

"Modern Challenges and New Options in Lymphoma Treatment"

Eduardo M. Sotomayor, MD

VP and Executive Director, TGH Cancer Institute Professor, USF Health Morsani College of Medicine University of South Florida

Modern Challenges and New Options in Lymphoma <u>Treatment</u>

- In the last 10 years we have witnessed an unprecedent approval of novel targeted therapies and immunotherapies for patients with lymphoma.....
- While these are great news, they have also brought "modern challenges"
 - How to combine them, while optimizing efficacy and minimizing side effects
 - How to sequence them.....
 - Finite versus continuous treatment
 - Emergence of resistance: Double refractory.....CAR T refractory....

Regardless, these modern challenges are a "good problem" to have!

B-cell Lymphomas: Novel Agents

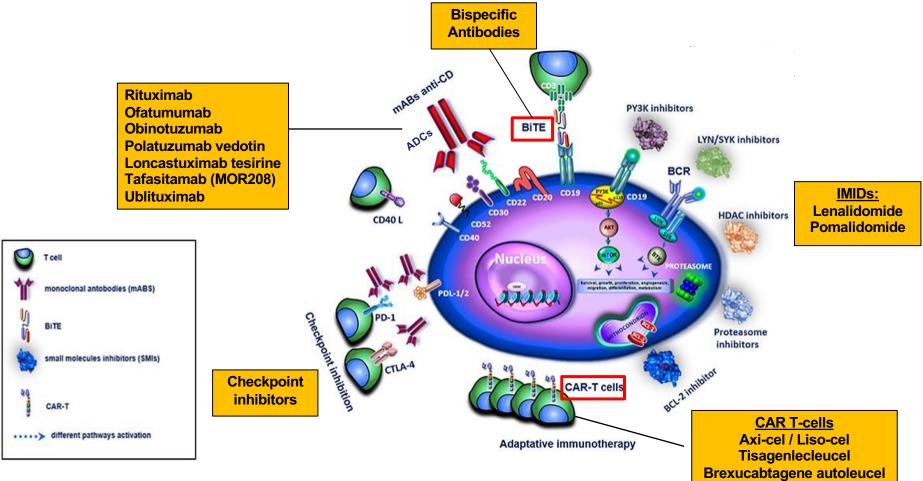
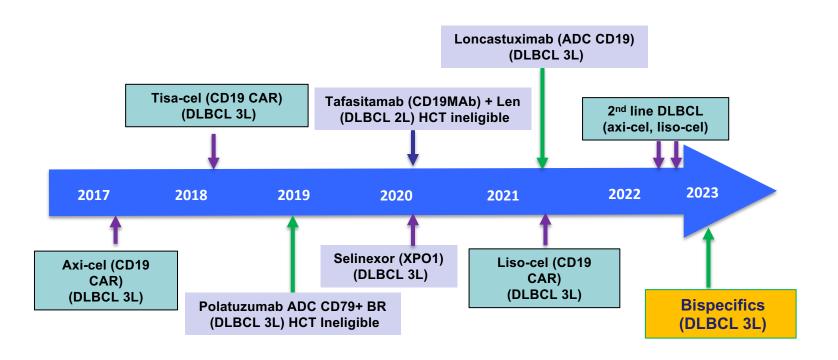
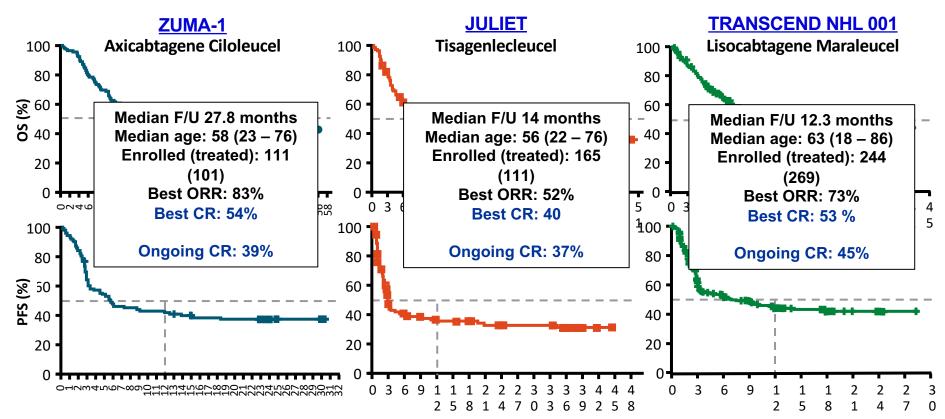
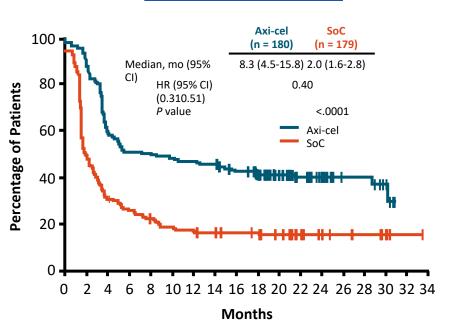



