MDS update 2024

Guillermo Garcia-Manero Department of Leukemia MD Anderson Cancer Center Tampa 2024

Garcia-Manero et al AJH 2023

American Society of Hematology

Helping hematologists conquer blood diseases worldwide

L Lanino*, S Ball*, JP Bewersdorf*, M Marchetti, G Maggioni, E Travaglino, NH Al Ali, P Fenaux, U Platzbecker, V Santini,

M Diez-Campelo, AM Singh, AG Jain, LE Aguirre, SM Tinsley-Vance, ZI Schwabkey, O Chan, Z Xie, AM Brunner,

AT Kuykendall, JM Bennett, R Buckstein, R Bejar, HE Carraway, AE DeZern, EA Griffiths, S Halene, R Hasserjian, J Lancet,

AF List, S Loghavi, O Odenike, E Padron, MM Patnaik, GJ Roboz, M Stahl, MA Sekeres, DP Steensma, MR Savona, J Taylor,

ML Xu, K Sweet, DA Sallman, SD Nimer, CS Hourigan, AH Wei, E Sauta, S D'Amico, G Asti, G Castellani, UM Borate, G Sanz, F Efficace, SD Gore, TK Kim, N Daver, G Garcia-Manero, M Rozman, A Orfao, SA Wang, MK Foucar, U Germing, T Haferlach, P Scheinberg, Y Miyazaki, M lastrebner, A Kulasekararaj, T Cluzeau, S Kordasti, AA van de Loosdrecht, L Ades,

AM Zeidan[#], RS Komrokji[#] and MG Della Porta[#]

Proposal for a hierarchical harmonized MDS classification

Reclassification according to this algorithm was concordant with ICC and WHO labels in 97.2% and 98.1%

Parallel Genomic Analysis from Paired Bone Marrow and Peripheral Blood Samples of 200 Cytopenic Patients

S. Huber, N. Wossidlo, T. Haferlach, M. Meggendorfer, S. Hutter, G. Hoermann, I. Summerer, H. Ruge, C. Baer, W. Kern, C. Haferlach

MLL Munich Leukemia Laboratory

Summary and Conclusion

PB NGS

High degree of overlap between PB and BM regarding clonality detection in

patients with unclear cytopenia using next generation sequencing

Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive patients with transfusion-dependent lower-risk myelodysplastic syndromes: full analysis of the COMMANDS trial

Guillermo Garcia-Manero,¹ Uwe Platzbecker,² Valeria Santini,³ Amer M. Zeidan,⁴ Pierre Fenaux,⁵ Rami S. Komrokji,⁶ Jake Shortt,⁷ David Valcarcel,⁸ Anna Jonasova,⁹ Sophie Dimicoli-Salazar,¹⁰ Ing Soo Tiong,¹¹ Chien-Chin Lin,¹² Jiahui Li,¹³ Jennie Zhang,¹³ Ana Carolina Giuseppi,¹³ Sandra Kreitz,¹⁴ Veronika Pozharskaya,¹³ Karen L. Keeperman,¹³ Shelonitda Rose,¹³ Thomas Prebet,¹³ Andrius Degulys,^{15,16} Stefania Paolini,¹⁷ Thomas Cluzeau,¹⁸ Matteo Giovanni Della Porta^{19,20}

¹Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany; ³MDS Unit, Hematology, University of Florence, AOUC, Florence, Italy; ⁴Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ⁵Service d'Hématologie Séniors, Hôpital Saint-Louis, Université Paris 7, Paris, France; ⁶Moffitt Cancer Center, Tampa, FL, USA; ⁷Monash University and Monash Health, Melbourne, VIC, Australia; ⁸Hospital Universitari Vall d'Hebron, Barcelona, Spain; ⁹Medical Department Hematology, Charles University General University Hospital, Prague, Czech Republic; ¹⁰Hôpital Haut-Lévêque, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; ¹¹Malignant Haematology & Stem Cell Transplantation, The Alfred, Melbourne, VIC, Australia; ¹²Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¹³Bristol Myers Squibb, Princeton, NJ, USA; ¹⁴Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland; ¹⁵Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania; ¹⁶Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; ¹⁷IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy; ¹⁸Département d'Hématologie Clinique, Université Cote d'Azur, CHU Nice, Nice, France; ¹⁹Cancer Center IRCCS Humanitas Research Hospital, Milan, Italy; ²⁰Department of Biomedical Sciences, Humanitas University, Milan, Italy

