

The role of co-mutations in immunotherapy response in NSCLC

Ferdinandos Skoulidis, M.D., Ph.D.

Associate Professor Department of Thoracic/Head and Neck Medical Oncology

Masters in Thoracic Oncology Summit (MaTOS[™]), Albuquerque, New Mexico

November 18, 2023

Oncogenic drivers and co-alterations collectively impact both tumor cell-intrinsic and non-tumor cell autonomous cancer hallmark traits

Skoulidis F and Heymach JV, Nat Rev Cancer, 2019

Β.

Skoulidis F et al., Cancer Discovery, 2015

Oncogenotype and tumor cell PD-L1 expression in lung adenocarcinoma

Α.

Β.

Skoulidis F et al., under review Collaboration with Lee Albacker, FMI

Somatic mutations in *STK11/LKB1* (KL) promote establishment of a T-cell depleted and suppressive myeloid cell –enriched TIME in NSCLC

KEAP1 inactivation is also associated with an altered NSCLC TIME

Zavitsanou AM et al., Cell Reports, 2023

Mechanisms of STK11 and KEAP1 loss-mediated immune escape

Stk11/Lkb1 loss promotes primary resistance to PD-1/PD-L1 blockade in immune-competent models of *Kras*-mutant LUAC

Skoulidis F et al, *Cancer Discovery*, 2018

Koyama S et al, Cancer Research, 2016

STK11 and KEAP1 alterations drive inferior clinical outcomes with PD-1 axis inhibitor monotherapy in KRAS-mutant NSCLC

Potential modifiers of the impact of STK11 and KEAP1 alterations on IO outcomes : KRAS status

Median PFS (95%CI)

2.7 months (2.4-3.0)

3.4 months (2.4-5.6)

72

N

595

130

42 48

595

130

64

Median OS

12.4 months (11.0-14.1)

13.0 months (7.7-16.2)

Onco-genotype	mPFS	mOS
KRAS ^{MUT} ;STK11 ^{WT}	4.8m	17.3m
KRAS ^{MUT} ;STK11 ^{MUT}	2.0m	6.2m
KRAS ^{WT} ;STK11 ^{WT}	2.8m	12.4m
KRAS ^{WT} ;STK11 ^{MUT}	2.5m	13.0m
KRAS ^{MUT} ;KEAP1 ^{WT}	4.6m	18.4m
KRAS ^{MUT} ;KEAP1 ^{MUT}	1.8m	4.8m
KRAS ^{WT} ;KEAP1 ^{WT}	2.7m	12.4m
KRAS ^{WT} ;KEAP1 ^{MUT}	3.4m	13.0m

Ricciuti B et al., JTO, 2021

STK11 and KEAP1 alterations and clinical outcomes with first-line PCP chemolO (platinum, pemetrexed, pembrolizumab)

Skoulidis F et al, under review

STK11 and KEAP1 alterations and clinical outcomes with 1st line chemolO

Forest-plot for	progression-free survival	(PFS)
-----------------	---------------------------	-------

Mutation status	N	HR (95%, CI) PFS							P-value
KRASWT KRAS ^{MUT}	560 351	reference 1.10 (0.95-1.28)			1.	_			0.21
TP53 ^{WT} TP53 ^{MUT}	370 412	reference 0.83 (0.71-0.97)		_					0.020
STK11 ^{WT} STK11 ^{MUT}	516 191	reference 1.46 (1.22-1.76)			•				< 0.001
KEAP1 ^{WT} KEAP1 ^{MUT}	518 189	reference 1.53 (1.28-1.84)			•				< 0.001
SMARCA4 ^{WT} SMARCA4 ^{MUT}	593 114	reference 1.62 (1.30-2.02)			•		•	-	<0.001
KRAS ^{WT} TP53 ^{WT} KRAS ^{WT} TP53 ^{WUT}	182 287	reference 0.88 (0.71-1.08)		_					0.21
KRAS ^{WT} STK11 ^{WT} KRAS ^{WT} STK11 ^{MUT}	322 99	reference 1.19 (0.93-1.54)			<u>.</u>				0.16
KRAS ^{WT} KEAP1 ^{WT} KRAS ^{WT} KEAP1 ^{MUT}	327 104	reference 1.37 (1.07-1.75)			•				0.01
KRAS ^{WT} SMARCA4 ^{WT} KRAS ^{WT} SMARCA4 ^{MUT}	361 70	reference 1.36 (1.03-1.81)			• -	•	-		< 0.001
KRAS ^{MUT} TP53 ^{WT} KRAS ^{MUT} TP53 ^{MUT}	188 125	reference 0.75 (0.58-0.97)							0.027
KRAS ^{MUT} STK11 ^{WT} KRAS ^{MUT} STK11 ^{MUT}	184 92	reference 1.92 (1.46-2.53)			•	_			< 0.001
KRAS ^{MUT} KEAP1 ^{WT} KRAS ^{MUT} KEAP1 ^{MUT}	191 85	reference 1.82 (1.38-2.41)			•			_	< 0.001
KRAS ^{MUT} SMARCA4 ^{WT} KRAS ^{MUT} SMARCA4 ^{MUT}	232 44	reference 2.39 (1.67-3.42)			•	_		•••	< 0.001
			0.25	0.50	1.0	1.5	2.0	2.5	
			+	Better Pi	FS	Wor	se PFS	•	