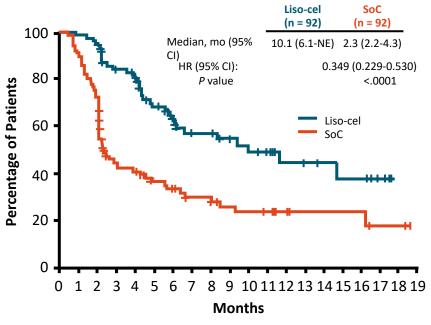
Figure adapted from Crisci, et al. Front. Oncol. 2019. doi.org/10.3389/fonc.2019.00443


FDA Approvals for Relapsed/Refractory DLBCL (2017-2023): Impressive Progress

First Challenge: CAR-T and Bispecific Antibodies in DLBCL: How to use... and sequence them (...a matter of debate)

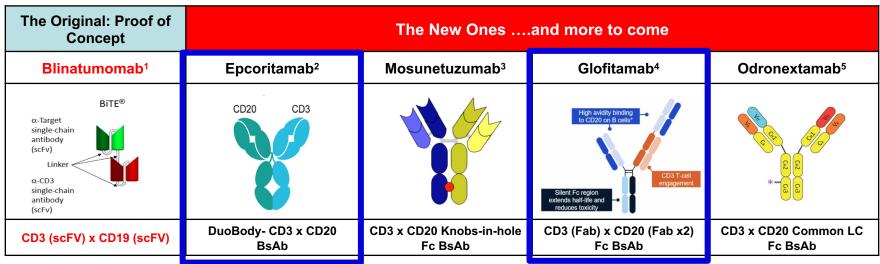
- Let's look at the data:
 - "Curative" versus non-curative modality
- Factors that would influence their use and/or sequencing:
 - GOAL of Treatment
 - Product-related factors
 - Patient-related factors
 - Tumor-related factors


Pivotal Anti-CD19 CAR T Cell Therapy Trials: Third Line DLBCL


Locke, Lancet Oncol. 2019;20:31. Jacobson. ASH 2020. Abstr 1187. Jaeger, ASH 2020. Abstr 1194. Abramson, Lancet, 2020;396:839.

CD19 CAR T-cell Therapy: A new SOC in Early Relapsed DLBCL (second line)

ZUMA-7: Median EFS¹


TRANSFORM: Median EFS²

CD19 CAR T-cells in DLBCL

- Anti-CD19 CAR T-cells have shown significant efficacy as third line and more recently as second line treatment for patients with relapsed/refractory DLBCL.....
 - It is estimated that 30-40 percent of patients with relapsed/refractory DLBCL might be cured!
 - Remaining 60 percent of patients: Unmet need
- Cost, manufacture time, side effects, progression while waiting for engineered T cells and mechanisms of resistance remain a significant challenge....

Bispecific Antibodies in B-cell NHL

- Numerous bispecific antibody structures exist
- Properties of the BsAbs vary by construct
- Distinguishing features of BsAbs include:
 - <u>"Off-the-shelf</u>" rapid access, relative ease of delivery ^{6,7}
 - Adaptable lack of persistence and ability to modulate dosing may improve tolerability⁶