COMMANDS: study design

• COMMANDS is a global, phase 3, open-label, randomized controlled trial (NCT03682536)

Key patient eligibility criteria

- \geq 18 years of age
- IPSS-R Very low-, Low-, or Intermediate-risk MDS (with or without RS) by WHO 2016, with
 5% blasts in bone marrow^a
- Required RBC transfusions (2-6 pRBC units/8 weeks for a minimum of 8 weeks immediately prior to randomization)
- Endogenous sEPO < 500 U/L
- ESA-naive

Patients stratified by:

- Baseline RBC transfusion burden
- Baseline sEPO level
- RS status

aMDS patients with del(5q) were excluded; b2 patients randomized to the epoetin alfa arm withdrew consent prior to receiving their first dose; Clinical benefit defined as transfusion reduction of \geq 2 pRBC units/8 weeks versus baseline.

AML, acute myeloid leukemia; HR-MDS, higher-risk MDS; IPSS-R, Revised International Prognostic Scoring System; IWG, International Working Group; pRBC, packed RBC; QW, once weekly; Q3W, every 3 weeks; R, randomized; RS, ring sideroblasts; s.c., subcutaneously; sEPO, serum erythropoietin; WHO, World Health Organization.

COMMANDS: achievement of primary endpoint in ITT population and subgroups

- The primary endpoint was achieved by 110 (60.4%) patients in the luspatercept arm versus 63 (34.8%) patients in the epoetin alfa arm (P < 0.0001)
 - Subgroup analysis of the primary endpoint showed greater response rates with luspatercept regardless of baseline TB, sEPO category, or SF3B1 mutation status

COMMANDS

COMMANDS: duration of RBC-TI \geq 12 weeks by RS subgroups (week 1-EOT)

Duration, median (95% CI), weeks	Luspatercept	Epoetin alfa	HR (95% CI)	
RS+	120.1 (76.4-NE)	61.9 (38.9-123.9)	0.650 (0.415-1.018)	
RS-	NE (135.9-NE)	95.1 (74.9-NE)	0.709 (0.269-1.866)	

Data cutoff date: September 28, 2023.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Efficacy of Imetelstat in Achieving Red Blood Cell Transfusion Independence Across Different Risk Subgroups in Patients With Lower-Risk Myelodysplastic Syndromes Relapsed/Refractory to Erythropoiesis-Stimulating Agents in IMerge Phase 3 Study

<u>Rami Komrokji,</u>¹ Valeria Santini,² Pierre Fenaux,³ Michael R. Savona,⁴ Yazan F. Madanat,⁵ Tymara Berry,⁶ Laurie Sherman,⁷ Shyamala Navada,⁶ Faye Feller,⁶ Libo Sun,⁶ Qi Xia,⁶ Ying Wan,⁶ Fei Huang,⁶ Amer M. Zeidan,⁸ and Uwe Platzbecker⁹

¹Moffitt Cancer Center, Tampa, FL, USA; ²MDS Unit, Hematology, AOUC, University of Florence, Florence, Italy;
 ³Hôpital Saint-Louis, Université de Paris 7, Paris, France; ⁴Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; ⁵Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA;
 ⁶Geron Corporation, Parsippany, NJ, USA; ⁷Vividion Therapeutics, San Diego, CA, USA; ⁸Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ⁹Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany

Overall Population: Higher Rates of Longer-Term Duration of RBC-TI With Imetelstat vs Placebo^{1,2}

^aData cutoff date: October 13, 2022. ^bData cutoff date: January 13, 2023.

