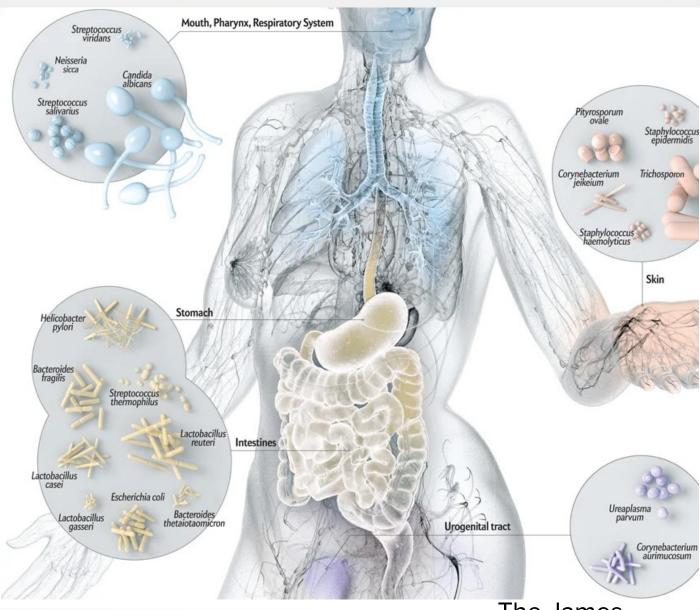
The New Role of the Microbiome in Lung Cancer Immunotherapy

David P. Carbone, MD PhD Director, James Thoracic Oncology Center Ohio State University Columbus, OH USA

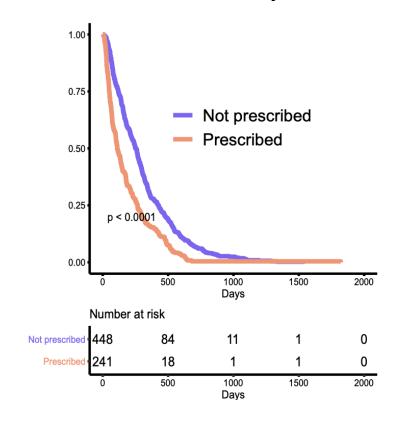
The James



With thanks to Dan Spakowicz in our group who does this work!

The Microbiome

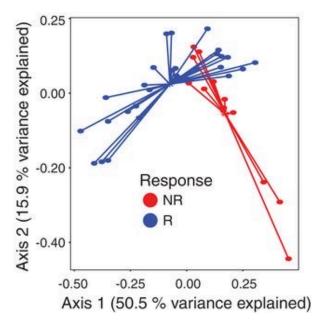
- On you and in you are as many microbe cells as human (~10 trillion of each)
 - 100X more microbe genes
- Associated with health and disease
- Interacts with the immune system
- Can be changed

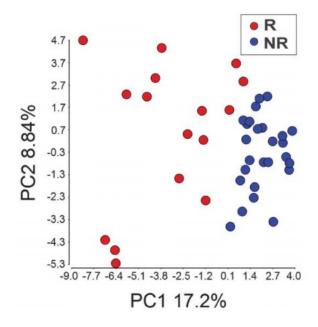


Shorter overall survival in patients who received antibiotics at the time of immunotherapy start