Forest-plot for overall survival (OS)

Mutation status	N	HR (95%, CI) OS							P-value
KRAS ^{WT} KRAS ^{MUT}	560 351	reference 1.07 (0.93-1.28)			+.				0.42
TP53 ^{WT} TP53 ^{MUT}	370 412	reference 0.87 (0.73-1.04)			•				0.13
STK11WT STK11MUT	516 191	reference 1.36 (1.10-1.67)			• _				0.004
KEAP1 ^{WT} KEAP1 ^{MUT}	518 189	reference 1.71 (1.40-2.10)			•				< 0.001
SMARCA4 ^{WT} SMARCA4 ^{MUT}	593 114	reference 1.70 (1.33-2.17)			•				< 0.001
KRAS ^{WT} TP53 ^{WT} KRAS ^{WT} TP53 ^{MUT}	182 287	reference 0.89 (0.70-1.13)		_					0.35
KRAS ^{WT} STK11 ^{WT} KRAS ^{WT} STK11 ^{MUT}	322 99	reference 1.14 (0.85-1.53)							0.38
KRAS ^{WT} KEAP1 ^{WT} KRAS ^{WT} KEAP1 ^{MUT}	327 104	reference 1.64 (1.25-2.17)			•				< 0.001
KRAS ^{WT} SMARCA4 ^{WT} KRAS ^{WT} SMARCA4 ^{MUT}	361 70	reference 1.36 (0.98-1.88)			•				0.06
KRAS ^{MUT} TP53 ^{WT} KRAS ^{MUT} TP53 ^{MUT}	188 125	reference 0.85 (0.63-1.13)		·					0.27
KRAS ^{MUT} STK11 ^{WT} KRAS ^{MUT} STK11 ^{MUT}	184 92	reference 1.66 (1.22-2.26)			•			_	0.001
KRAS ^{MUT} KEAP1 ^{WT} KRAS ^{MUT} KEAP1 ^{MUT}	191 85	reference 1.78 (1.31-2.43)			•				< 0.001
KRAS ^{MUT} SMARCA4 ^{MT} KRAS ^{MUT} SMARCA4 ^{MUT}	232 44	reference 2.52 (1.72-3.68)			•			••	< 0.001
			0.25	0.50	10	1.5	2.0	2.5	
			4	0.50	1.0	1.5	2.0	2.5	
				Better Of	s	Won	se OS		

Reduced benefit from the addition of pembrolizumab to platinum doublet chemotherapy in patients with *STK11* and *KEAP1*-mutant NSCLC in KEYNOTE-189

Clinical outcomes in KRAS co-mutational subgroups in IMpower150

STK11 and KEAP1 alterations and clinical outcomes with ipi/nivo in Part 1 of CheckMate 227

Clinical outcomes with the CheckMate 9LA regimen in STK11-mutant NSCLC

_

D.

KRAS-wt

• Similar trend of OS benefit was seen with NIVO + IPI + chemo vs chemo in KRAS G12C-mut (n = 50) and KEAP1-mut (n = 32) subgroups

Database lock: February 15, 2022; minimum follow-up: 36.1 months.

*95% CI, 11.9-25.5 (NIVO + IPI + chemo) and 10.0-19.1 (chemo); *95% CI, 12.3-19.9 (NIVO + IPI + chemo) and 9.5-17.0 (chemo); *95% CI, 12.6-22.7 (NIVO + IPI + chemo) and 9.5-15.4 (chemo); *95% CI, 10.4-22.9 (NIVO + IPI + chemo) and 9.5-23.3 (chemo); *95% CI, 8.6-22.7 (NIVO + IPI + chemo) and 5.4-14.9 (chemo); *95% CI, 13.2-22.8 (NIVO + IPI + chemo) and 10.6-17.4 (chemo).

Database lock: February 15, 2022; minimum/median follow-up for OS: 36.1/42.6 months.

Reprinted from Lancet Oncology, 22, Paz-Ares L, et al, First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international randomised, open-label, phase 3 trial, 198-211, Copyright 2021, with permission from Elsevier.

