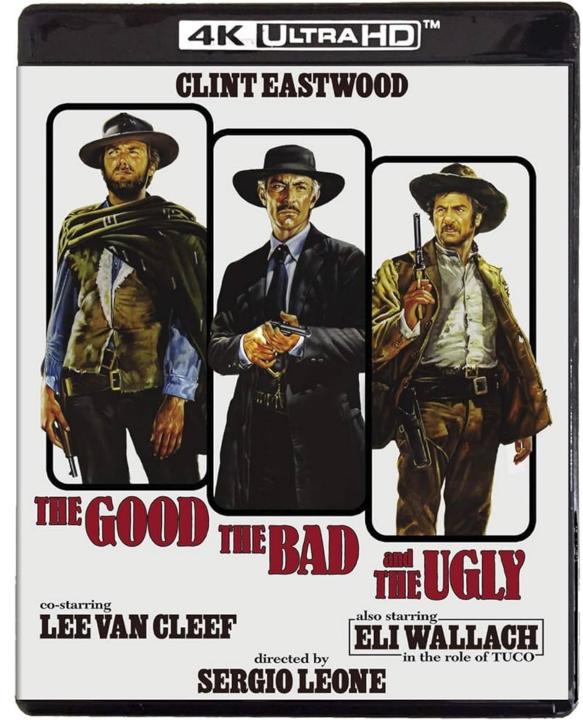


Role of Radiation Therapy in TIMEs: Good, Bad, Don't Know

Puneeth Iyengar, MD, PhD Attending Director, Metastatic Service Member, Thoracic Service Department of Radiation Oncology Memorial Sloan Kettering Cancer Center


Member, Weill Center for Metabolism

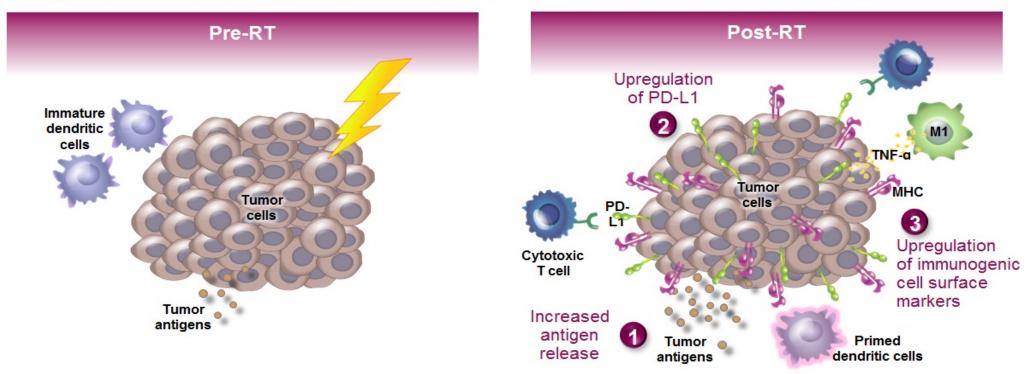
Adjunct Faculty, UT Southwestern Medical Center

MATOS Masters of Thoracic Oncology 2023 Albuquerque, New Mexico

Puneeth Iyengar MD, PhD @IyengarPuneeth

Would make the argument that each of these characters had a little bit of good, bad, and ugly in them...dependent on the context and their position.

Same applies for radiation and its effect on TIMEs.


How to integrate radiotherapy in the modern and rapidly-changing era?

- Emphasis on multimodality therapy
- Sequence and timing of radiation therapy may be critically important
- Variation may depend on heterogeneity in NSCLC
- Molecular considerations may impact response
- Importance of clinical trials to tease all of this out

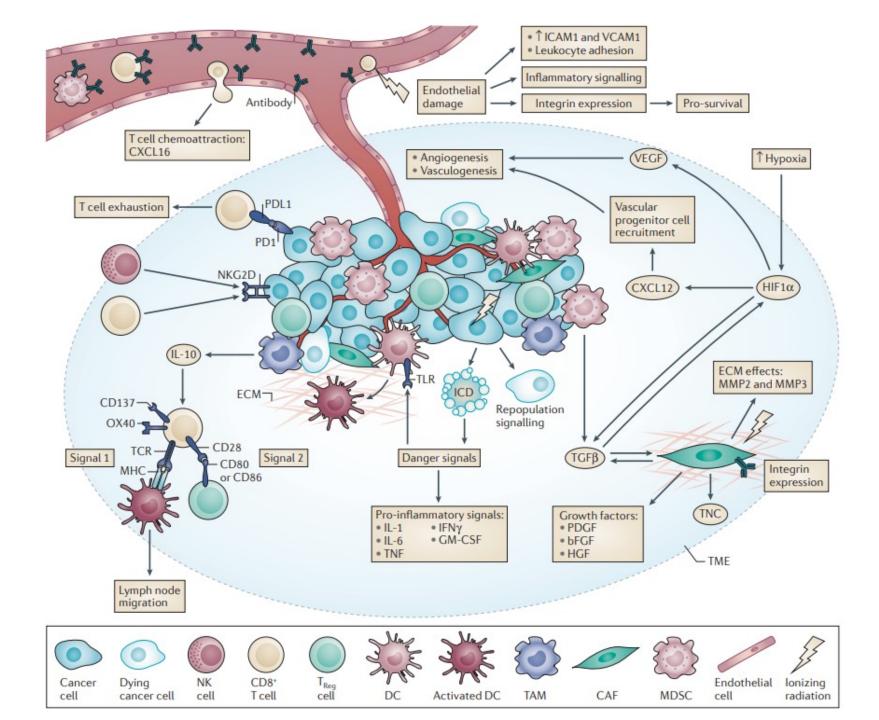
Immunotherapy biomarkers are upregulated following RT