Table 1. Cohort characteristics

+		I	_
	Overall·n¤	689¤	¤
	BMI (mean (sd))¤	27.76 (6.62).	¤
	Age (mean (sd))¤	62.27·(13.21)¤	¤
	Sex = Male (%)	402·(58.3)·¤	n
	ECOG·(%)¤	n	n
	····0¤	185·(31.0)·¤	¤
	1¤	272·(45.6)·¤	Ħ
	····2¤	113 (19.0) =	n
	···>2¤	26 <u>(4.4</u>)¤	¤
	CCI = 0-1 · (<u>%)····</u> ¤	458·(66.7)¤	¤
	Cancer (%) ¤	¤	¤
	··Bladder Cancer¤	32 <u>(⋅4.9</u>) ¤	¤
	··Head and Neck Carcinoma¤	42 <u>·(⋅6.5</u>)·¤	¤
	··Melanoma¤	184·(28.4)·¤	¤
	··Non-Small Cell Lung Cancer	152·(23.5)·¤	¤
	Renal Cell Carcinoma	65·(10.0)·¤	¤
	··Sarcoma¤	21· <u>(·3.2</u>)·¤	¤
	··Other¤	152·(23.5)·¤	¤
	Staging (%)¤	п	¤
	1¤	1 · <u>(·0.2</u>)·¤	¤
	····2¤	4 ·(·0.7)·¤	¤
	3¤	44· <u>(·7.2</u>)·¤	¤
	····4¤	547·(90.0)·¤	n
	····Unknown¤	12· <u>(·2.0</u>)·¤	n

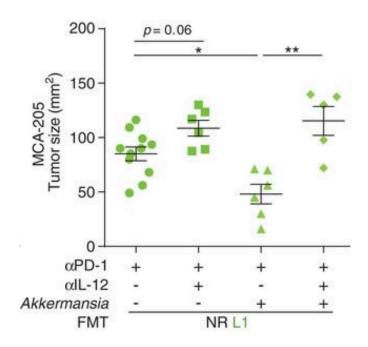

Effect of ABx within 28 days of start of IO



Microbiome as a Biomarker

Response to immune checkpoint inhibitors predictable from pre-treatment stool

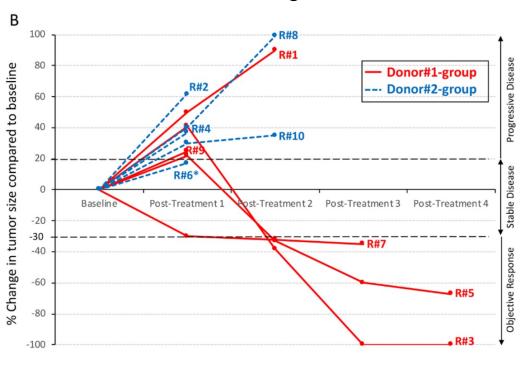
Gopalakrishnan et al Science 2018

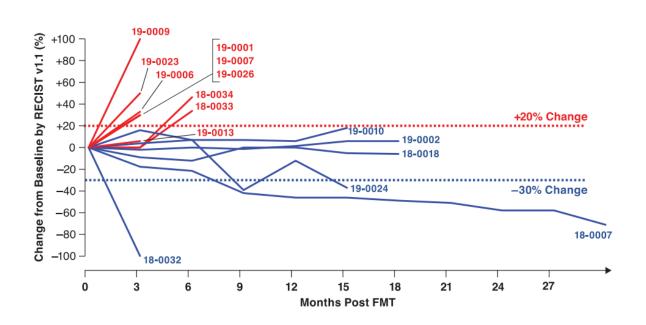

Matson et al Science 2018

Akkermansia modifies IO response

Response to immune checkpoint inhibitors is transferred to mice via patients' pre-treatment stool

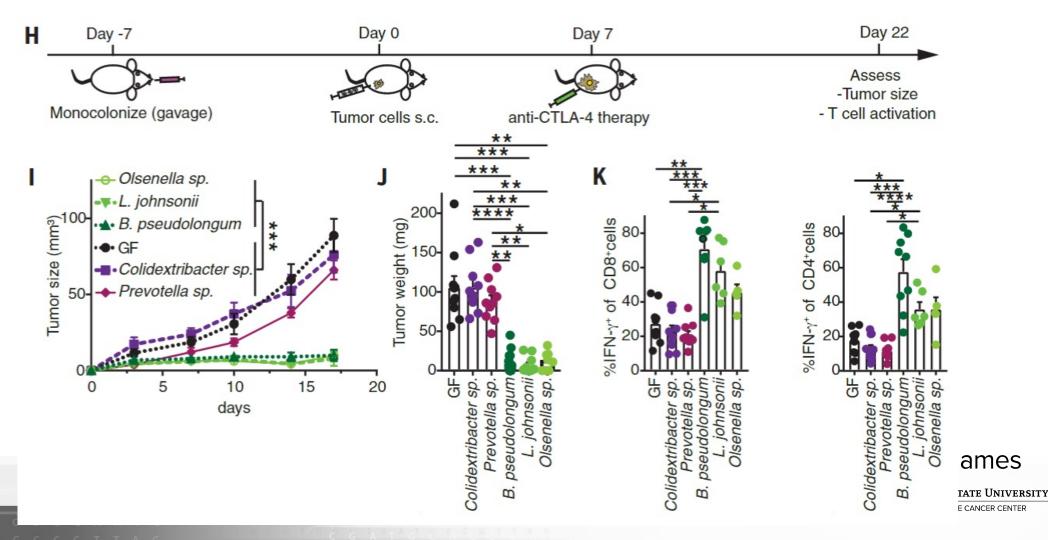
A. muciniphila alters response to immune checkpoint inhibitors in an IL-12 dependent manner