^{1.} Queudeville M, et al. Onco Targets Ther. 2017;10:3567-3578. 2. Clausen MR, et al. J Clin Oncol. 2021;39(suppl 15):7518. 3. Budde LE, et al. Blood. 2018;132(suppl 1):399. 4. Hutchings M, et al. Blood. 2020;136(suppl 1):45-46. 5. Bannerji R, et al. Blood. 2020;136(suppl 1):42-43. Presented at: ASH 2020. Abstract 400. 6. Husain B, et al. BloDrugs. 2018;32(5):441-464. 7. Schuster S. SurvivorNet. Bispecific antibodies: an off-the-shelf-approach to treating lymphoma. Accessed June 23, 2022. https://www.survivornet.com/articles/bispecific-antibodies-an-off-the-shelf-approach-to-treating-lymphoma/

Epcoritamab for R/R DLBCL: Phase 2 Pivotal Study EPCORE

Baseline Characteristics

N= 157 pts

Median lines: 3 (2-11)

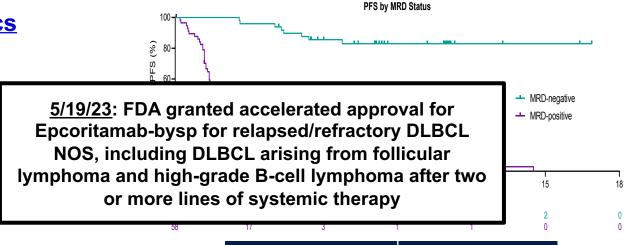
Primary refractory: 61%

Prior CAR-T: 39%

Prior auto HCT: 20%

Unlimited treatment (SC)

Results


Median f/u: 10.7 months

ORR= 63% CR= 39%

PFS in CR pts at EOT: Not reached

Median PFS= 4.4 months. Not reached in MRD neg.

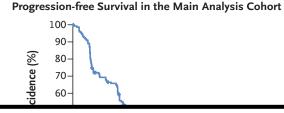
CRS all: 49.7% Grade ≥3: 2.5%. Mainly during C1

MRD Results	All LBCL
per ctDNA Assay	n=107
MRD-negative rate, n (%)	49 (45.8) [95% Cl: 36.1–55.7]

Glofitamab for R/R Large B cell lymphoma (3L): Phase 2 Pivotal Results

Baseline Characteristics

N= 155 pts


Time limited therapy (12 cycles IV with pretreatment

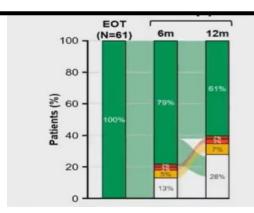
obinutuzumab)

Median lines: 3 (2-7)

Primary refractory: 58%

Prior CAR-T: 38% Prior auto HCT: 18%

6/15/23: FDA granted accelerated approval to Glofitamab-gxbm for adult patients with relapsed/refractory DLBCL NOS or large B-cell lymphoma arising from follicular lymphoma after at least two lines of systemic therapy


Median f/u: 12.6 months

ORR= 52% CR= 39%

PFS in CR pts at EOT: Not reached

Median PFS= 4.9 months

CRS all: 63%; G>3= 4% Mainly during C1

24

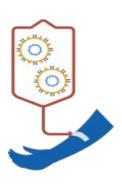
21

CAR-T and Bispecific Antibodies in DLBCL: How to use... and sequence them (...a matter of debate)

- Let's look at the data:
 - "Curative" versus non-curative modality
- Factors that would influence their use and/or sequencing:
 - GOAL of Treatment
 - Product-related factors
 - Patient-related factors
 - Tumor-related factors

CAR-T and Bispecifics in DLBCL:

Factors that would influence their use and/or sequencing



Treatment Goal:

- Curative Modality

- CAR T-cells: Yes (30-40%)

- Bi-specific : Unknown yet

Product Factors:

- Availability (Clinical trials vs. commercial)
- Regulatory entities approval/indications
- Need for specialized center:
 - CAR T: Yes
 - Bispecifics: No
 - Potential administration in outpatient setting
 - CAR T: No (yet?)
 - Bispecifics: Yes (IV and SC)

Patient Factors

- Age, comorbidities
- Prior treatments
- Patient preference:
 - One treatment: CAR T
 - Multiple treatments: Bispecifics
- Cost

Tumor Factors:

- Rapidly growing tumor
 - "Off the shelf": Bi-specifics
 - Need for some therapy for disease control: CAR T-cells
- Tumor antigen density
- Tumor antigen escape
- Tumor Microenvironment

