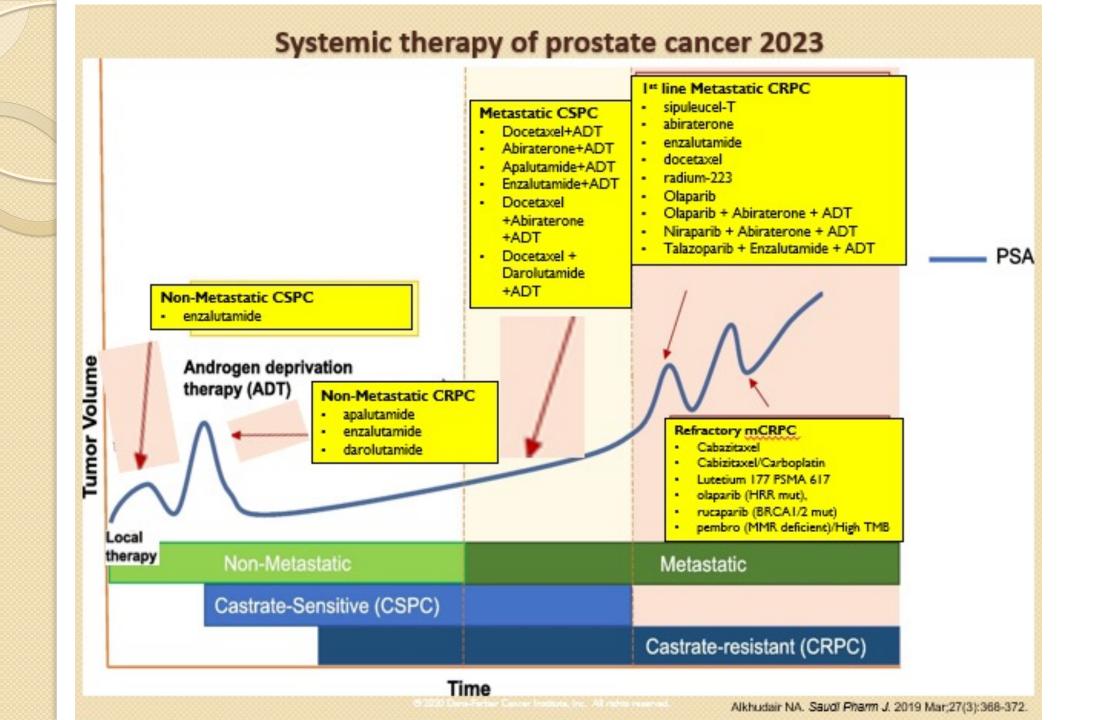

2023 ASCO/ESMO Updates in Prostate Cancer: Combination Therapy becoming the best approach?

Chandler Park, MD FACP Co-Director GU Clinical Trials Norton Cancer Institute Advisory Dean, Clinical Professor University of Louisville School of Medicine Faculty, ASCO University