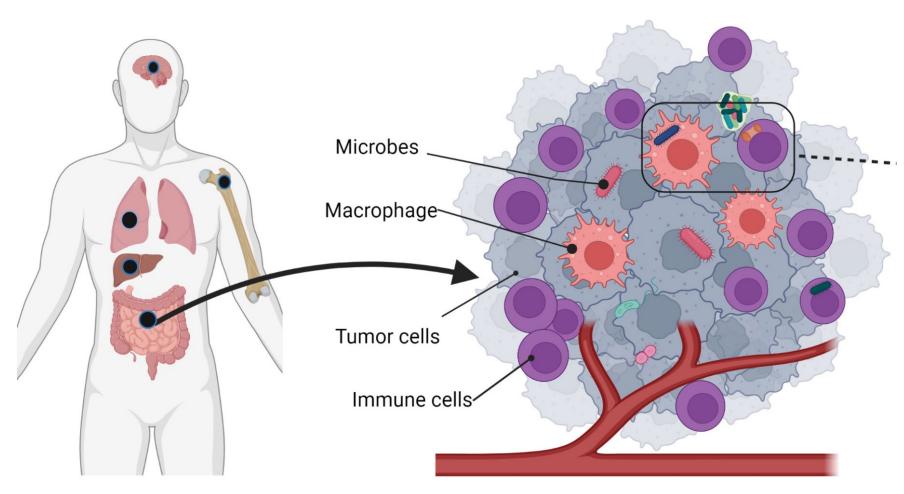

Routy et al. Science (2018) The James

Fecal microbiota transplant overcomes resistance to anti– PD-1 therapy in melanoma patients

Treated with ICI -> Progression -> FMT -> Treated with ICI


[Baruch et al ('20) Science]