The *P* value was determined by the Cochran-Mantel-Haenszel test, with stratification for prior RBC transfusion burden (≥ 4 to ≤ 6 vs > 6 RBC U/8 wk during a 16-week period before randomization) and baseline IPSS (low-risk vs intermediate-1–risk) applied to randomization.

IPSS, International Prognostic Scoring System; RBC, red blood cell; TI, transfusion independence.

1. Zeidan A, et al. ASCO 2023. Abstr 7004. 2. Platzbecker U, et al. Lancet. Published Online December 1, 2023. https://doi.org/10.1016/S0140-6736(23)01724-5.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Durable Clinical Benefit with KER-050 (elritercept) Treatment: Findings from an Ongoing Phase 2 Study in Participants with Lower-Risk MDS

Maria Diez-Campelo, MD¹, David M. Ross², Aristoteles Giagounidis³, Shuhying Tan⁴, Thomas Cluzeau⁵, Lynette C.Y. Chee⁶, David Valcarcel⁷, Montserrat Arnan⁸, Christine Graham⁹, Allie McGinty⁹, Miranda Ross⁹, Wei Feng⁹, Ming Yang⁹, Ying Jiang⁹, Suresh Bobba⁹, Noah Dcruz⁹, Montagu Hankin⁹, Christopher Rovaldi⁹, Dena Grayson⁹, Simon Cooper⁹ and Jen L. Salstrom⁹

 Universidad de Salamanca, Spain; 2. Department of Haematology, Flinders Medical Centre and University, Adelaide, Australia; 3. Dept. Oncology, Hematology and Palliative Care, Marienhospital Dusseldorf, Germany; 4. St. Vincent's Institute of Medical Research, East Melbourne, Australia; 5. Nice University Hospital, France; 6. Department of Clinical Haematology and Bone Marrow Transplant Service, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, Australia; 7. Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; 8. Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; 9. Keros Therapeutics, Lexington, MA

Hematologic Responses

Pospondors/N (%)	mITT ₂₄ ^a			
	All (N=60)	HTB (N=33)		
Overall Response^{a,b}	30/60 (50)	15/33 (45.5)		
Modified IWG 2006 HI- E ^c	28/60 (47)	15/33 (45.5)		
RS+	23/40 (58)	12/23 (52.2)		
non-RS	5/20 (25)	3/10 (30)		
TI ≥8 weeks ^d	18/46 (39.1)	11/33 (33.3)		
RS+	15/32 (46.9)	8/23 (34.8)		
non-RS	3/14 (21.4)	3/10 (30)		

HI-E and TI response rates in mITT₂₄ participants with **HTB** were similar to those observed in the overall $mITT_{24}$ population, supporting the potential for **KER-050 (elritercept) to** treat a broad array of patients with MDS including those with greater bone marrow dysfunction

HI-E = hematological improvement-erythroid; HTB = high transfusion burden IWG = international working group; LTB = low transfusion burden; mITT₂₄ = modified intent to treat 24-week population; NT = non-transfused; RBC = red blood cell; RS = ring sideroblasts; TI = transfusion independence

Development of oral decitabine/cedazuridine Primary Endpoint (5-day Decitabine AUC Equivalence)

Decitabine		I	V DEC	Oral ASTX727		Ratio of Geo. LSM	Intrasubiect
5-day AUC ₀₋₂	₄ (h∙ng/mL)	Ν	Geo. LSM	Ν	Geo. LSM	Oral/IV, % (90% CI)	(%CV)
Primary Analysis	Paired ¹	123	864.9	123	855.7	98.9 (92.7, 105.6)	31.7

¹ Paired patient population: patients who received both ASTX727 and IV decitabine in the randomized first 2 cycles with adequate PK samples.