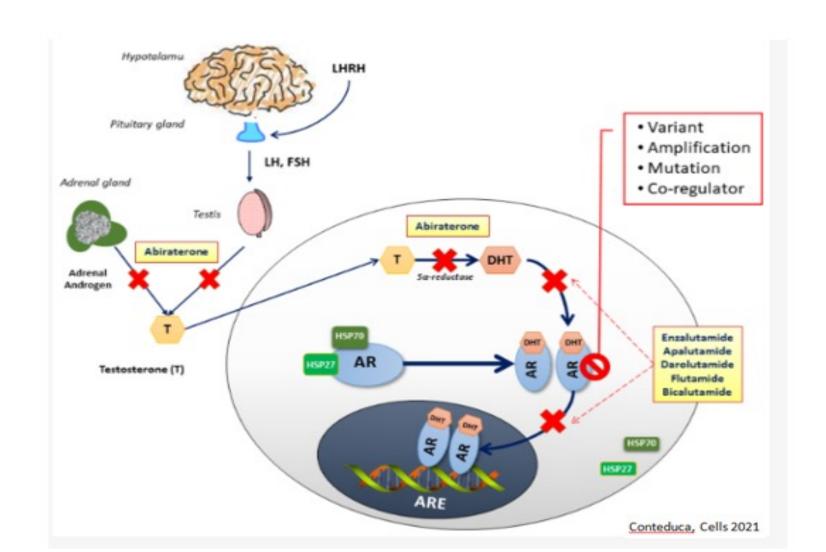
doximity ChandlerParkMD



ChandlerParkMD

Program Directors

Luis E. Raez, MD, FACP, FCCP Edgardo S. Santos, MD, FACP

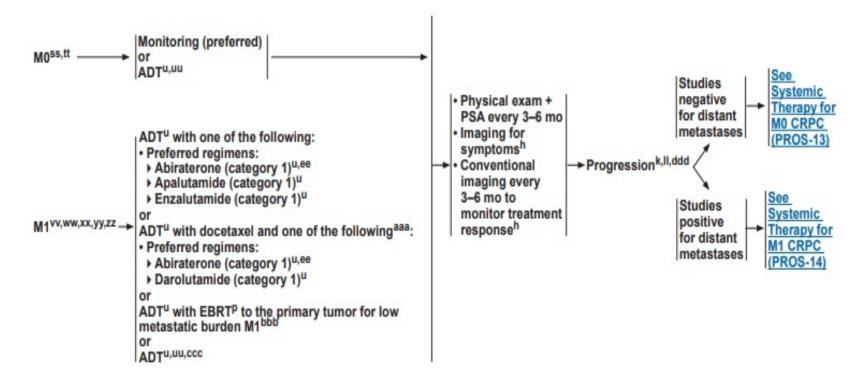


Today's Agenda

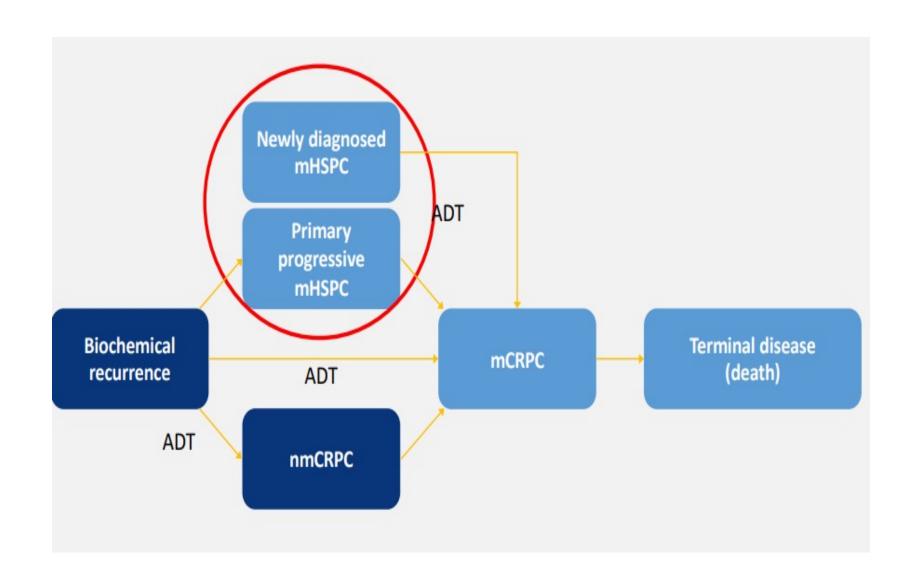
- Metastatic Castrate(Hormone) Sensitive Prostate Cancer (mCSP)
 - (Triplet vs Doublet)

 Metastatic Castrate Resistant Prostate Cancer (Monotherapy PARP vs PARP with Androgen Receptor Pathway Inhibitor)

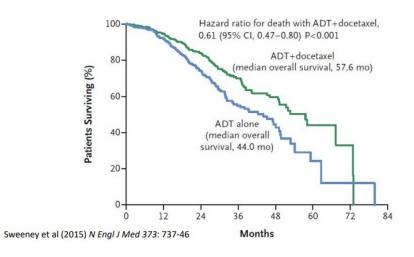
Pathophysiology

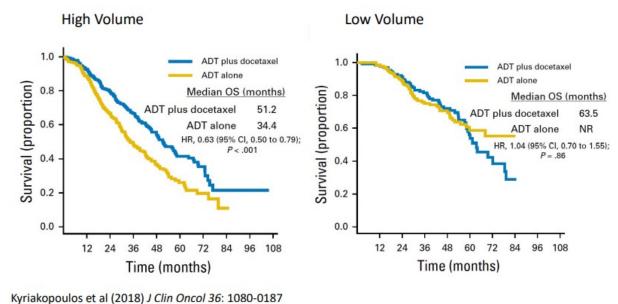


mCSPC: Updated NCCN

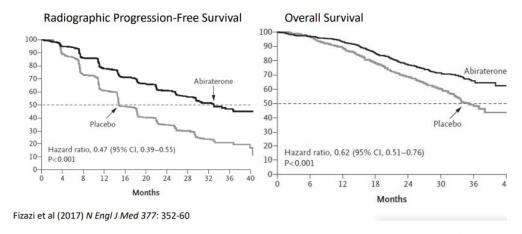


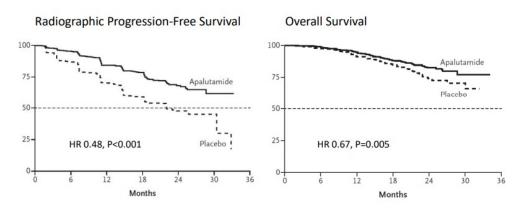
NCCN Guidelines Version 4.2023 Prostate Cancer NCCN Guidelines Index Table of Contents Discussion