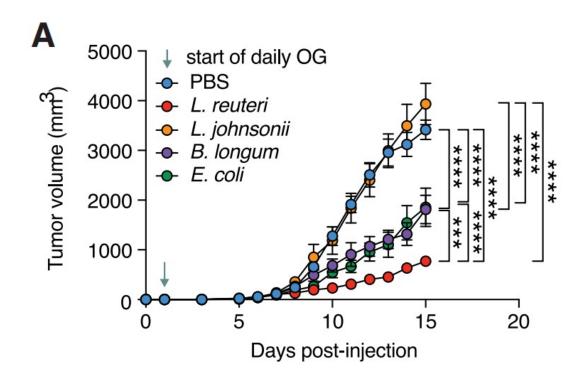
[Davar et al ('21) Science]
The James



Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy

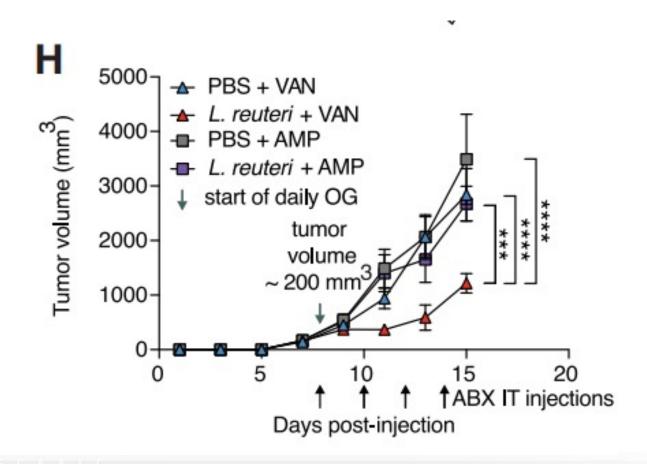
Mager et al, Science, 2020

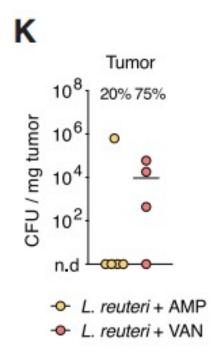
The tumor microbiome

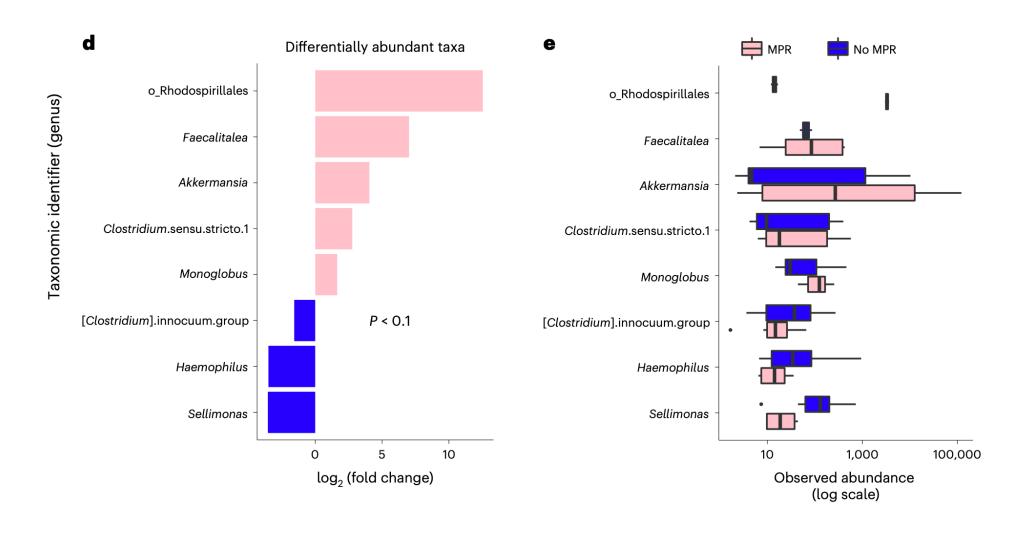

Cross-talk between tumors, microbes, and immune cells

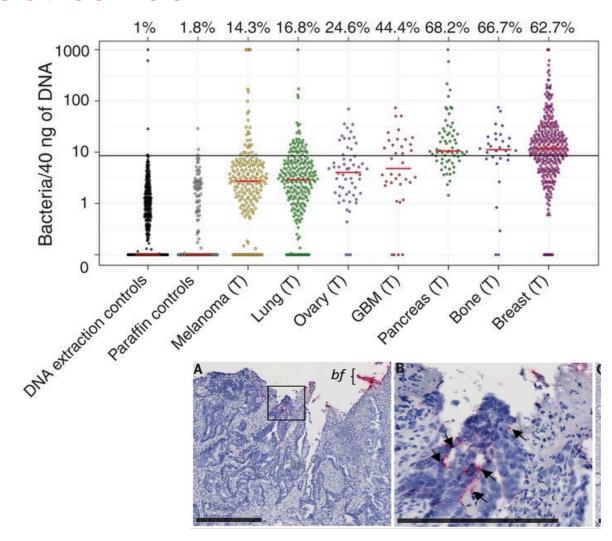
Zhou et al Frontiers Onc (2022)

Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment


- Some immune-modulating effects may derive from the tumor microbiome
 - Bender et al Cell 2023



