ASCO and ESMO Updates 2023 Metastatic Breast Cancer

Joyce O'Shaughnessy, MD Baylor University Medical Center Texas Oncology Sarah Cannon Research Institute

Key Druggable Pathways and/or Targets in MBC

	Objective Response	Progression-Free Survival	Overal Surviva	Agents with OS Benefit	Other Agents
PATHWAY – pathway signaling di	sruption mediate	es anti-tumor effects	· ·		
✓ ER-mediated signaling	X	Х	X	Tamoxifen Aromatase inhibitors	Elacestrant
 ✓ CDK4/6-mediated signaling 	X	Х	X	Ribociclib Abemaciclib	Palbociclib
✓ PI3K/AKT/mTOR signaling	X	Х			Alpelisib Everolimus Capivasertib
✓ Immune checkpoints	X	Х	X	Pembrolizumab	
✓ DNA repair	X	Х			Olaparib Talazoparib
 ✓ Few/rare alterations ✓ NTRK fusions (secretory) ✓ HER2 (lobular) ✓ dMMR/MSI-H 	X X X	X X X			Entrectinib Neratinib Pembrolizumab
TARGET - for anti-drug conjugates & delivery of toxic payloads					
✓ HER2	Х	X	Х	Trastuzumab deruxtecan	
✓ TROP2	Х	X	X	Sacitizumab govitecan Datopotumab	

CDK4/6 Inhibitors as First-line Therapy

	PALOMA-2 ^{1,2} Frist line N= 666	MONALEESA-2 ^{3,4, 13} First line N=668	MONARCH-2 ^{15,16} First and Second line N= 669	MONARCH-3 ^{5.6} First line N= 493	MONALEESA-3 ^{†7-9,14} First and Second line N= 726	MONALEESA-7*10-13 First line N=672
CDK4/6i	Palbociclib	Ribociclib	Abemaciclib	Abemaciclib	Ribociclib	Ribociclib
Endocrine partner	Letrozole	Letrozole	Fulvestrant	Letrozole or anastrozole	Fulvestrant	Tamoxifen, letrozole, or anastrozole
Patient population	Postmeno	Postmeno	Pre/postmeno	Postmeno	Postmeno	Pre/perimeno
mOS, mo	53.9 vs 51.2	63.9 vs 51.4	46.7 vs 37.3	67.1 vs 54.5	67.6 vs 51.8	58.7 vs 48
■ HR	0.956	0.76; p = .008	0.757; p = 0.01	0.75; p=0.03 NS	0. 67; P = .00455	0.763; P = .00973
mPFS, mo	27.6 vs 14.5	25.3 vs 16.0	16.4 vs 9.3	28.18 vs 14.76	33.6 vs 19.2	23.8 vs 13.0
■ HR	0.563	0.568	0.55	0.54	0.55 [‡]	0.55
ORR, %	55.3 vs 44.4	52.7 vs 37.1	48 vs 21	59 vs 44	40.9 vs 28.7 ⁺	41 vs 30

*First-line ET; up to 1 previous CT line permitted in advanced setting (14% had received CT). ⁺Includes first and second line. [‡]Descriptive analysis.

Factors influencing selection of CDK4/6i

- Menopausal status
- Toxicity Profile
- Overall survival
- Co-morbidities: EKG, GI

Finn. NEJM. 2016;375:1925.
 Rugo. Breast Cancer Res Treat. 2019;174:719.

 Hortobagyi. NEJM. 2016;375:1738.
 Hortobagyi. Ann Oncol. 2018;29:1541.
 Goetz. JCO. 2017;35:3638.
 Johnston. NPJ Breast Cancer. 2019;5:5.
 Slamon. JCO. 2018;36:2465.