SYSTEMIC THERAPY FOR CASTRATION-SENSITIVE PROSTATE CANCERT

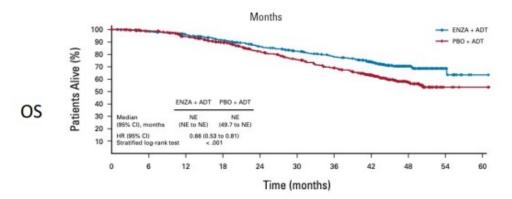


Metastatic Hormone Sensitive

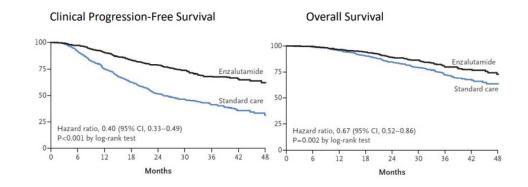




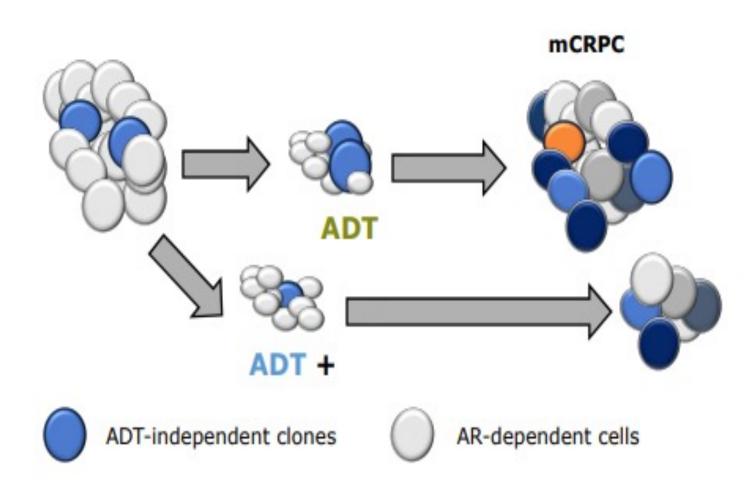
Androgen Pathway Inhibitors


LATITUDE: Abiraterone Acetate for mHSPC

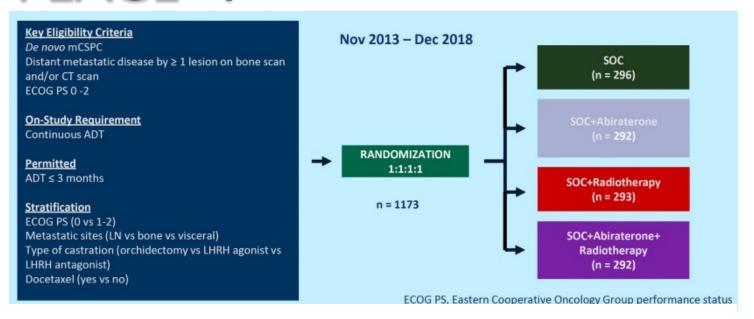
TITAN: Apalutamide for mHSPC

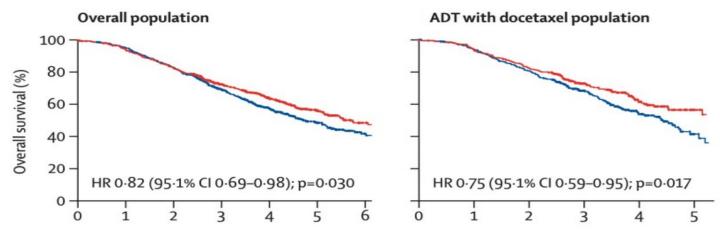


ARCHES and ENZAMET


Armstrong et al (2019) J Clin Oncol 37: 2974-2986; Armstrong et al (2022) J Clin Oncol DOI: 10.1200/JCO.22.00193

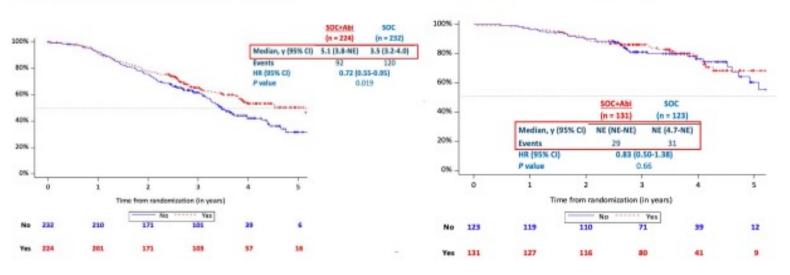
ENZAMET: Enzalutamide for mHSPC




Davis et al (2019) N Engl J Med 381: 121-131

Doublet vs Triplet? Prostate Adenocarcinoma is Heterogenous

PEACE - I



PEACE-I

ADT/docetaxel +/- abiraterone population

High-volume patients

Low-volume patients

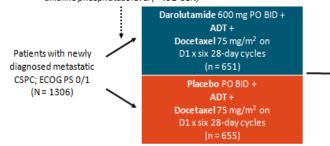
Fizazi et al (2022) Lancet https://doi.org/10.1016/50140-6736(22)00367-1

ORIGINAL ARTICLE

Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer

Matthew R. Smith, M.D., Ph.D., Maha Hussain, M.D., Fred Saad, M.D.,
Karim Fizazi, M.D., Ph.D., Cora N. Sternberg, M.D., E. David Crawford, M.D.,
Evgeny Kopyltsov, M.D., Chandler H. Park, M.D., Boris Alekseev, M.D.,
Álvaro Montesa-Pino, M.D., Dingwei Ye, M.D., Francis Parnis, M.B., B.S.,
Felipe Cruz, M.D., Teuvo L.J. Tammela, M.D., Ph.D., Hiroyoshi Suzuki, M.D., Ph.D.,
Tapio Utriainen, M.D., Cheng Fu, M.D., Motohide Uemura, M.D., Ph.D.,
María J. Méndez-Vidal, M.D., Benjamin L. Maughan, M.D., Pharm.D.,
Heikki Joensuu, M.D., Silke Thiele, M.D., Rui Li, M.S., Iris Kuss, M.D.,
and Bertrand Tombal, M.D., Ph.D., for the ARASENS Trial Investigators*

March 24, 2022


N Engl J Med 2022; 386:1132-1142

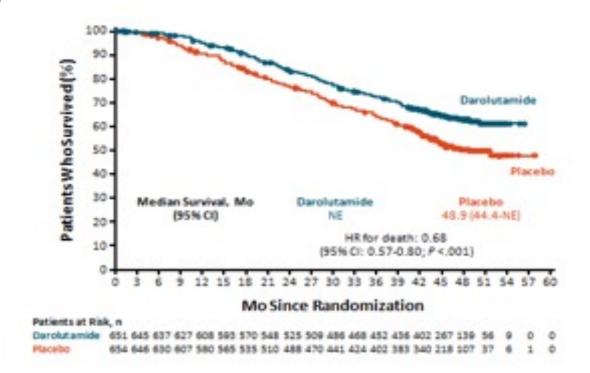
DOI: 10.1056/NEJMoa2119115

ARASENS: Darolutamide vs Placebo in Combination With ADT + Docetaxel in mCSPC

International, randomized, double-blind phase III trial in 286 sites across 23 countries

Stratified by metastasis stage (M1a vs M1b vs M1c), alkaline phosphatase level (< vs ≥ ULN)

Until symptomatic PD. change in neoplastic tx, unacceptable toxicity, patient-physician decision, or nonadherence **ARASENS**


Primary endpoint: OS

- Secondary endpoints tested hierarchically in this order: time to CRPC, tir SSE-free survival, time to first SSE, time to initiation of subsequent antica
- Addition of darolutamide to ADT + docetaxel significantly reduced risk of death by 32.5% vs placebo (P <.001)
 - 75.6% of patients in placebo arm received subsequent life-prolonging systemic tx
- OS benefit observed across most subgroups
 - HR (95%) for those stratified by metastatic stage at initial dx: M1, 0.707 (0.590-0.848); M0, 0.605 (0.348-1.052)