- Study met its primary endpoint with high confidence: Oral/IV 5-day decitabine AUC ~99% with 90% CI of ~93-106%
- All Sensitivity and secondary PK AUC analyses confirmed findings from primary analysis

Garcia-Manero et al Lancet Hematology 2023

Treatment algorithm 2024 LR MDS

Entity	First line	Second line
Del5q- MDS isolated anemia	lenalidomide	HMA, alloSCT
Isolated anemia, very low risk features	Growth factors Luspatercept	HMA, len, alloSCT Imetelstat?, KER- 050?
RARS pre/post ESA	luspatercept	HMA, len, alloSCT
Other lower risk MDS (bilineal cytopenia)	HMA	alloSCT
IDH1, IDH2, p53, SF3B1	Consider targeted approach	

Questions in lower risk MDS

- Should we treat earlier presentations of MDS?
- Should we treat transfusion independent patients with lower risk MDS?
- Can we decide therapy based on molecular alterations? — Instead of transfusion burden
- <u>Results of COMMANDS trial</u>
- Therapy for thrombocytopenia
- Role of attenuated doses of HMA
- Role of SCT?

Other trials in LR MDS

- IRAK4 inhibitors
- SF3B1 inhibitors
- Oral azacytidine (CC-486)
- Luspatercept
- Canakinumab

Efficacy and Safety of Venetoclax in Combination With Azacitidine for the Treatment of Patients With Treatment-Naive, Higher-risk Myelodysplastic Syndromes

Jacqueline S. Garcia¹, Uwe Platzbecker ², Olatoyosi Odenike³, Shaun Fleming⁴, Chun Yew Fong⁵, Rachel Cook⁶, Meagan Jacoby⁷, Daniel Nowak⁸, Brenda Chyla⁹, Huipei Wang⁹, Grace Ku¹⁰, Jalaja Potluri⁹, Guillermo Garcia-Manero¹¹

 ¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Universitätsklinikum Leipzig, Saxony, Germany; ³The University of Chicago Medicine and Comprehensive Cancer Center, Chicago, IL, USA; ⁴Alfred Health, Melbourne, Australia; ⁵Austin Health, Heidelberg, Australia; ⁶Oregon Health and Science University, Portland, OR, USA; ⁷Washington University-School of Medicine, St. Louis, MO, USA; ⁸Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; ⁹AbbVie Inc, North Chicago, IL, USA; ¹⁰Genentech Inc., South San Francisco, CA, USA; ¹¹University of Texas MD Anderson Cancer Center, Houston, TX, USA

- Median number of treatment cycles with Ven 400 + Aza: 4.0 (range, 1–57)
- Median time to CR: 2.8 months (range, 1.0–16.1)
- Median duration of CR: 16.6 months (95% CI, 10.0–NR)
- MDS to AML transformation: in 13 (12.3%) patients (95% CI, 6.7–20.1)
 - Median time to AML transformation was
 5.95 months (range, 0.72–29.31)

amORR=CR+mCR+PR; PR, n=0; response rates based on International Working Group 2006 response criteria.

AML, acute myeloid leukemia; Aza, azacitidine; CR, complete remission; HI, hematologic improvement; mCR, marrow complete remission; MDS, myelodysplastic syndromes; mORR, modified overall response rate; NE, not evaluable; NR, not reached; PD, progressive disease; PR, partial remission; RP2D, recommended phase 2 dose; SD, stable disease; Ven, venetoclax.

Overall Survival^a for Patients Who Received Ven 400 mg + Aza

^aOverall survival was defined as the number of months from the date of the first dose of study drug to the date of death. The data were censored at the date the patient was last known to be alive on or before the cutoff date. Aza, azacitidine; OS, overall survival; Ven, venetoclax.

RESULTS: Survival by Response Prior to SCT

	Achieved CR	Achieved mCR	
	n=21	n=23	
Median overall survival, months (95% CI)	NR (18.8-NR)	NR (17.7-NR)	
Median follow up, months (95% CI)	43.6 (33.4-52.6)	30.2 (28.7-33.1)	
12-month overall survival estimate, % (95% CI)	90.5 (67.0-97.5)	82.2 (59.2-92.9)	
24-month overall survival estimate, % (95% CI)	71.4 (47.2-86.0)	73.0 (49.5-86.9)	

• 33 patients remained alive post-SCT

Aza, azacitidine; CI, confidence interval; CR, complete response; mCR, marrow complete remission; NR, not reached; SCT, stem cell transplantation; Ven, venetoclax.