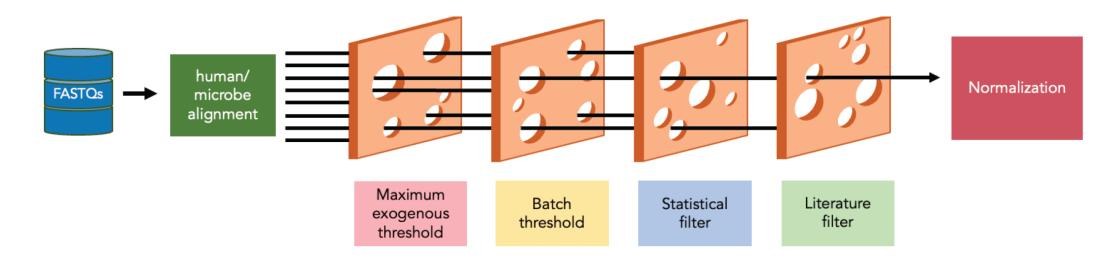

Depleting Lr in the tumor, but not the gut, affects tumor volume



Fecal microbiome and pathR in NEOSTAR

Intra-tumor microbes affect cancer

- Fusobacterium nucleaum found in tumors, liver metastases & persist in pdx models CRC (Bullman et al Science 2017)
- Gammaproteobacteria degrade gemcitabine (Geller et al Science 2018)
- Malassezia drives PDA tumor growth (Aykut et al Nature 2019)



Nejman et al Science (2020)

Exploring the microbiome in tumor RNAseq data

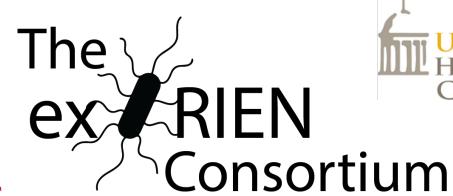
- {exotic} (exogenous sequences in tumors and immune cells) Hoyd *et al. CRC* (2023)
- A high false positive rate requires stringent, conservative filters
- Sparse, heterogeneous microbe abundances require many samples to observe a signal
- Validation is critical

Next Step: Apply to larger dataset

- Oncology Research Information Exchange Network (ORIEN) inter-member project
 - ORIEN = 19 cancer centers that share a protocol for the collection, processing, and sharing of biospecimens and clinical data
 - Tumor goes to Aster Insights for sequencing
 - Researchers have access to RNAseq & WES through HBOC
 - Large clinical dataset, harmonized across institutions

Goals:

- Test a hypothesis about the determinants of the tumor microbiome
 - Hypothesis: microbes' presence in tumors is a function of the (1) tumor microenvironment and (2) immune system activity more so than the tumor primary site/histology
- Provide a resource to the community



The James

Cancer Institute of New Jersey

RUTGERS HEALTH

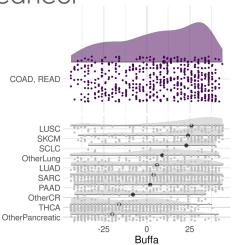
Processed ORIEN and TCGA datatsets

N = 2892							
Cancer (Primary Loc COAD	cation) 500 (17.3)	Cancer (Primary Location) cont. SKCM 138 (4.8)					
Cecum	38 (7.6)	Rectum	1 (0.72)				
Colon	428 (85.6)	Skin	121 (87.7)				
Rectum	34 (6.8)	Soft Tissue	1 (0.72)				
LUAD	261 (9.0)	Other	15 (10.9)				
Lung	260 (99.6)	THCA	539 (18.6)				
Other	1 (0.38)	Thyroid	539 (100)				
LUSC	127 (4.4)	Other CR	39 (1.3)				
Lung	126 (99.2)	Cecum	8 (20.5)				
Other	1 (0.79)	Colon	27 (69.2)				
PAAD	156 (5.4)	Rectum	4 (10.3)				
Pancreas	156 (100)	Other Lung	104 (3.6)				
READ	95 (3.3)	Lung	103 (99.0)				
Rectum	95 (100)	Other	1 (0.96)				
SARC	691 (23.9)	Other Pancreatic	216 (7.5)				
Abdomen	17 (2.46)	Pancreas	216 (100)				
Bone	45 (6.51)						
Colon	4 (0.58)	Sex (%)					
Intestine	25 (3.62)	Male	1418 (49.0)				
Lung	7 (1.01)	Female	1474 (51.0)				
Pancreas	2 (0.29)						
Rectum	2 (0.29)	Age (%) 10-19	15 (0.5)				
Retroperitoneum	95 (13.7)	20-29	15 (0.5)				
Skin	2 (0.29)	30-39	120 (4.1)				
Soft Tissue	316 (45.7)		207 (7.2)				
Stomach	56 (8.10)	40-49 50-59	397 (13.7)				
Uterus	28 (4.05)	60-69	691 (23.9) 794 (27.5)				
Other	92 (13.3)	70-79	794 (27.3) 530 (18.3)				
SCLC 26 (0.9)		80-89	128 (4.4)				
Lung	25 (96.2)	90+	10 (0.3)				
Other	1 (3.84)	301	10 (0.3)				

