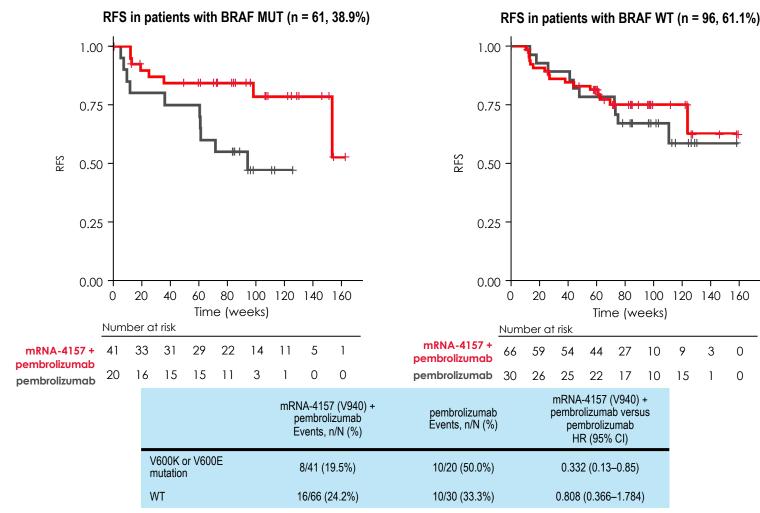
RFS is Improved in Patients With a ctDNA-negative or positive Result at Baseline Who Received Combination Therapy



	mRNA-4157 (V940) + pembrolizumab versus pembrolizumab Hazard ratio (95% CI)	mRNA-4157 (V940) + pembrolizumab Events, n/N (%)	pembrolizumab Events, n/N (%)
ctDNA-pos	NE	10/13 (76.9)	2/2 (100)
ctDNA-neg	0.225 (0.095–0.531)	8/77 (10.4)	15/33 (45.5)

Improved RFS and DMFS observed with favorable ctDNA longitudinal patterns

	Events, n/N (%)	Hazard ratio (95% CI)
MR patterns	8/14 (57.1)	0.535
MNR patterns	15/16 (93.8)	(0.224–1.278)



	Events, n/N (%)	Hazard ratio (95% CI)
MR patterns	3/14 (21.4)	0.274
MNR patterns	12/16 (75.0)	(0.076–0.984)

Improved RFS observed with mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy irrespective of BRAF status

- RFS improvement with the combination versus pembrolizumab monotherapy initially appears stronger in patients with BRAF MUT than in patients with BRAF WT
- In line with previous reports, pembrolizumab treatment effect is similar across BRAF WT and MUT subpopulations
- BRAF WT: combination arm had more patients with ctDNA positive results (12.1%) versus pembrolizumab monotherapy, which had no patients with ctDNA positive results

Conclusions for Keynote 942

- mRNA-4157-P201/KEYNOTE-942 is the first randomized trial to demonstrate improvement in RFS and DMFS with an individualized neoantigen therapy approach
- mRNA-4157 (V940) and pembrolizumab demonstrated a clinically significant improvement in RFS and DMFS compared with standard-of-care pembrolizumab in high-risk resected melanoma, with a 44% reduction in the risk of recurrence or death and a 65% reduction in the risk of distant metastasis or death with a median of 2 years of follow-up, considerably improved at 3 years of follow up with HR for RFS of 0.51 and two-side p of 0.019*
- Prolonged RFS was maintained in patients who received combination therapy regardless of TMB or ctDNA status at baseline; patients who were TMB high or who had a ctDNAnegative result at baseline had a greater RFS benefit compared with patients who were not TMB high or who had a ctDNA-positive result at baseline, respectively
- mRNA-4157 (V940) in combination with PEMBRO was well tolerated, without a substantial increase in clinically meaningful AEs compared with PEMBRO monotherapy
- mRNA-4157 (V940) in combination with pembrolizumab versus PEMBRO is in an ongoing phase III study in resected stages IIB/C/III/IV melanoma in over 1000 patients

Conclusions:

"When you come to a fork in the road, take it"

Laurence Berra, 20th Century American Philosopher