8. Slamon. NEJM. 2020;382:514.
 9. Slamon. ESMO 2019. Abstr LBA7_PR.
 10. Tripathy. Lancet Oncol. 2018;19:904.
 11. Hurvitz. ASCO 2019. Abstr LBA1008.
 12. Im. NEJM. 2019;381:307.
 13.Lu CCR 2022;28:851
 14. Neven. ESMO Breast 2022
 15. Sledge GW JCO 2017;35;2875
 16. Sledge GW JAMAOncol 2020; 6:116

SONIA: Palbociclib for First or Second-Line ET:

Evidence favoring use of palbociclib for with 2nd-line rather than 1st-line

Sonke et al. ASCO 2023 (DOI: 10.1200/JCO.2023.41.17_suppl.LBA1000)

RIGHT Choice (Phase 2, subgroup analysis): 1L ribociclib + endocrine therapy vs chemo among HR+/HER2– advanced breast cancer ± visceral crisis

- Lu Y-S, et al. SABCS 2022: RIGHT Choice reported significant median PFS benefit of ~1 year with ribociclib + ET vs combo CT 24.0 vs 12.3 months; HR 0.54 (95% CI 0.36–0.79)
- Exploratory subgroup analysis: Key efficacy endpoints from RIGHT Choice in patients ± visceral crisis; final database lock (cut-off 10 May 2023) PFS was 21.8 vs 12.8 months; HR 0.61 (95% CI 0.43-0.87; P=0.003)

PROs

severe organ dysfunction

RIGHT Choice (Phase 2, subgroup analysis): Efficacy

ORR and CBR

Azim HA, et al. ESMO 2023. Abstract 402P

What About 2L CDKi Post-Progression on 1L CDKi?

	MAINTAIN	PACE	PALMIRA
Patients (n)	120	166	198
1 st line CDK4/6i	Palbociclib (84%)	Palbociclib (90%)	Palbociclib (100%)
% 1 st line CDK4/6i >12mo	67%	75%	86%
Endocrine therapy	Fulvestrant (83%) or exemestane	Fulvestrant (100%)	Fulvestrant (90%) or letrozole
'Continuation' CDK4/6i	Ribociclib	Palbociclib	Palbociclib
PFS ET only	2.8mo	4.8mo	3.6mo
PFS Fulv + CDK4/6i	5.3mo	4.6mo	4.9mo

Different studies, different designs, different study populations, different subgroup definitions

Genomic complexity at baseline reflected by APOBEC mutational signature and high blood tumor mutational burden (bTMB) and copy number burden (bCNB) is prognostic for resistance to CDK4/6 inhibitors

EMERALD: Elacestrant vs ET in post CDK4/6i Setting

• Elacestrant is an oral selective estrogen receptor degrader (SERD)

Stratification Factors:

- ESR1-mutation status^e
- · Prior treatment with fulvestrant
- Presence of visceral metastases

Patient population: Prior CDK 4/6i (100%) Prior fulvestrant (30%)

EMERALD - Patients with ESR1-mut tumors PFS by duration of CDK4/6i

ESR1 Mutations in ctDNA Found after Progression on AI+ CDK 4/6 Inhibitor

Most AEs including nausea were G1 or G2; no G4 treatment-related AEs

 ✓ Elacestrant is FDA approved for patients with ER+/HER2- and ESR1-mutated MBC following PD on at least 1 line of endocrine therapy (Jan 27, 2023)

Guardant360 CDx assay approved as companion diagnostic to identify eligible patients

- 48% pts in EMERALD had ESR1 mutation <u>following</u> CDK4/6 inhibitor therapy, mainly with an AI
- 1L PADA1 trial showed 3.2% pts <u>beginning</u> AI + CDK4/6 inhibitor had ESR1 (Pradines A, et al. Cancer Res supp, AACR, 2021)

PI3K/AKT/M-TOR Pathway Most commonly dysregulated pathway in breast cancer

Baselga J, et al. The Oncologist 2011 (PMID: 21278436)

PFS Benefit of Alpelisib in 2L post progression after CDK4/6i:5-7 mos

	BYLieve: PI3Ki + ET in HR+/HER2- BC With PIK3CA Mutation and PD on CDK4/6i			
	Cohort A ¹ (n = 121)	Cohort B² (n = 115)	Cohort C ³ (n = 126)	
Cohort population	CDK4/6i + AI as immediate prior tx	CDK4/6i + fulvestrant as immediate prior tx	Chemo or ET as immediate prior tx	
Endocrine partner	Fulvestrant	Letrozole	Fulvestrant	
РІЗКі	Alpelisib	Alpelisib	Alpelisib	
Median PFS, mo	7.3	5.7	5.6	
 HR (PI3Ki vs control) 	NA	NA	NA	

Rugo. Lancet Oncol. 2021;22:489. Rugo. SABCS 2021. PD2-07. Rugo. SABCS 2020. Abstr PD13-05.