N Engl | Med 2022; 386:1132-1142

DOI: 10.1056/NEJMoa2119115

OS (Primary Endpoint)

Matthew R. Smith, M.D., Ph.D., Maha Hussain, M.D., Fred Saad, M.D., Karim Fizazi, M.D., Ph.D., Cora N. Sternberg, M.D., E. David Crawford, M.D.,

Adverse Events

Selected Grade 3/4 AE, n (%)	Darolutamide + ADT + Docetaxel (n = 652)	Placebo + ADT + Docetaxel (n = 650)
Neutropenia	220 (33.7)	222 (34.2)
Febrile neutropenia	51 (7.8)	48 (7.4)
Hypertension	42 (6.4)	21 (3.2)
Anemia	31 (4.8)	33 (5.1)
Pneumonia	21 (3.2)	20 (3.1)
Hyperglycemia	18 (2.8)	24 (3.7)
Increased ALT	18 (2.8)	11 (1.7)
Increased AST	17 (2.6)	7 (1.1)
Increased weight	14 (2.1)	8 (1.2)
UTI	13 (2.0)	12 (1.8)

Safety Outcome, n (%)	Darolutamide + ADT+ Docetaxel (n = 652)	Placebo + ADT + Docetaxel (n = 650)
Any AE	649 (99.5)	643 (98.9)
Serious AE	292 (44.8)	275 (42.3)
AE leading to permanent d/c of trial agent • Darolutamide	00 (13 E)	E0 (10 E)
or placebo Docetaxel	88 (13.5) 52 (8.0)	69 (10.6) 67 (10.3)

ASCO Genitourinary Cancers Symposium

February 16-18, 2023
Moscone West Building
San Francisco, CA

Definition of Disease Volume and Risk Subgroups

High-Volume Disease: CHAARTED Criteria1

High-Risk Disease: LATITUDE Criteria²

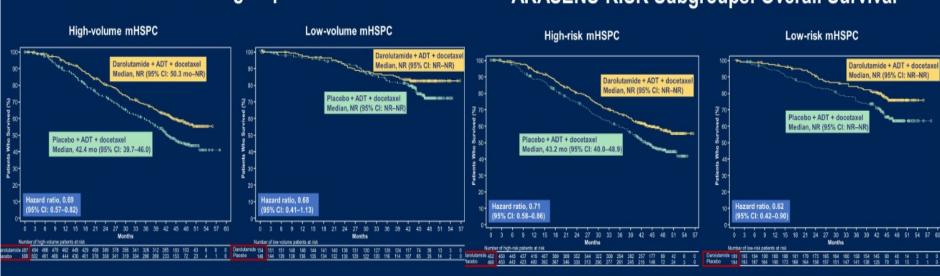
- Visceral metastases
- ≥4 bone metastases with ≥1 beyond the vertebral column/pelvis^a
- ≥2 risk factors:
 - Gleason score ≥8
 - ≥3 bone metastases^a
 - Visceral metastases

Low-volume and low-risk disease were defined as not meeting the respective high-volume and high-risk criteria *Including those with diffusely increased skeletal metastases with superscan3

- · Of 1305 patients in the ARASENS full analysis set
 - 1005 (77%) had high-volume disease and 300 (23%) had low-volume disease
 - 912 (70%) had high-risk disease and 393 (30%) had low-risk disease

1. Sweeney CJ, et al. N Engl J Med. 2015; 373.737-746; 2. Fizazi K, et al. N Engl J Med. 2017;377:352-360; 3. Manohar PR, et al. World J Nucl Med. 2017;16:39-44

ASCO Genitourinary Cancers Symposium


#GU23

PRESENTED Dr. Maha Hussain, MD, FACP, FASCO

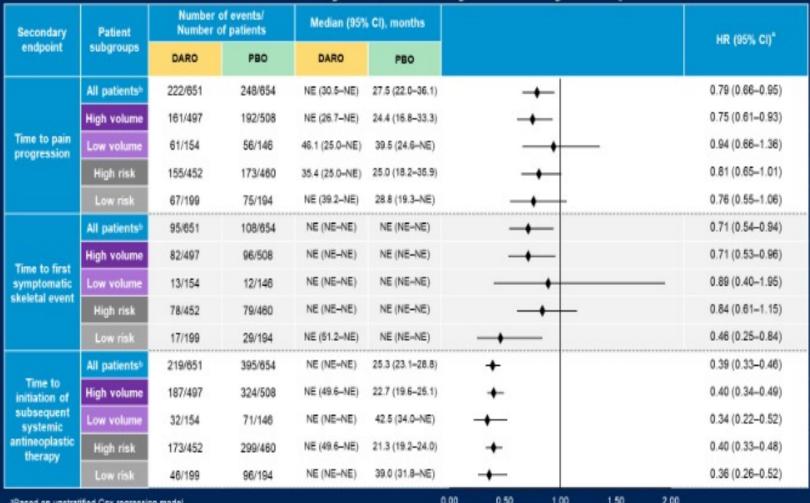
ARASENS VOLUME Subgroups: Overall Survival

ARASENS RISK Subgroups: Overall Survival

Cancers Symposium

Analysis by unstratified Cox regression model, Cl, confidence interval; NR, not reached

PRESENTED BY: Maha Hussain, MD, FACP, FASCO
Presentation is properly of the author and ASCO. Permission required for revise, contact permissions@secu.org.



PROSENTED BY: Maha Hussain, MD, FACP, FASCO
Preventation is properly of the author and ASCO Preventation required for source contact permissions@secu.org

..