Sequencing of CAR T-cells and Bispecifics in R/R DLBCL

- CAR T-cells first...then Bispecifics
 - Plenty of data....
 - Several clinical trials have shown the efficacy and safety of Bispecifics after CAR T failures

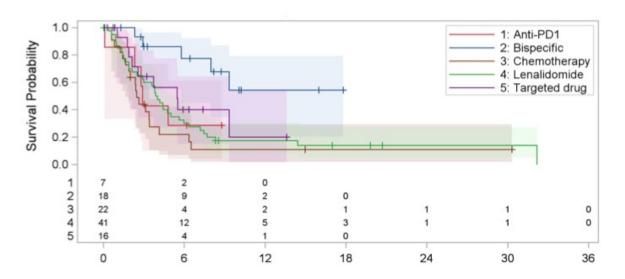
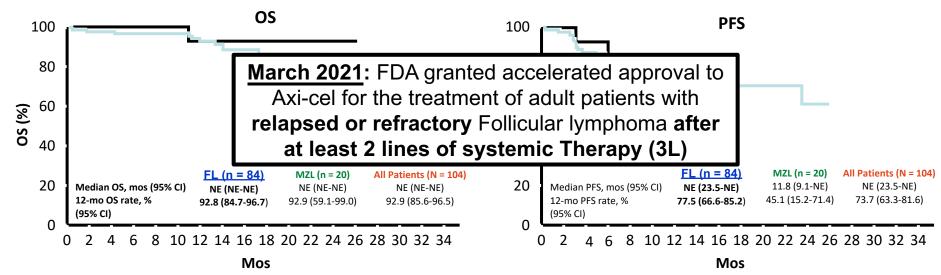


Figure 1: PFS since first progression (months) after CAR T cells therapy according to type of treatment.

Sequencing of CAR T-cells and Bispecifics in R/R DLBCL

- Bi-specific first...then CAR T-cells
 - Data is emerging....
 - French Descar T Registry: CAR T-cell therapy remain effective in pts with R/R B-cell NHL after Bispecific antibodies exposure. Crochet, G. et.al
 - Retrospective study. 28 pts, 23 with DLBCL
 - Mainly Glofitamab: ORR:53.6%; CR: 25%. 6mo PFS: 17.4% mDOR:
 2.7months. All pts progressed and went to receive bridge therapy
 - After CAR T-cells: ORR: 91.6%; CR: 45.8%
 - Median follow up 12.3 mo: 1-year PFS:37.2; OS:53.5%
 - No new toxicity signals were identified

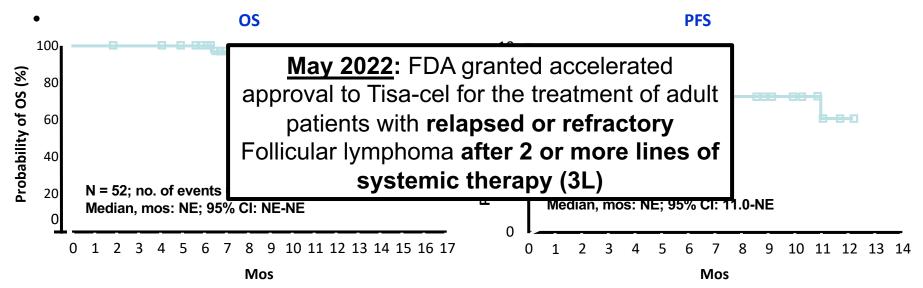
R/R DLBCL: Changing the Treatment Paradigm with CAR T cells and Bispecifics


Second Challenge: CAR-T and Bispecific Antibodies in FL: How to use... and sequence them (...a matter of debate)

- Let's look at the data:
 - "Curative" versus non-curative modality
- Factors that would influence their use and/or sequencing:
 - GOAL of Treatment
 - Product-related factors
 - Patient-related factors
 - Tumor-related factors

ZUMA-5: Axi-cel for Patients with Relapsed/Refractory Follicular Lymphoma or MZL

Single-arm phase II study of axicabtagene ciloleucel for patients with R/R indolent B-cell NHL (FL or MZL) with ≥ 2 prior therapies (N = 104)