Background and overview of capivasertib

- AKT pathway activation in HR+/HER2– MBC through alterations in *PIK3CA, AKT1 and PTEN*, but may also occur in cancers without those genetic alterations.^{1,2} AKT signalling is implicated in the development of resistance to endocrine therapy²
- Capivasertib is a potent, selective inhibitor of all three AKT isoforms (AKT1/2/3)

1. Millis et al. *JAMA Oncol* 2016;2:1565-1573; 2. Toss et al. *Oncotarget*. 2018;9:31606-31619; 3. Howell et al. *Lancet Oncol* 2022;23:851–64.

CAPItello-291: Phase 3 trial with capivasertib in ER+ MBC

*400mg BID daily, 4 days on, 3 days off

Patient population					
66-73%					
38-43%					
1					
67-72%					
17-19%					

CAPItello-291: Dual primary endpoints PFS in overall population & AKT pathway altered population

- Statistically significant and clinically meaningful improvement in in PFS in all patients regardless of AKT pathway alteration
- OS data is immature

PFS- AKT pathway altered pt population

Capivasertib + fulvestrant is likely to be an option for select patients following progression on ET (+/- CDK 4/6i)

Overall Survival

- Overall survival immature at just 28% maturity
 - Less events in the Capi arm

Adverse events (>10% of patients) – overall population

Adverse events of any grade related to rash (group term including rash, rash nacular, macula-papular rash, rash papular and rash pruritic) were reported in 38.0% of the patients in the capivasertib + fulvestrant arm (grade ≥3 in 12.1%) and in 7.1% of those in the placebo + fulvestrant group (grade ≥3 in 0.3%). Here were Grade 3 except one case of Grade 4 hyperglycemia in the capivasertib + fulvestrant arm. This presentation is the intellectual property of the author/presenter. Contact them at nick.tumer/@icr.ac.uk for permission to reprint and/or distribute.

AEs leading to:

- Discontinuation capi/pla: 9.3 vs 0.6%
- Interruption capi/pla: 34.9 vs 10.3%
- Dose reduction capi/pla: 19.7 vs 1.7%

Turner et al, SABCS 2022

DESTINY-Breast04 (Phase 3): Subgroup analysis of T-DXD vs TPC among patients with HER2-low metastatic breast cancer with brain metastases

 An open-label, multicenter study of T-DXd vs TPC among patients HER2-low unresectable and/or metastatic breast cancer

Intracranial response (asymptomatic brain mets at baseline)

	Best Overall Intracranial Response			
n (%)	T-DXd (n = 24)	TPC (n = 11)		
CRª	4 (16.7)	0		
PR ^a	2 (8.3)	0		
SD	12 (50.0)	7 (63.6)		
PD	0	1 (9.1)		
Not evaluable (NE)	1 (4.2)	0		
Missing ^b	5 (20.8)	3 (27.3)		

*Confirmation was required for CR and PR. *Data were not available for analysis.

TPC, treatment of physician's choice; T-DXd, trastuzumab deruxtecan. Tsurutani J, et al. ESMO 2023. Abstract 388P

Sites of first progression (asymptomatic brain mets at baseline)

n (%)	T-DXd (n = 24)	TPC (n = 11)
Patients with progression	17 (70.8)	7 (63.6)
Sites of first progression		
Intracranial only	2 (8.3)	3 (27.3)
Extracranial only	15 (62.5)	4 (36.4)

TROPICS-02: Phase III Trial Sacituzumab Govitecan vs. TPC in ER+ MBC

Rugo et al. ESMO 2022 (LBA76); Rugo et al. Lancet 2023 (PMID: 37633306)

Background: Dato-DXd

- Dato-DXd is a TROP2-directed ADC, that selectively delivers a potent Topo-I inhibitor payload directly into tumor cells,¹ and has several unique properties*:
 - Optimised drug to antibody ratio ≈ 4
 - Stable linker-payload
 - Tumour-selective cleavable linker
 - Bystander antitumour effect
- Dato-DXd previously demonstrated promising antitumour activity and a manageable safety profile with a convenient Q3W schedule in pre-treated patients with metastatic HR+/HER2– breast cancer²

Dato-DXd: Humanised anti-TROP2 IgG1 monoclonal antibody

Image is for illustrative purposes only; actual drug positions may vary.