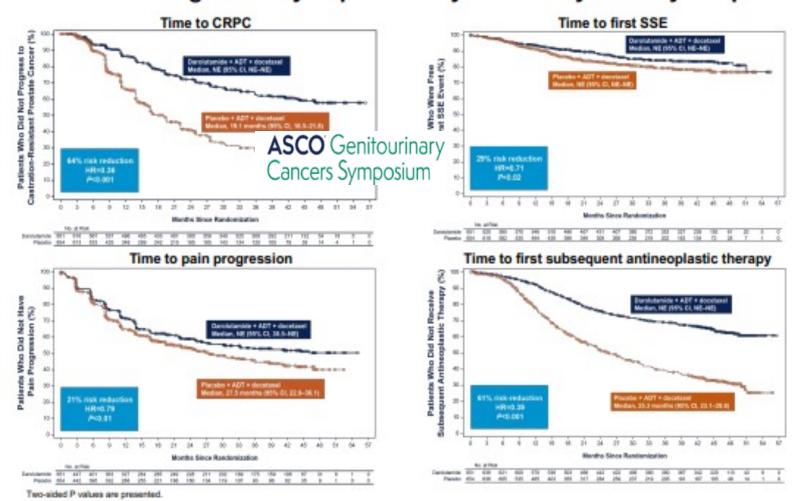
ARASENS VOLUME and RISK Subgroups: Other Key Secondary Efficacy Endpoints

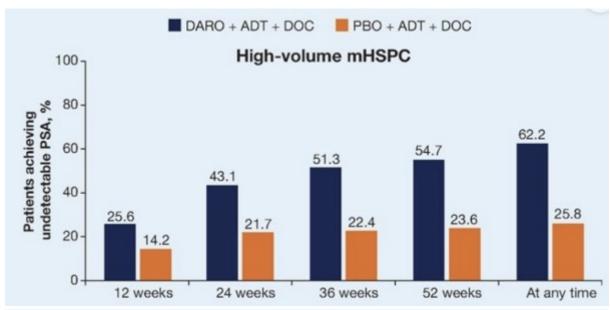
*Based on unstratified Cox regression model.

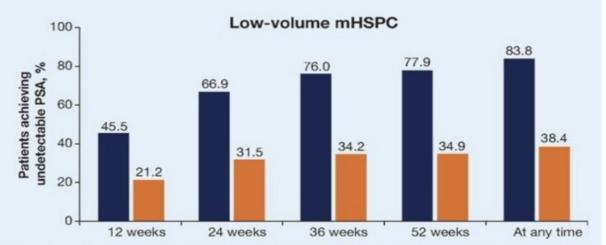
Includes all randomized patients according to planned treatment.

0,00 0.50 1.00 1.50 2.00

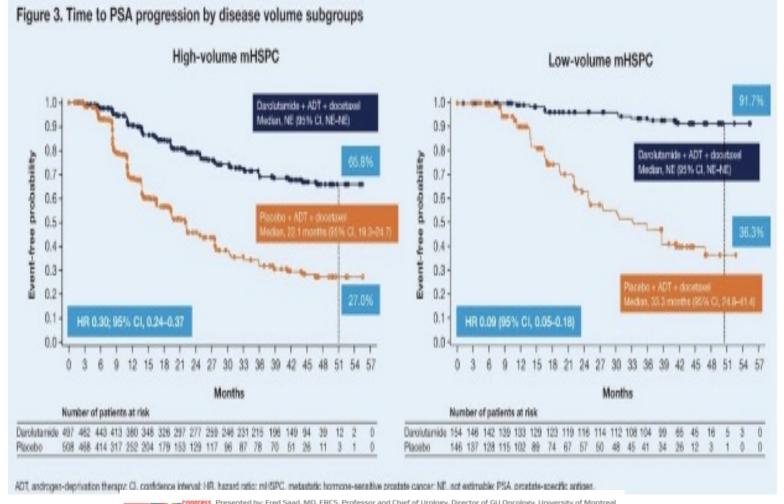
Darolutamide Better Placebo Better



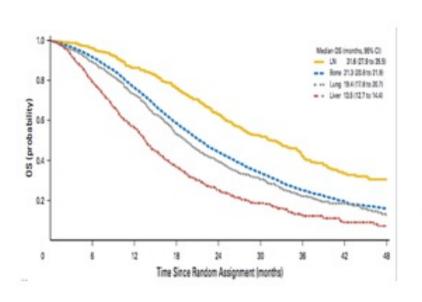



February 16-18, 2023
Moscone West Building
San Francisco, CA

Darolutamide significantly improved key secondary efficacy endpoints



ADT, androgen-deprivation therapy; DARO, darolutamide; DOC, docetaxel; mHSPC, metastatic hormone-sensitive prostate cancer; PBO, placebo; PSA, prostate-specific antigen; PSA90, ≥90% decline in prostate-specific antigen from baseline.


Time to PSA progression was prolonged in patients receiving darolutamide versus placebo

- high volume (HR: 0.30; 95% CI: 0.24-0.37)
- low volume subgroups (HR: 0.09; 95% CI 0.05-0.18).