ORR: 92%; CR rate: 76%

ELARA: Tisa-cel for Patients with Relapsed/Refractory Folicular Lymphoma

Single-arm phase II study of tisagenlecleucel for patients with R/R FL (N = 97 at interim analysis)

ORR: 83%; CR rate: 65%

Bispecific: Mosunetuzumab for R/R Follicular Lymphomasure 1 of 1

after 2L of Therapy

ORR: 78% CR: 60%

Baseline Characteristics:

N= 90 pts

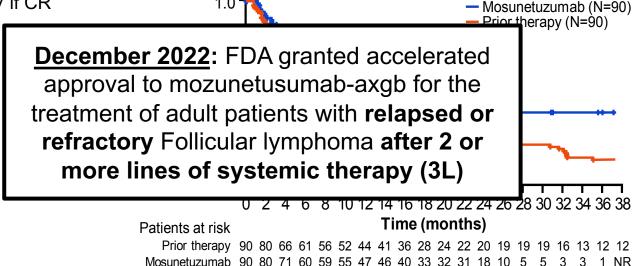
Time limited therapy (8 cycles IV if CR

but up to 17 cycles if Por less)

Median lines: 3 (2-10)

Double refractory: 53%

POD24: 52%


Prior auto HCT: 21%

Results:

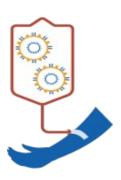
Median f/u: 28.3 months
DoR not reached

Median PFS= 24%

CRS all: 44%; G≥3=2%

Last prior therapy

CAR-T and Bispecific Abs in Follicular Lymphoma: Factors that would influence their use and/or sequencing



Treatment Goal:

- Cure

- CAR T-cells: No

Bi-specific : No

Product Factors:

Availability (Clinical trials vs. commercial)

All approved in 3L

Need for specialized center:

- CAR T: Yes

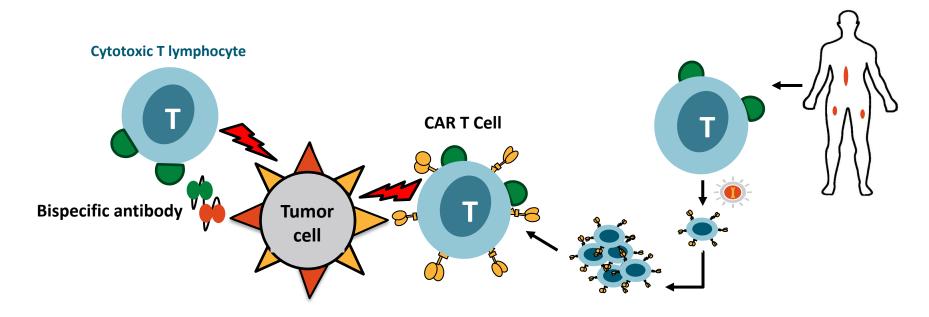
- Bispecifics: No

Potential administration in outpatient setting

- CAR T: No

Bispecifics: Yes (IV and SC)

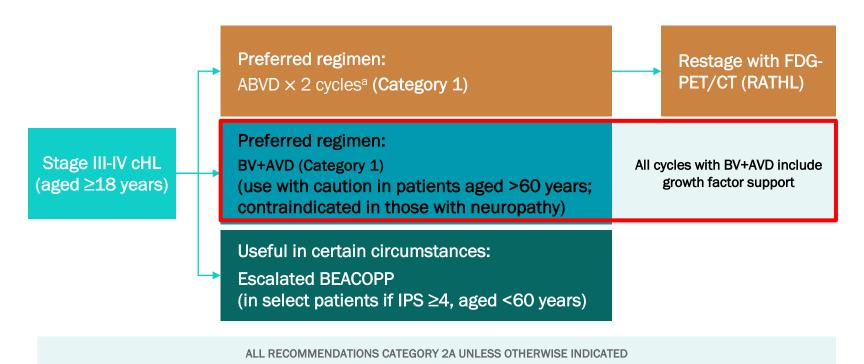
Patient Factors


- Age, comorbidities
- Prior treatments
- Patient preference:
 - One treatment: CAR T
 - Multiple treatments:
 Bispecifics
- Cost

Tumor Factors:

- Rapidly growing tumor
 - "Off the shelf": Bi-specifics
 - Need for some therapy for disease control: CAR T-cells
- Tumor antigen density
- Tumor antigen escape
- Tumor Microenvironment

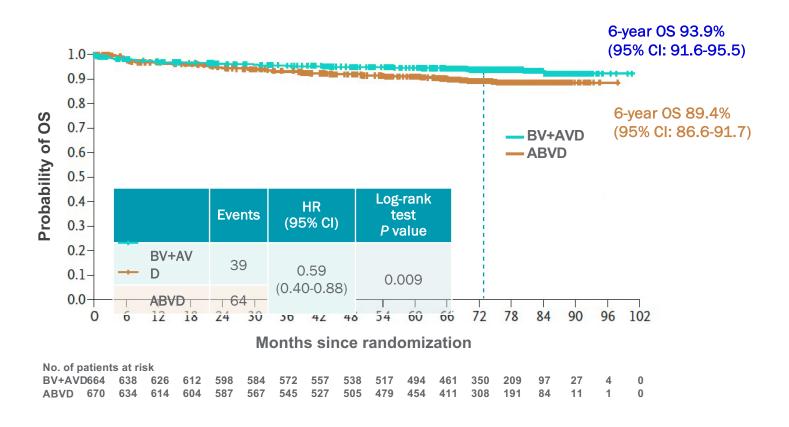
Bispecific Antibodies vs CAR T-Cell Therapy

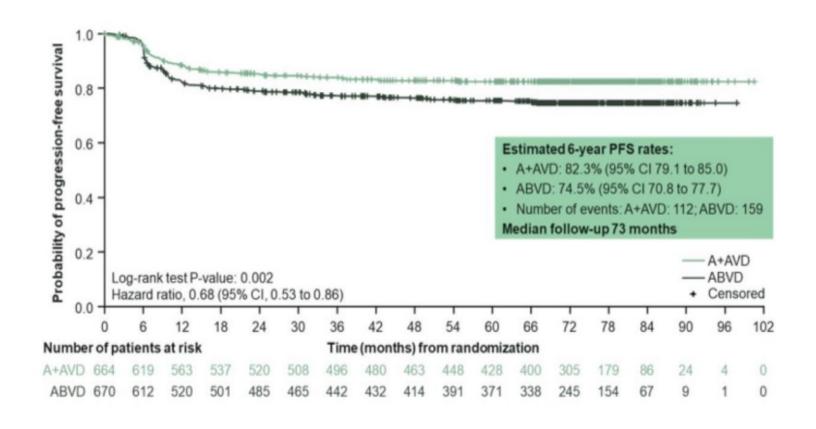


Characteristic	Bispecific Antibodies	CAR T-Cell Therapy
Preparation	"Off the shelf"	In vitro manufacturing (3-4 wks)
Dosing	Repetitive (Lack of persistence and ability to modulate dosing may improve tolerability)	Single (Persistence is associated with some long-lasting side effects)
Side Effects incidence and Grade	Less	Greater

Third Challenge: Frontline Treatment of Stage III/IV Hodgkin A+AVD or Nivo+AVD?

- Let's look at the data:
 - GOAL of frontline treatment in Hodgkin Disease:
 CURE
 - Side effects


NCCN Guidelines in Stage III-IV Classical Hodgkin (Version 2.2023)


^a ABVD is preferred based on the toxicity profile and quality of data.

National Comprehensive Cancer Network. Hodgkin Lymphoma (Version 2.2023). Accessed February 2, 2023. https://www.nccn.org/professionals/physician gls/pdf/hodgkins.pdf

Echelon-1: OS per Investigator at 6-Year Follow-up

A+AVD reduced the risk of progression or death by 32% when compared with ABVD

Fewer patients died from HL and disease- or treatment-related complications with A+AVD vs ABVD

Cause of death per investigator	A+AVD (n=662)	ABVD (n=659)
Total Deaths	39 (5.9%)	64 (9.7%)
Hodgkin lymphoma or complications	32	45
Second malignancies	1	11
Other causes	6	8
Unknown cause	1	5*
Accident or suicide	3	0
COVID-19	0	1
Heart failure	1	1
Intracranial hemorrhage	1	0
Lower respiratory tract infection	0	1

^{*}In 2 patients in the ABVD arm, death was reported to be of indeterminate cause, but the event occurred following investigator-documented disease progression.