1. Okajima D, et al. *Mol Cancer Ther* 2021;20:2329–40; 2. Meric-Bernstam F, et al. Poster presentation at SABCS 2022: abstract PD13-08.

*The clinical relevance of these features is under investigation. Based on animal data. Dato-DXd, datopotamab deruxtecan; IgG1, immunoglobulin G1; Q3W, every 3 weeks; Topo-I, topisomerase I.

TROPION-Breast01 Study Design¹

Randomised, phase 3, open-label, global study (NCT05104866)

Randomisation stratified by:

- Lines of chemotherapy in unresectable/metastatic setting (1 vs 2)
- **Geographic location** (US/Canada/Europe vs ROW)
- Previous CDK4/6 inhibitor (yes vs no)

• Treatment continued until PD, unacceptable tolerability, or other discontinuation criteria

Detailed description of the statistical methods published previously.¹ *Per American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines. [†]ICC was administered as follows: eribulin mesylate, 1.4 mg/m² IV on Days 1 and 8, Q3W; capecitabine, 1000 or 1250 mg/m² orally twice daily on Days 1 to 14, Q3W (dose per standard institutional practice); vinorelbine, 25 mg/m² IV on Days 1 and 8, Q3W; or gemcitabine, 1000 mg/m² IV on Days 1 and 8, Q3W. BICR, blinded independent central review; CDK4/6, cyclin-dependent kinase 4/6; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; IV, intravenous; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; ROW, rest of world.

1. Bardia A, et al. *Future Oncol* 2023; doi: 10.2217/fon-2023-0188.

Aditya Bardia, ESMO 2023

Demographics and Baseline Characteristics

		Dato-DXd (n=365)	ICC (n=367)
Age, median (range), years		56 (29–86)	54 (28–86)
Female, n (%)		360 (99)	363 (99)
Race, n (%) Black or African America	n / Asian / White / Other*	4 (1) / 146 (40) / 180 (49) / 35 (10)	7 (2) / 152 (41) / 170 (46) / 38 (10)
Ethnicity, n (%) Hispanic or Lating	o / Not Hispanic or Latino [†]	40 (11) / 322 (88)	43 (12) / 318 (87)
Prior lines of chemotherapy, [‡] n (%)	1/2	229 (63) / 135 (37)	225 (61) / 141 (38)
Prior CDK4/6 inhibitor, n (%)	Yes / No	299 (82) / 66 (18)	286 (78) / 81 (22)
Prior taxane and/or	Taxane and/or Anthracycline	330 (90)	339 (92)
anthracycline, n (%)	Neither	35 (10)	28 (8)

*Including not reported. †Ethnicity missing: 3 patients in Dato-DXd group; 6 patients in ICC group.

[‡]In the inoperable/metastatic setting; one patient in the Dato-DXd group had 3 prior lines of chemotherapy; one patient in the ICC group had 4 prior lines.

Progression-Free Survival

PFS by investigator assessment: Median 6.9 vs 4.5 months; HR 0.64 (95% CI 0.53–0.76)

CI, confidence interval; HR, hazard ratio

Response and Interim OS

OS: Dual Primary Endpoint

- OS data not mature:*
 - Median follow-up 9.7 months
- A trend favouring Dato-DXd was observed:
 HR 0.84 (95% CI 0.62–1.14)
- The study is continuing to the next planned analysis for OS

TRAEs Occurring in ≥15% of Patients and AESIs

System Organ Class	Dato-DXd	(n=360)	ICC (n=351)	
Preferred term, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Blood and lymphatic system				
Anaemia	40 (11)	4 (1)	69 (20)	7 (2)
Neutropenia*	39 (11)	4 (1)	149 (42)	108 (31)
Еуе				
Dry eye	78 (22)	2 (1)	27 (8)	0
Gastrointestinal				
Nausea	184 (51)	5 (1)	83 (24)	2 (1)
Stomatitis	180 (50)	23 (6)	46 (13)	9 (3)
Vomiting	71 (20)	4 (1)	27 (8)	2 (1)
Constipation	65 (18)	0	32 (9)	0
General				
Fatigue	85 (24)	6 (2)	64 (18)	7 (2)
Skin and subcutaneous				
Alopecia	131 (36)	0	72 (21)	0