What do I consider in my Practice? High Volume vs Low Volume Synchronous vs Metachronous

Staging in prognostication

ADT Alone (using CHAARTED and GETUG)	Median OS
Relapsed Low Volume	~8 y
Relapsed High Volume	4.5
De Novo Low Volume	4.5
De Novo High Volume	3

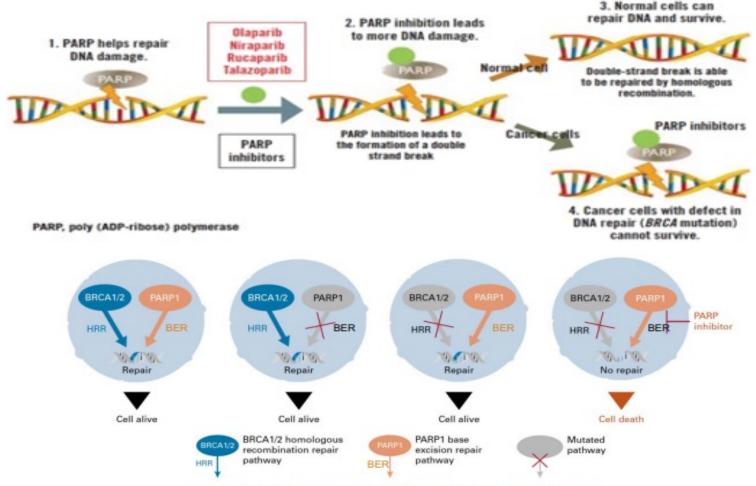
My Practice

Synchronous High Volume

Darolutamide, Docetaxel, and ADT Metachronous High Volume

Darolutamide, Docetaxel, and ADT

Synchronous Low Volume


Consider
Darolutamide,
Docetaxel, and
ADT for p53,
RBI, PTEN
mutation

Metachronous Low Volume

Androgen Pathway Inhibitor and ADT Metastatic Castrate Resistant Prostate Cancer (Monotherapy PARP vs PARP with Androgen Receptor Pathway Inhibitor)

PARP Inhibitor

Mechanism of Action

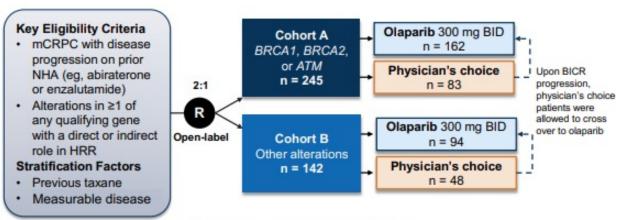
PARP is required for single-strand break repair (e.g. via BER)

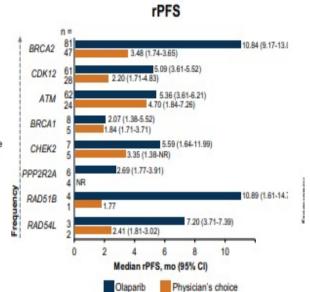
MOA – inhibiting SSB/BER is synthetic lethal with HRD

Monotherapy PARP summary

Properties of PARP Inhibitors

	Olaparib	Talazoparib	Niraparib	Rucaparib
Mol. Weight	434.5	380.8	320.4	323.4
PARP1 IC ₅₀	5 nM	0.56 nM	3.8 nM	0.65 nM
PARP2 IC ₅₀	1 nM	0.15 nM	2.1 nM	0.08 nM
Trapping	++	++++	+++	++

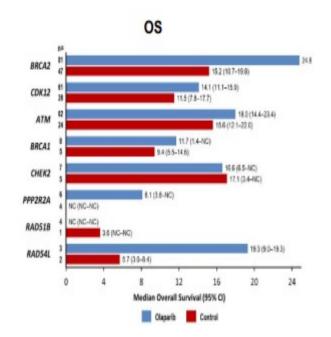

Carney B, et al. Not Commun 2018; 9: 176.

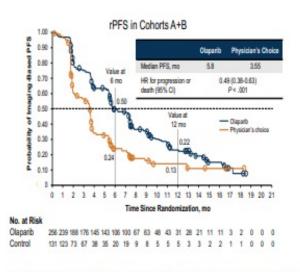

Summary of PARPi Monotherapy Trials in mCRPC

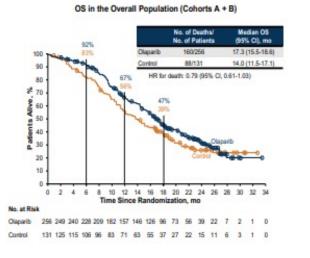
Study and treatment	Prior therapy	HRR status criteria; Sample type	Primary endpoint	Results
TOPARP-A ¹ Olaparib 400 mg BiD (N=50)	1–2 taxane CT regimens; 98% had prior NHT	Deficiency not required; tumor	Composite response rate	33% overall; 88% (14 of 16) with DDR gene alterations
TOPARP-B ² Olaparib 300 mg or 400 mg BID, randomized 1:1 (N=98)	1–2 taxane CT regimens; 88%–92% had prior NHT	Deleterious germline or somatic DDR gene alterations; tumor	Composite response rate	39.1% 300-mg cohort; 54.3% 400-mg cohort
TRITON2 ^a Rucaparib 600 mg BID (N=115)	1 taxane and 1–2 NHT	Deleterious germline or somatic BRCA1/2 alteration; tumor or plasma	ORR by blinded independent radiology review	43.5% (27 of 62)
GALAHAD ⁴ Niraparib 300 mg QD (N=289)	≥1 taxane and ≥1 NHT	Deleterious germline or somatic alteration in ≥1 of 8 prespecified DDR genes; tumor or plasma	ORR in patients with BRCA mutation and measurable disease	34.2% (26 of 76 measurable BRCA cohort) 10.6% (5 of 47 measurable non-BRCA cohort)
TALAPRO-1 ^s Talazoparib 1 mg QD (N=128)	1–2 CT regimens (≥1 taxane) and ≥1 NHT	Deleterious germline or somatic alterations in ≥1 of 11 prespecified DDR-HRR genes; tumor or plasma	ORR by blinded independent review	29.8% (31 of 104)

Mateo J et al. N Engl J Med. 2015;373:1697-708;
 Mateo J et al. Lancet Oncol. 2020;21:162-174;
 Abida W et al. J Clin Oncol. 2020;38:3763-3772;
 Smith MR et al. Lancet Oncol. 2022;23:362-373;
 de Bono JS et al. Lancet Oncol. 2021;22:1250-1264.

Olaparib: PROfound, Randomized Phase 3 Study






- Primary endpoint: rPFS in cohort A (RECIST 1.1 and PCWG3 by BICR)
- Key secondary endpoints: rPFS (cohorts A+B); confirmed radiographic ORR in cohort A; time to pain progression in cohort A; OS in cohort A

1. de Bono J et al. N Engl J Med. 2020;382:2091-2102.