Among those who died:

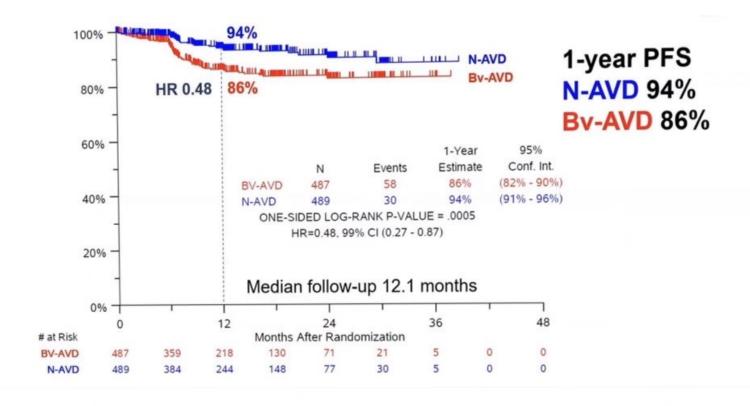
- A+AVD: 19 patients had prior disease progression (not always the cause of death); 18 received subsequent therapy
- ABVD: 28 patients had prior disease progression, 25 received a subsequent therapy (13 received brentuximab vedotin)

ASCO 2023: S1826 Intergroup Study Frontline Nivo+AVD vs. BV+AVD in Advanced Stage cHL

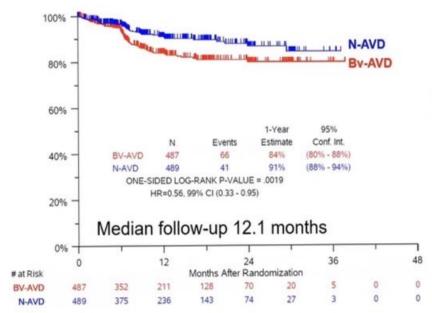
Newly diagnosed Stage III-IV Hodgkin Iymphoma At planned 2nd interim analysis (50% of total PFS events), the SWOG Data and Safety Monitoring Committee recommended to report the primary results because the primary PFS endpoint crossed the protocol-specified conservative statistical boundary

pts

EOT RT sidual FDG-avid lesions)


pts

Stratification:

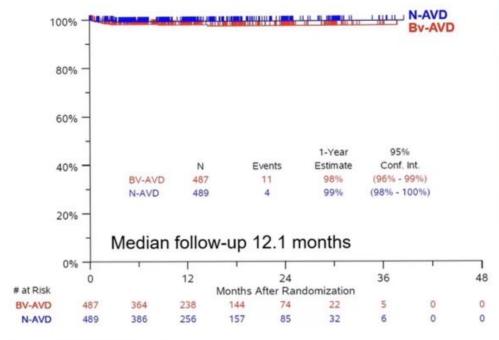

- · Age (12-17/18-60/>60)
 - IPS (0-3/4-7)
- EOT RT intended (Y/N)

- Filliary enuponit. Fre
- Assume 84% 2-year PFS for BV-AVD, 90% 2-year PFS in N-AVD, final analysis @ 179 events

Intergroup Study S1826: PFS

Intergroup Study S1826: EFS

1-year EFS N-AVD 91% Bv-AVD 84%

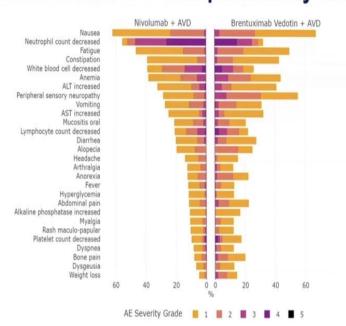

EFS events: death, progression, non-protocol treatment before progression

EFS event	N-AVD	Bv-AVD
Non-protocol chemo before PD	9	6
Non-protocol immunotx before PD	1	0
Non-protocol RT prior to PD	1*	3**
Progression/Relapse	26	47
Death without progression	4	10
Total EFS Event	41	66

^{*} Intended for RT, EOT DS=3, received RT anyways

^{**1/3} intended for RT, 1 with EOT DS=2 and off tx due to AE then received RT, 2 with EOT DS=3 and received RT anyways