1 (3.84)

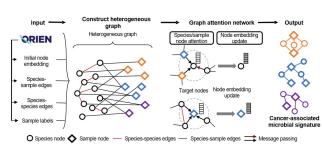
TCGA

N = 2720								
Cancer (Primary		Cancer (Primary Location) cont.						
COAD	478 (17.6)	SARC	259 (9.5)					
Cecum	87 (18.2)	Bone	2 (0.8)					
Colon	382 (79.9)	Colon	1 (0.4)					
Rectum	7 (1.5)	Retroperitoneum	98 (37.8)					
Other	2 (0.4)	Soft Tissue	117 (45.2)					
LUAD	533 (19.6)	Stomach	2 (0.8)					
Lung	531 (99.6)	Uterus	29 (11.2)					
Other	2 (0.4)	Other	10 (3.9)					
LUSC 502 (18.5)		SKCM						
Lung	495 (98.6)	Skin	103 (100)					
Other	7 (1.4)	THCA	502 (18.5)					
PAAD	177 (6.5)	Thyroid	502 (100)					
Pancreas	177 (100)							
READ 166 (6.1)		Age (%)						
Colon	6 (3.6)	10-19	12 (0.4)					
Rectum	156 (94.0)	20-29	62 (2.3)					
Other	2 (1.2)	30-39	157 (5.9)					
		40-49	262 (9.8)					
Sex (%)		50-59	510 (19.1)					
Male 1371 (50.5)		60-69	762 (28.5					
Female	1349 (49.5)	70-79	695 (26.0)					
		80-89	210 (7.9)					

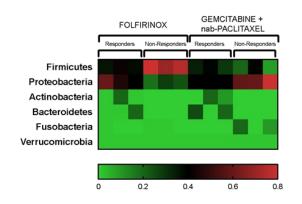


Other

Nic Denko (OSU)


 Hypoxia and response to radiation in rectal cancer

Qin Ma (OSU)