PROfound: rPFS and OS in Whole Population (A+B)


de Bono J et al. N Engl J Med. 2020;382:2091-2102.
 Hussain M et al. N Engl J Med. 2020.

TRITON3: Randomized Phase III Trial

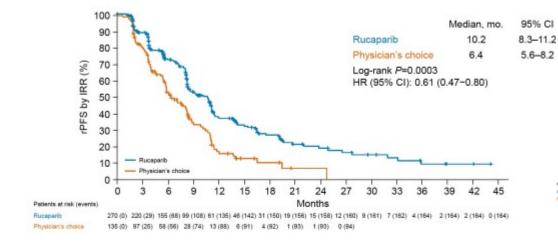
Patient population

- mCRPC with progression after 1 prior AR signalingdirected therapy (abiraterone, enzalutamide, or investigational agent)
- Deleterious germline or somatic alteration in BRCA1, BRCA2, or ATM*
- No prior PARP inhibitor
- No prior chemotherapy for mCRPC.

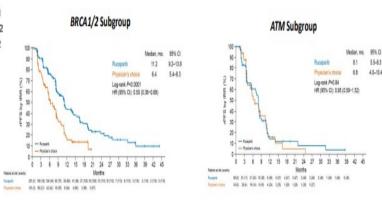
Planned enrollment: 400

Primary endpoint

rPFS


(RECIST 1.1 and PCWG3 by IRR)

Key secondary endpoints


- ORR and DOR by modified RECIST criteria in patients with measurable nodal/visceral disease
- OS
- Clinical benefit rate
- PSA response of ≥50% and ≥90%
- Time to PSA progression
- Patient-reported outcomes
- · Safety and tolerability

Bryce A et al NEJM 2023; 388; 719-32. NCT02975934.

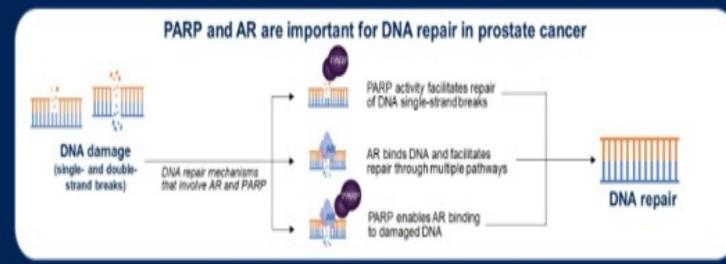
TRITON3: rPFS in ITT Population

TRITON3: rPFS in BRCA1/2 and ATM Subgroups

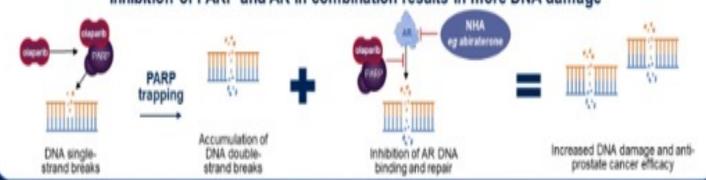
Bryce A et al NEJM 2023; 388; 719-32.

^{*}Mutations identified in blood, archival tissue, or screening tumor tissue

Three FDA Approved PARP Combinations in 2023 (PROpel, Magnitude, Talapro2)


• What are the differences?

PROpel: Phase III Trial of Abiraterone +/- Olaparib


MAGNITUDE: Phase III Trial of Abi +/- Niraparib

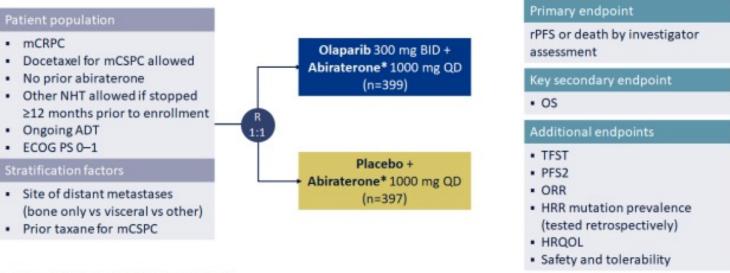
<u>TALAPRO-2</u>: Phase III Trial of Enza +/— Talazoparib

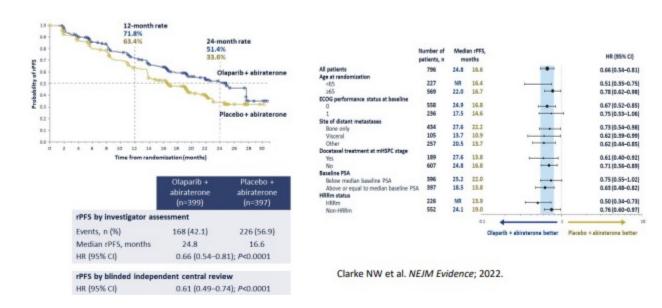
Preclinical rationale for a combined effect of PARP and AR inhibition

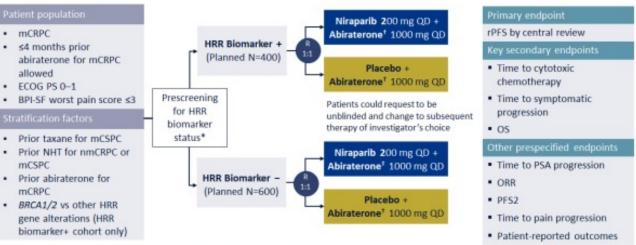
Inhibition of PARP and AR in combination results in more DNA damage

AR, Activated Androgen Receptor; DNA, decryntonucleic acid; NNA, next-generation hormonal agent; PARP, poly(ADP-ribose) polymerase.