• Most TRAEs were grade 1–2 and manageable

AESIs

- Oral mucositis/stomatitis:[†] led to treatment discontinuation in one patient in the Dato-DXd group
- Ocular events:[‡] most were dry eye; one patient discontinued treatment in the Dato-DXd group
- Adjudicated drug-related ILD:[§] rate was low; mainly grade 1/2

Adjudicated drug-related ILD	Dato-DXd	ICC	
All grades, n (%)	9 (3)	0	
Grade ≥3, n (%)	2 (1) [¶]	0	

*Neutropenia included the PTs neutropenia and neutrophil count decreased. [†]Oral mucositis/stomatitis events included PTs of aphthous ulcer, dysphagia, glossitis, mouth ulceration, odynophagia, oral mucosal blistering, oral pain, oropharyngeal pain, pharyngeal inflammation, stomatitis, tongue ulceration; all grade: 59% with Dato-DXd, 17% with ICC; grade 3: 7% with Dato-DXd, 3% with ICC. [‡]Ophthalmologic assessments were required at screening, and then every 3 cycles from C1D1 and at end of therapy; ocular events included selected PTs from Corneal Disorder SMQ and select relevant PTs from Eye Disorder SOC; all grade: 49% with Dato-DXd, 23% with ICC; grade 3: 1% with Dato-DXd (one patient with dry eye, one patient with punctate keratitis, and one patient with dry eye and ulcerative keratitis), 0% with ICC. [§]ILD includes events that were adjudicated as ILD and related to use of Dato-DXd or ICC (includes cases of potential ILD/pneumonitis, based on MedDRA v23.0 for the narrow ILD SMQ, selected terms from the broad ILD SMQ, and PTs of respiratory failure and acute respiratory failure). [¶]One adjudicated drug-related grade 5 ILD event: attributed to disease progression by investigator. ILD, interstitial lung disease; PTs, preferred terms; SMQ, standard MedDRA query; SOC, system organ class.

Aditya Bardia ESMO 2023

Destiny-Breast 03: TdX vs. T-DM1 as Second–Line Therapy for HER2+ MBC

Intracranial CNS-Specific Outcomes: HER2CLIMB Study Results

Intra-Cranial CNS Response (RECIST) N=75	Tucatinib N=55 N (%)	Placebo N=20 N (%)
CR	3 (5.5)	1 (5.0)
PR	23 (41.8)	3 (15.0)
SD	24 (43.6)	16 (80.0)
PD	2 (3.6)	0
Not Available	3 (5.5)	0
Confirmed ORR	26 (47.3)	4 (20.0)
95% CI	33.7- 61.2% 5.7-43.7	
Stratified p- value	0.	03
DOR (months)	6.8	3.0

disease; PD=progressive disease; ORR=objective response rate (CR+PR); DOR=duration of intracranial response

DESTINY-Breast-01/-02/-03 pooled analysis: T-DXd among patients with HER2+ metastatic breast cancer with brain metastases

The BM and non-BM pools were determined by BICR at baseline among all patients based on mandatory brain CT/MRI screening

Per FDA criteria, patients with untreated BMs from DESTINY-Breast02 and -03 would be considered to have active BMs⁵

T-DXd, trastuzumab deruxtecan. Hurvitz S, et al. ESMO 2023. Abstract 377(

0

The population of patients with baseline BMs from DESTINY-Breast02 and -03 therefore consists of a mix of treated/stable and untreated/active metastases DESTINY-Breast-01/-02/-03 pooled analysis: T-DXd efficacy among patients with HER2+ metastatic breast cancer with brain metastases

T-DXd, trastuzumab deruxtecan.

Hurvitz S, et al. ESMO 2023. Abstract 3770

DESTINY-Breast-01/-02/-03 pooled analysis: T-DXd efficacy among patients with HER2+ metastatic breast cancer with brain metastases

Site of first	T-DXd Pool (N = 851)		Comparator Pool (N = 465)	
progression per BICR	BM Pool (n = 148)	Non-BM Pool (n = 703)	BM Pool (n = 83)	Non-BM Pool (n = 382)
Patients with PD, n (%)	88 (59.5)	291 (41.4)	49 (59.0)	244 (63.9)
Site of first progression				
Intracranial only	38 (25.7)	16 (2.3)	13 (15.7)	6 (1.6)
Extracranial only	47 (31.8)	270 (38.4)	31 (37.3)	237 (62.0)
Both	3 (2.0)	2 (0.3)	5 (6.0)	0
Missing	0	3 (0.4)	0	1 (0.3)