Making Cancer History*

Phase 1/2 study of oral decitabine/cedazuridine in combination with venetoclax in treatment-naïve higher-risk myelodysplastic syndromes or chronic myelomonocytic leukemia

<u>Alex Bataller</u>, Guillermo Montalban-Bravo, Alexandre Bazinet, Yesid Alvarado, Kelly Chien, Sangeetha Venugopal, Jo Ishizawa, Danielle Hammond, Mahesh Swaminathan, Koji Sasaki, Ghayas C. Issa, Nicholas J. Short, Lucia Masarova, Naval G. Daver, Tapan M. Kadia, Simona Colla, Wei Qiao, Xuelin Huang, Rashmi Kanagal-Shamanna, Stephany Hendrickson, Farhad Ravandi, Elias Jabbour, Hagop Kantarjian, Guillermo Garcia-Manero

Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston (TX, USA)

June 10th 2023 s424 Clinical updates in MDS

Oral Decitabine with Venetoclax in HR-MDS

Efficacy

	Full cohort (n=39)	Phase 1 (n=9)	Phase 2 (n=30)
ORR, n (%) CR mCR mCR mCR + HI	37 (94.9) 14 (35.9) 23 (59) 11 (28.2) 12 (30.8)	9 (100) 6 (66.7) 3 (33.3) 2 (22.2) 1 (11.1)	28 (93.3) 8 (26.7) 20 (66.7) 9 (30) 11 (36.7)
Cytogenetic response, n (%)	14/26 (53.8)	4/5 (80)	10/21 (47.6)
Cycles to first response, n (range)	ponse, n (range) 1 (1-2) 1 (1-1)		1 (1-2)
Cycles to best response, n (range)	1 (1-6)	1 (1-6)	1 (1-4)
Cycles received, n (range)	2 (1-13)	6 (2-13)	2 (1-8)
HSCT, n (%)	19 (48.7)	5 (55.6)	14 (46.7)

EHA2023

Oral Decitabine with Venetoclax in HR-MDS

Phase 3 VERONA (NCT04401748)

Study Design and Endpoint

VERONA Study Design

*7 days within the first 9 calendar days/28 day cycle

Select Inclusion Criteria	Select Exclusion Criteria	
 ≥18 years old with newly diagnosed MDS according to 2016 WHO classification <20% BM blasts ECOG PS 0-2 IPSS-R score of >3 (Intermediate, High, Very High) 	 Prior therapy for MDS with HMA, chemotherapy, or allo-HSCT Prior diagnosis of therapy-related MDS, MDS evolved from MPN, MDS/MPN including CMML, aCML, JMML, and unclassifiable MDS/MPN 	End Points Primary: CR, OS Secondary: mOR, TI, ORR, fatigue score, physical functioning score, time to deterioration in physical functioning

aCML=Atypical Chronic Myeloid Leukemia. allo-HSCT=Allogeneic Hematopoietic Stem Cell Transplant. AML=Acute Myeloid Leukemia. BM=Bone Marrow. C=Cycle. CMML=Chronic Myelomonocytic Leukemia. CR=Complete Remission. D=Day. ECOG PS=Eastern Cooperative Oncology Group Performance Status. HMA=Hypomethylating Agent. HSCT=Hematopoietic Stem Cell Transplantation. IPSS-R=Revised International Prognostic Scoring System. IV=Intravenous. JMML=Juvenile Myelomonocytic Leukemia. MDS=Myelodysplastic Syndrome. mOR=Modified Overall Response. MPN=Myeloproliferative Neoplasm. ORR=Overall Response Rate. OS=Overall Survival. PO=Oral. QD=Daily. SC=Subcutaneous. TI=Transfusion Independence. WHO=World Health Organization. 1. ClinicalTrials.gov. NCT04401748. <u>https://clinicaltrials.gov/ct2/show/NCT04401748</u>. Accessed July 2021

Making Cancer History[®]