HICT032157X6; 'Determined by the PD-L1 IHC 28-8 pharmDx assay (Dako); 'Patients unevaluable for PD-L1 were stratified to PD-L1 < 1% and capped to 10% of all randomized patients; 905Q; pemetrexed + cisplatin or carboplatin; SQ: pacitized / carboplatin; 'Hierarchically statistically tested.

1. Paz-Ares L, et al. Lancet Oncol 2021;22:198-211; 2. Reck M, et al. ESMO Open 2021;6:100273

POSEIDON Study of Durvalumab+-Tremelimumab+Chemo for the 1st line Treatment of Metastatic NSCLC

• Followed by durvalumab q4w maintenance until PD, and optional pemetrexed q4w§

Β.

PFS and ORR with the POSEIDON regimen (D+T+chemo) in STK11-mutant NSCLC

PFS T+D+CT D+CT СТ 22/31 27/34 17/22 Events, n/N mPFS, mo (95% Cl) **6.4** (4.7–13.8) 2.9 (1.4-4.7) 4.6 (2.9-6.4) HR* (95% CI) 0.47 (0.23-0.93) 1.02 (0.55-1.93) 1.0 0.8 Probability of PFS 0.6 34.6% 0.4 0.2 24.9% 0.0% 0.0 Т 3 12 15 18 21 24 0 6 9 Time from randomisation (months) No. at risk T+D+CT 31 0 23 16 13 D+CT 34 5 2 0 17 10 1 0 **CT** 22 14 7 0 0 0 0 0

Α.

Β.

OS with the POSEIDON regimen (D+T+chemo) in STK11-mutant NSCLC

0

0

CT 22

22

16

13

S*TK11*m

STK11wt

OS and ORR with the POSEIDON regimen (D+T+chemo) in KEAP1-mutant NSCLC

Α.

HR (95% CI) vs CT in NSQ KEAP1m was 0.33 (0.10–1.15) with T+D+CT and 0.67 (0.23–2.17) with D+CT

PFS and ORR with the POSEIDON regimen (D+T+chemo) in KRAS-mutant NSCLC (4-year update)

Β.

OS with the POSEIDON regimen (D+T+chemo) in *KRAS*-mutant and wild-type NSCLC (4-year update)

*KRAS*m

KRASwt

Sensitivity of *Kras^{MUT}*;Stk11^{-/-} lung adenocarcinomas to dual anti-PD-1/anti-CTLA-4 ICB is recapitulated in syngeneic models

KL2 (Kras^{G12C};Stk11-/-)

KL5 (Kras^{G12C};Stk11-/-)

- IgG control $\rightarrow \alpha$ PD-1 $\rightarrow \alpha$ CTLA-4 $\rightarrow \alpha$ PD-1 + α CTLA-4

Skoulidis F et al., under review

Conclusions

- Co-mutations in key tumor suppressor genes most prominently STK11 and KEAP1 shape the immune contexture of ns-NSCLC.
- *STK11* and *KEAP1* alterations frequently co-occur (and are both enriched in *KRAS*-mutant NSCLC) and loss of both TSGs promotes lung oncogenesis. However, their inactivation imparts both overlapping as well as distinct effects on the TIME.
- Only STK11 alterations are associated with lack of/low PD-L1 expression on tumor cells.
- Somatic mutations in KEAP1 and/or STK11 identify difficult to treat subgroups of patients with mNSCLC that exhibit poor clinical outcomes with PD-(L)1 inhibitor – based chemo-immunotherapy (such as the KEYNOTE-189 regimen) or PD-(L)1 monotherapy, especially in patients harboring KRAS-mutant NSCLC.
- Loss of KEAP1 and/or STK11 may impart selective sensitivity to dual immune checkpoint blockade with anti-PD-(L)1+ anti-CTLA-4.
- Chemo-IO regimens that incorporate anti-CTLA-4 in addition to anti-PD-(L)1 (such as 9LA and POSEIDON) may represent a preferred approach in *STK11* and/or *KEAP1*-mutated NSCLC with good PS. Data from POSEIDON appear the most robust to date in this patient population.
- A randomized controlled clinical trial (TRITON) (POSEIDON regimen vs KEYNOTE 189) in patients with previously untreated metastatic NSCLC with *STK11*, *KEAP1* or *KRAS* alterations is under development to confirm findings from POSEIDON.
- *STK11, KEAP1* represent emerging biomarkers for selection of first-line regimens in advanced NSCLC.
- A number of novel therapeutic strategies to induce/re-invigorate effective anti-tumor immunity in <u>STK11</u> and/or KEAP1-mutant NSCLC are currently in development.

Thank you !