T-DXd, trastuzumab deruxtecan. Hurvitz S, et al. ESMO 2023. Abstract 3770

Rates of any PD were comparable in patients in both BM pool populations

DESTINY-Breast-01/-02/-03 pooled analysis: T-DXd among patients with HER2+ metastatic breast cancer with brain metastases

Best Percentage Change from Baseline in Sum of Diameters of Brain Tumors

 The shrinkage of BMs in response to T-DXd was more prominent, whereas in the comparator pool, BMs showed less of a response

DESTINY-PanTumor01 (Phase 2): T-DXd among patients with solid tumors harboring specific HER2-activating mutations

- HER2 mutations occur in 2-3% of breast cancers
- In a Phase 1 study, T-DXd demonstrated anti-tumor activity in patients with tumors harboring HER2m, with confirmed responses in 9 of 19 patients

DESTINY-PanTumor01 (Phase 2): Efficacy – Best objective response (ICR) and duration of response (ICR)

Time (months)

• Pembrolizumab 2L+ for solid tumors with TMB-H (>10mut/Mb) or MSI-high

• **NTRK fusion**: Larotrectinib or entrectinib for metastatic solid tumor

Adapted from NCCN 4.2023 & ESMO Guidelines

Phase III Ascent Trial: Sacituzumab Govitecan vs. TPC in TNBC

ASCENT

ASCENT: A Phase 3 Confirmatory Study of Sacituzumab Govitecan in Refractory/Relapsed mTNBC

ASCENT was halted early due to compelling evidence of efficacy per unanimous DSMC recommendation. Here, we report the primary results from ASCENT, including PFS and OS.

TPC: eribulin, vinorelbine, gemcitabine, or capecitabine. TPFS measured by an independent, centralized, and blinded group of radiology experts who assessed tumor response using RECIST 1.1 criteria in patients without brain metastasis. ¹The full population includes all randomized patients (with and without brain metastases). Baseline brain MRI only required for

ASCOICAP, American Society of Clinical Oncology/College of American Pathologists; DOR, duration of response, DSMC, Data Safety Monitoring Committee; IV, Intravenous; mTNBC, metastatic triple-negative breast cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors; TTR, time to response.

Overall Response and Best Percent Change From Baseline in Tumor Size

Assessed by	independent	central	review	in brain	metasta	ases-negative	populati
*Depotes pat	tiante who ha	4 a 0.94	change	from he	acolino i	a tumor ciza	

BICR, blind independent central review; CBR, clinical benefit rate (CR + PR + SD ≥6 mo); CR, complete response; DOR, duration of response; ORR, objective response rate PR. partial response: SG. sacituzumab govitecan: TPC, treatment of physician's choice: TTR, time to response

ESMO

ASCENT

11 (5)

2(1)

9(4)

20 (9)

3.6

(2.8-NE)

Assessed by independent central review in the brain metastases-negative population. OS, overall survival; SG, sacituzumab govitecan; TPC, treatment of physician's choice

DESTINY-Breast04 (Phase 3, update): T-DXd v TPC among patients with HER2-low unresectable and/or metastatic breast cancer

Efficacy in the HR- cohort (exploratory analyses)

Progression-Free Survival (by Investigator)

Subgroup analyses

	No. of Events/	No. of Patients	Hanand Patia for D	ath (059/ 01)
	T-DXd	TPC	Hazard Ratio for Deal	(95% CI)
Prior CDK4/6 inhibitors				
Yes	158/235	81/118		0.71 (0.54-0.92)
No	55/98	32/48		0.64 (0.41-0.99)
IHC status				0.05 (0.40.0.00)
IHC 1+	137/214	77/107		0.65 (0.49-0.86)
IHC 2+/ISH-	105/159	51/77		0.72 (0.51-1.01)
Prior lines of chemotherapy				0 62 (0 46 0 83)
1	129/221	69/100	⊢ ♦ <u></u>	0.78 (0.57-1.07)
≥2	113/151	59/83		0.70 (0.07-1.07)
Age			⊢ ♠I	0.64 (0.50-0.82)
<65 years	185/290	95/136	⊢ ◆ <u></u>	0.77 (0.50-1.19)
≥65 years	57/83	33/48		
Race				0.68 (0.50-0.93)
White	123/176	62/91		0.68 (0.48-0.96)
Asian	90/151	51/72	H-	0.55 (0.28-1.07)
Other	26/38	13/17		
Region	001117	17100		0.69 (0.49-0.98)
Asia	90/147	47/66		0.67 (0.49-0.91)
Europe and Israel	118/166	59/85		0.66 (0.38-1.13)
North America	34/60	22/33		212210210210101010101010101010101010101
ECOG performance status	117/000	00405	—	0.62 (0.46-0.83
0	117/200	68/105		0.74 (0.54-1.01)
	125/173	60/79	H	
visceral disease at baseline	007/000	100/457	H.	0.71 (0.57-0.90
res	2211332	109/15/		0.35 (0.18-0.70)
NO	15/41	19/27	0.00 0.25 0.50 0.75 1.00 1.25 1.	50 1.75 2.00
			Favors T-DXd Favors T	-DXd