Abstract # 1876

Results of a Phase II Study of Cladribine, Low Dose Cytarabine and Venetoclax, Alternating with Azacitidine and Venetoclax, in Patients with Higher Risk Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes

Guillermo Montalban-Bravo¹, Nicholas J. Short¹, Kelly S. Chien¹, Yesid Alvarado¹, Naval Daver¹, Gautam Borthakur¹, Mahesh Swaminathan¹, Abhishek Maiti¹, Danielle E. Hammond¹, Graciela Nogueras-Gonzalez², Xuelin Huang², Heather Schneider¹, Kristen Shelly¹, Tapan Kadia¹, Hagop Kantarjian¹, Guillermo Garcia-Manero¹

Departments of Leukemia¹, Biostatistics² The University of Texas MD Anderson Cancer Center, Houston, TX

Efficacy Data

Response	Full cohort (n=26)	Cohort A (n=13)	Cohort B (n=5)	Cohort C (n=4)	Cohort D (n=4)		
2006 IWG Response Criteria							
ORR	12 (46)	4 (31)	2 (40)	4 (100)	2 (25)		
CR	5 (19)	1 (8)	1 (20)	3 (75)	0 (0)		
mCR total	6 (23)	3 (25)	1 (20)	1 (25)	1 (25)		
mCR+HI	1 (4)	1 (8)	0 (0)	0 (0)	0 (0)		
mCR alone	5 (19)	2 (15)	1 (20)	1 (25)	1 (25)		
2023 IWG Response Criteria		•	•		•		
ORR	-	3 (25)	-	4 (100)	-		
CR	-	1 (8)	-	3 (75)	-		
CRbi	-	1 (8)	-	1 (25)	-		
CRuni	-	1 (8)	-	0 (0)	-		
Cycles to best response	1 [1-3]	1 [1-3]	1 [1-2]	1 [1-2]	2 [1-3]		
Cycles given	2 [1-6]	1 [1-6]	2 [1-4]	4 [1-5]	2 [1-3]		

ORR: Overall response rate; CR: complete response; mCR: marrow complete response; HI: hematological improvement.

Survival outcomes

Relapsed cohorts (A + B): 5.8 months (95% CI 3.4-8.2 months) Frontline cohorts (C+D): not reached (95% NC-NC)

Relapsed cohorts (A + B): 2.6 months (95% CI 1.5-3.7 months) Frontline cohorts (C+D): not reached (95% NC-NC)

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Development of Oral Azacitidine with Cedazuridine for Myelodysplastic Syndrome (MDS) and Myeloproliferative Neoplasms (MPN) including CMML (Chronic Myelomonocytic Leukemia) by Targeting Pharmacokinetic AUC Equivalence vs Subcutaneous Azacitidine

Guillermo Garcia-Manero¹, James McCloskey², Bart Scott³, Elizabeth A. Griffiths⁴, Bonnie Kiner-Strachan⁵, Gail J. Roboz⁶, Janelle Meyer⁷, Winny Chan⁸, Beloo Mirakhur⁸, Yuri Sano⁸, Aram Oganesian⁸, Harold N. Keer⁸, Michael R. Savona⁹

¹The University of Texas MD Anderson Cancer Center, Houston, ²Fred Hutchinson Cancer Research Center, Seattle, ³John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, ⁴Roswell Park Comprehensive Cancer Center, ⁵ Perlmutter Cancer Center, NYU Langone Health, ⁶Weill Cornell Medicine and The New York-Presbyterian Hospital, ⁷Oregon Oncology Specialists ⁸Astex Pharmaceuticals, Inc., ⁹Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine

ASTX030-01 Phase 1 Cohorts

Dose Combination of AZA and CED in Each Cohort

Cohort	AZA	CED	# Dosed subject
1 and 101	100 mg (IR tablets)	100 mg	14
2 a	100 mg (IR tablets)	80 mg	7
2b and 102	80 mg (IR tablets)	100 mg	12
3	60 mg (capsules-DR1)	100 mg	7
4	60 mg (capsules-DR2)	60 mg	6
5	60 mg (capsules-DR2)	40 mg	7
6	100 mg (capsules-DR2)	20 mg	6
7	136 mg (capsules-DR2)	20 mg	7
103 (Phase 1B)	144 mg (capsules-DR2)	20 mg	13
		Total	79