1. Chaudhull et al. Nat Rev Mol Cell Biol 2017; 18:813-21; 2. Pakinghom et al. Cancer Discov 2013;3:1245-53; 3. Last et al. Science 2017;365;1162-8; 4. Pownier et al. Sci Trans Med 2016;8:p362;s417;

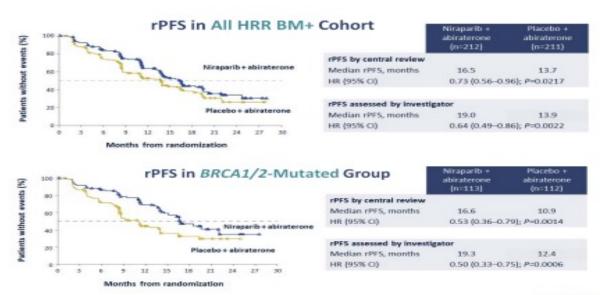

5. Schleiner et al. Cencer Discov 2012;2:1134-49; 6. Asim et al. Nat Commun 2017;5:374; 7. Li et al. Sci Signal 2017;10; 8. AZ data on file.


PROpel: Phase III Trial of Abiraterone +/- Olaparib

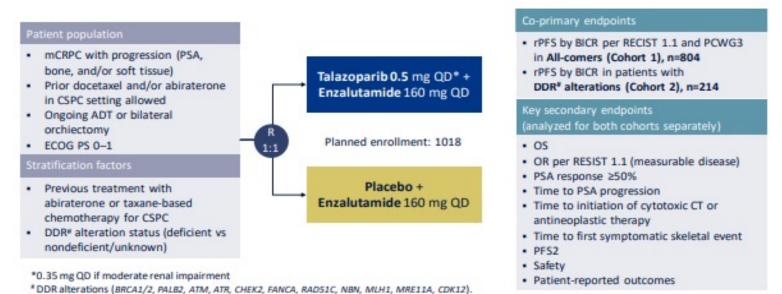

^{*}Plus prednisone or prednisolone 5 mg BID

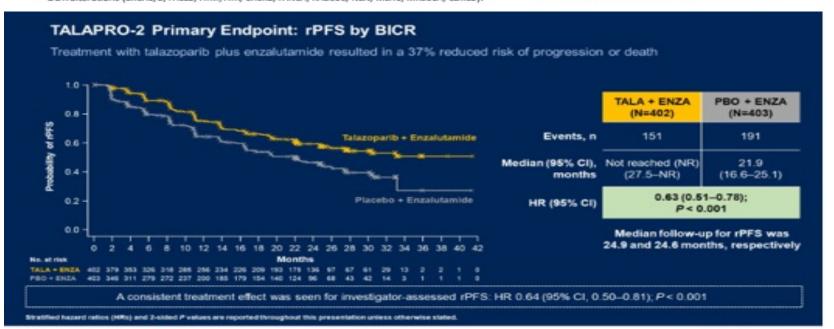
Saad F et al. ASCO GU 2022; abstr 11; NCT03732820.

PROpel: Radiographic Progression-Free Survival



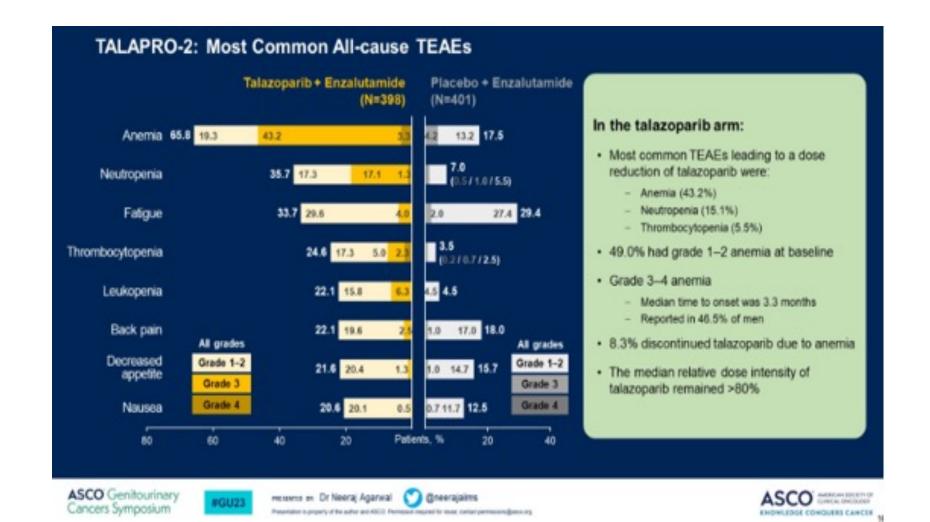
MAGNITUDE: Phase III Trial of Abi +/— Niraparib


^{*}HRR gene panel: ATM, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, PALB2


MAGNITUDE: Radiographic Progression-Free Survival

[†]Plus prednisone 10 mg daily

TALAPRO-2: Phase III Trial of Enza +/- Talazoparib



Agarwal N et al. Future Oncol. 2022;18:425-436; NCT03395197.

ASCO Genitourinary

Cancers Symposium

What about Adverse Events?

What do I do in my Practice?

- Patients with metastatic castrate resistant prostate cancer (mCRPC) with BRCA1 and BRCA2 have a poor prognosis (19 months vs 37 months)
- In my practice, patients with mCRPC with BRCA1 and BRCA2 mutation I will treat with PARP inhibitor, AR pathway inhibitor, and ADT.

How do I choose between 3 combinations

- 1. Co-morbidities (Uncontrolled diabetes, recent coronary artery disease).
- 2. Have they previously received androgen receptor pathway inhibitor? (Abiraterone and ADT in high risk early stage?)
- 3. Do they have a fall risk/cognitive difficulty/mental status changes?
- 4. Do they have a low baseline anemia?

Norton Cancer Institute

Twitter: @CParkMD

LinkedIn: @ChandlerParkMD