 42% reduction in risk of death and 71% reduction in risk of progression or death for HR– patients receiving T-DXd compared with TPC

at the updated data cutoff (March 1, 2023), median follow-up was 32.0 months (95% CI: 31.0, 32.8 months) TPC, treatment of physician's choice; T-DXd, trastuzumab deruxtecan. Modi S, et al. ESMO 2023. Abstract 3760

BEGONIA (Phase 1b/2): Anti-tumour efficacy in 1L /mTNBC with Datopotumab + Durvalumab every 3 weeks

Schmid P, et al. ESMO 2023. Abstract 379MO

Number of patients at risk

Durva + 49 49 49 47 46 42 35 30 28 21 18 17 17 13 13 12 1 1 0 Dato-DXd

Time from first dose date (months)

BEGONIA (Phase 1b/2): Safety

	Most frequently reported adverse events (≥15%) (N=62)			
Patients, n (%)	Dato-DXd + D N=62	AE preferred term	Any grade, n (%)	Grade 3/4, n (%)
Any AEs	62 (100)	Nausea	40 (65)	0
Grade 3/4	35 (57)	Stomatitis	40 (65)	7 (11)
Any treatment-related AEs ^a	62 (100)	Alopecia	31 (50)	0
Grade 3/4	27 (44)	Constipation	29 (47)	1 (2)
Any serious AEs	14 (23)	Fatigue	28 (45)	1 (2)
Treatment-related	6 (10)	Rash	20 (32)	0
AFs leading to discontinuation of any treatments	10 (16)	Vomiting	16 (26)	1 (2)
Also leading to dooth ^b	1 (2)	Amylase increased	13 (21)	11 (18)
	Γ(Ζ)	COVID-19	13 (21)	0
Dose adjustments		Dry eye	13 (21)	0
Dato-DXd dose reduction	18 (29)	Decreased appetite	12 (19)	1 (2)
Dato-DXd dose delay	28 (45)	Pruritus	10 (16)	0
Durvalumab dose delay	31 (50)	Cough	10 (16)	0

- The most common AEs were gastrointestinal and generally of low grade (Table)
- Stomatitis was the most common AE leading to Dato-DXd dose reduction (11 patients)

۲

- There were 3 (5%) adjudicated treatment-related ILD/pneumonitis events (2 grade 2 events, 1 grade 1 event)
- Limited rates of diarrhea (13% any grade, 1 grade 3 event) and neutropenia (5% any grade, 1 grade 3 event) were reported
- The most frequent AESIs for Arm 7 were stomatitis (65%), rash (32%), dry eye (21%), hypothyroidism (14.5%), and keratitis* (14.5%)

Continued Progress in MBC 2023

- 1L HR+ HER2- MBC almost all pts benefit from ET + CDKi > chemotherapy
- Elacestrant benefits pts with ESR1 mutations and prior CDK4/6i > 12 mos
- Capivasertib + fulvestrant new option for PIK3CA, AKT, PTEN- mutant HR+ HER2- MBC
- TDX-d effective against HER2+ untreated active brain metastasis
- TDX-d active in HER2 0 and HER2 low pts with activating HER2 mutation
- Datopotumab anti-TROP2 ADC with deruxtecan payload in phase III, superior PFS vs chemoRx physician choice in 2L/3L HR+ HER2- MBC
- 1L mTNBC Begonia trial Durvalumab + Dato promising activity PDL1+/-