Treatment Exposure

	AZA (IR) (N=33)	AZA (DR1) (N=7)	AZA (DR2) (N=39)	All Subjects (N=79)
Range (Cycle)	1 - 32	1 - 16	1 - 10	1 - 32
Median (Cycle)	7	7	2	4

IR: Immediate Release, DR1: Delay Release 1, DR2: Delay Release 2

American Society *of* Hematology

ASTX030-01 Results: PK AUC Exposure Curves for Cohort 7

• Representative PK conc-time profiles on different occasions of treatment (Cohort 7, 20mg cedazuridine with 136mg azacitidine)

American Society of Hematology Abstract # 3245 pr San Diego, CA Dec.

SCT in MDS Primary Endpoint: 3 Year Overall Survival

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Clinical and genomic-based Decision Support System to define the optimal timing of allogeneic hematopoietic stem cell transplantation in patients with myelodysplastic neoplasms

CA Tentori, C Gregorio, M Robin, N Gagelmann, C Gurnari, S Ball, JC Caballero Berrocal, L Lanino, S D'Amico, M Spreafico, G Maggioni, E Travaglino, E Sauta, M Meggendorfer, LP Zhao, M Bernardi, C Di Grazia, L Vago, G Rivoli, L Borin, P Chiusolo, L Giaccone, MT Voso, JP Bewersdorf, O Nibourel, M Díaz Beyá, A Jerez, F Hernández, K Velázquez Kennedy, B Xicoy, M Ubezio, A Campagna, A Russo, G Todisco, D Mannina, S Bramanti, M Zampini, E Riva, M Bicchieri, G Asti, F Viviani, A Buizza, B Tinterri, AS Kubasch, A Bacigalupo, E Angelucci, A Rambaldi, F Passamonti, F Ciceri, V Savevski, A Santoro, N Al Ali, D Sallman, F Sole, G Garcia-Manero, U Germing, S Kordasti, V Santini, G Sanz, W Kern, U Platzbecker, M Diez-Campelo, JP Maciejewski, L Ades, P Fenaux, T Haferlach, AM Zeidan, G Castellani, R Komrokji, F Ieva, and MG Della Porta

With the support of GenoMed4All, Synthema, EuroBloodNET, icMDS

IPSS-M based transplantation policy

A – TRAINING COHORT

B – VALIDATION COHORT

- Under an IPSS-M based policy, in the training cohort, patients with either low- and moderate-low risk benefited from a delayed transplantation policy, while in those belonging to moderate-high, high- and very-high risk categories immediate transplantation was associated with a prolonged RMST
- All these results were confirmed in the validation cohort

Clinical Decision Support System for Transplantation in MDS WEB TOOL

American Society of Hematology

HR-MDS conclusion

- Awaiting results of VERONA
- New oral azacitidine/cedazuridine formulation: ASTX-030
- IPSS-M impact on transplant decision

Targeted options in MDS

- IDH-2 (5-10%): enasidenib, venetoclax
- IDH-1 (5%): ivosidenib, venetoclax
- Flt-3 (15%): multiple agents
- TP53 (10%): oral decitabine/cedazuridine
- NPM1 (1%): ara-C based
- ASXL1: HMA+venetoclax

Other questions

- Delay transition from CCUS to MDS
- Understand cross talk between comorbidities and MDS
- Develop therapies in LR-MDS that improve survival
 - Role of alloSCT
- Develop new combinations in HR-MDS
- Develop treatment strategies for p53 MDS
- Develop additional targeted approaches for MDS
 - IDH1, IDH2, SF3B1, IRAK4, Flt-3, CBL other
- Develop second line therapies for HMA failure MDS
- Integrate alloSCT: total therapy

Thank you

Guillermo Garcia-Manero Section of MDS Department of Leukemia MD Anderson Cancer Center ggarciam@mdanderson.org