Intergroup Study S1826: OS


Cause of death	N-AVD	Bv-AVD
Infection	2	4
Sepsis	1	2*
Cardiac arrest	0	1
Pneumonitis	0	1
Dehydration, vomiting, cHL	0	1
cHL	1**	0
Unknown	1	2
Total OS events	4	11

^{* 1} death from COVID-19/sepsis

^{**} never received treatment, ineligible on C1D1

Intergroup Study S1826: Toxicities

Adverse Events in ≥ 10% patients by Arm

Toxicity	N-AVD n = 483		Bv-AVD Alex Herrera n = 473	
	Any Gr N (%)	Gr ≥ 3 N (%)	Any Gr N (%)	Gr ≥ 3 N (%)
Neutropenia	268 (55%)	227 (47%)	152 (32%)	118 (25%)
Anemia	185 (38%)	29 (6%)	207 (44%)	42 (9%)
Thrombocytopenia	48 (10%)	8 (2%)	82 (17%)	15 (3%)
Received G-CSF	265 (54%)		463 (98%)
Bone pain	39 (8%)		94 (2	20%)

More neutropenia after N-AVD

More growth factor use, bone pain in Bv-AVD arm

Toxicity	N-AVD n = 483	Bv-AVD n = 473
Febrile Neutropenia	26 (5%)	32 (7%)
Sepsis	9 (2%)	16 (3%)
Infections/Infestations	22 (5%)	36 (8%)

No increased infectious toxicity in N-AVD arm

Intergroup Study S1826: Toxicities

	N-AVD n = 483		Bv-AVD Alex Herrera n = 473	
Toxicity	Any Grade No (%)	Grade ≥ 3 No (%)	Any Grade No (%)	Grade ≥ 3 No (%)
ALT increased	156 (32%)	22 (5%)	194 (41%)	22 (5%)
AST increased	120 (25%)	12 (2%)	153 (32%)	13 (3%)
Rash maculo-papular	51 (11%)	4 (1%)	58 (12%)	0 (0)
Hypothyroidism	33 (7%)	1 (0%)	3 (1%)	0 (0)
Rash acneiform	18 (4%)	0 (0)	12 (3%)	0 (0)
Pneumonitis	10 (2%)	2 (0%)	15 (3%)	10 (2%)
Gastritis	10 (2%)	3 (1%)	8 (2%)	0 (0)
Hyperthyroidism	14 (3%)	0 (0)	0 (0)	0 (0)
Colitis	5 (1%)	1 (0%)	6 (1%)	4 (1%)

Low rates of	f immune-related	adverse events
--------------	------------------	----------------

Toxicity	N-AVD n = 483		Bv-AVD n = 473	
	Any Gr N (%)	Gr≥3 N (%)	Any Gr N (%)	Gr≥3 N (%)
Peripheral sensory neuropathy	138 (29%)	6 (1%)	262 (55%)	37 (8%)
Peripheral motor	20 (4%)	1 (0%)	35 (7%)	6 (1%)
neuropathy				

More neuropathy in Bv-AVD arm

Intergroup Study S1826: Treatment Discontinuation

Disposition	N-AVD (n=489) N (%)	Bv-AVD (n=487) N (%)
Treatment ongoing	22	30
Completed treatment	428	400
Adverse event Refusal unrelated to AE Progression/relapse Death on treatment Other – not protocol specified	39 (8%) 22 (4%) 10 0 (0%) 2 (0.4%) 5	57 (12%) 18 (4%) 14 7 (1.4%) 8 (1.6%) 10
Discontinued By or Nivolumab	53 (11%)	109 (22%)
Received radiotherapy	2 (0.4%)	4 (0.8%)

Third Challenge: Frontline Treatment of Stage III/IV Hodgkin A+AVD or Nivo+AVD?

- Let's look at the data:
 - GOAL of treatment in Hodgkin Disease: CURE
 - Curative versus non-curative modality
 - Side effects
- Longer follow-up with BV + AVD
 - Improved OS over ABVD
- Shorter follow-up with Nivo + AVD
 - Data from Intergroup Study S1826 is very encouraging, but time will tell whether it will provide (or not) better OS than BV+AVD
- Both are well tolerated regimens with different set of adverse events

THANK YOU!

esotomayor@tgh.org