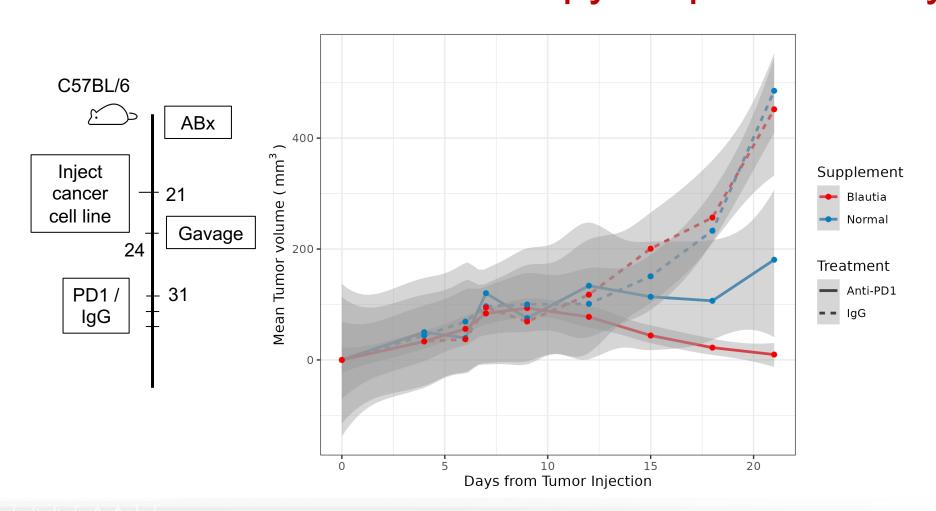

 pyMEGA: a deep learning package for identifying cancerassociated tissueresident microbes

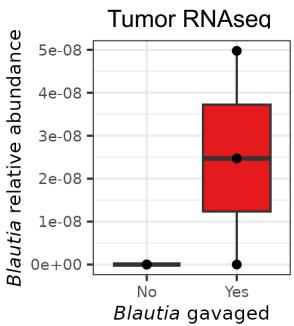
Carlos Chan (Ulowa)

 Chemotherapy outcomes in pancreatic cancer

Dan Spakowicz (OSU)

 Association with features of the tumor microenvironment





Deep learning models predict strong interactions with host expression

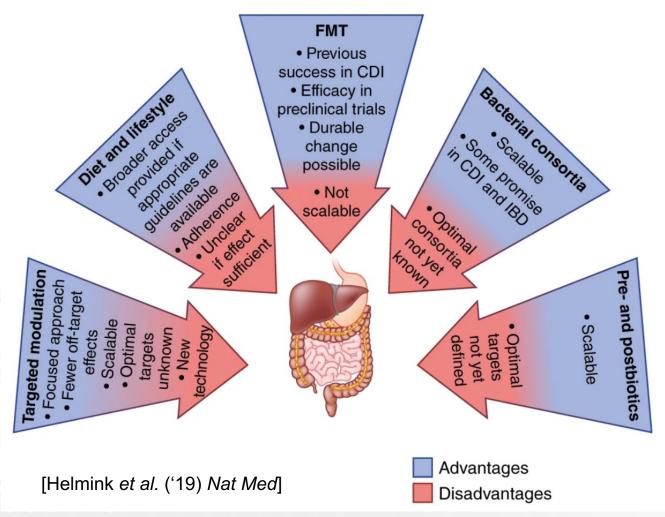
Blautia supplementation increases lymphocyte migration into tumors: immunotherapy response assay

Starting December 5: Microbiome RIG

- New structure for microbiome research within ORIEN
- Rolling projects/submissions
- Monthly meetings
- Larger dataset (~20k)
- All tumor types
- Uses exotic 2.0

ORIEN MICROBIOME RESEARCH INTEREST GROUP CHARTER

BACKGROUND


Aligning with the ORIEN Mission of accelerating cancer discovery and delivering hope through collaborative learning and partnerships, the purpose of a Research Interest Group (RIG) is to encourage research opportunities between ORIEN member institutions/faculty as well as with industry partners. RIGs also provide a forum for experts to exchange ideas, identify areas for collaboration, and provide input on ORIEN research initiatives. RIGs will also serve in advisory roles to Aster Insights in developing industry-sponsored research collaborations, including but not limited to disease/tissue-specific data and scientific matters related to the ORIEN TCC and Avatar Programs.

MISSION STATEMENTS

The Microbiome Research Interest Group will be established with the following goals:

- To bring together ORIEN clinicians and scientists who are dedicated to advancing the understanding of microbes' role in cancer
- To foster collaborations that seek to use the microbiome to address challenges and unmet needs in cancer research by leveraging ORIEN data, resources, and expertise
- To provide a resource to the community by developing and maintaining high-quality processes for the identification and quantification of non-human sequences in the ORIEN data corpus

Microbiome may predict outcomes and microbiome modulation may improve cancer immunotherapy outcomes

- Additional benefits of diet and lifestyle-based modification
 - Likely to be a part of any microbiome modification strategy (e.g., maintenance of probiotics)
 - Treatment durability, prevention
 - Patient-controlled