RT Induces Multiple Immunomodulatory Changes That May Influence the Effectiveness of Immunotherapy¹⁻³

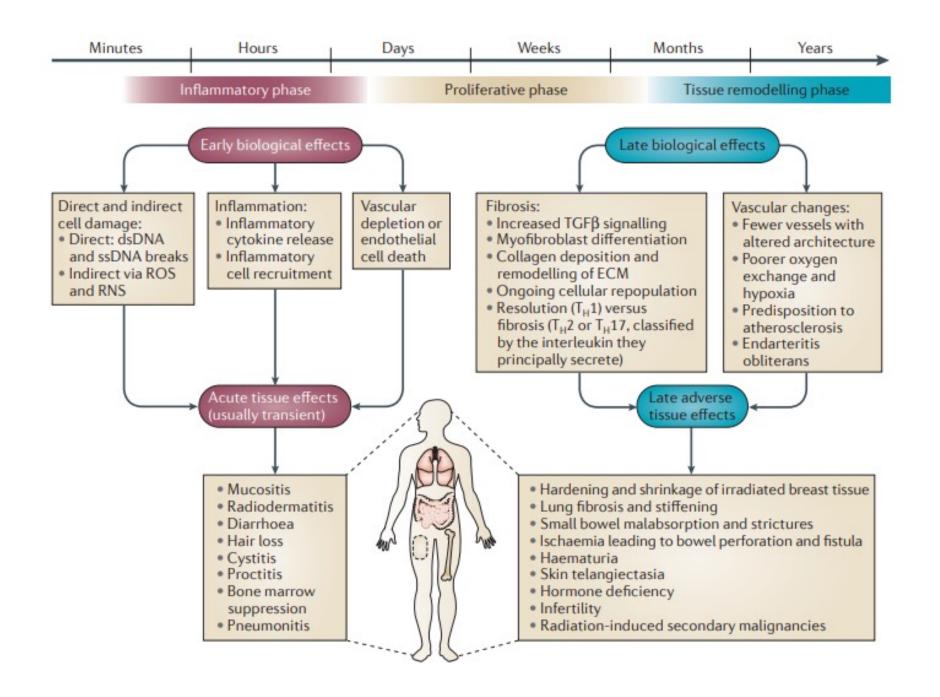
M1, tumor-associated macrophage; MHC I, major histocompatibility complex I; PD-L1, programmed cell death-ligand 1; TNF-o, tumor necrosis factor alpha. 1. Daly ME, et al. J Thorac Oncol. 2015;10(12):1685-1693. 2. Kaur P, Asea A. Frontiers Oncol. 2012;2:191. 3. Deng L, et al. J Clin Invest. 2014;124(2):687-695.

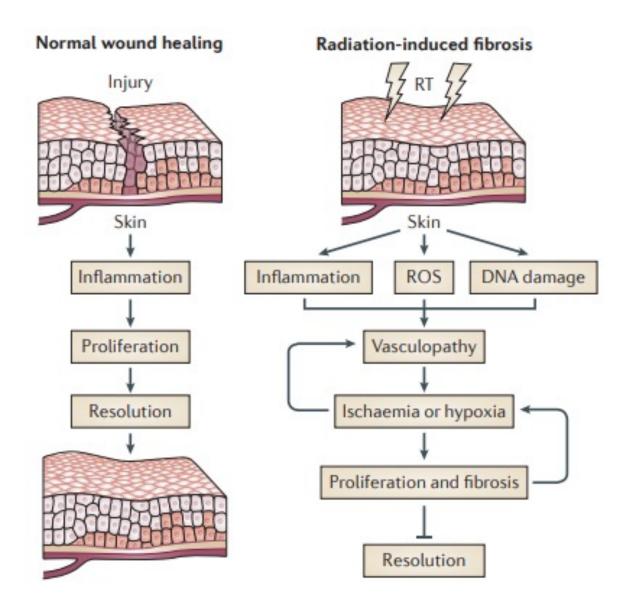
<u>nature</u> > <u>nature reviews cancer</u> > <u>review articles</u> > article

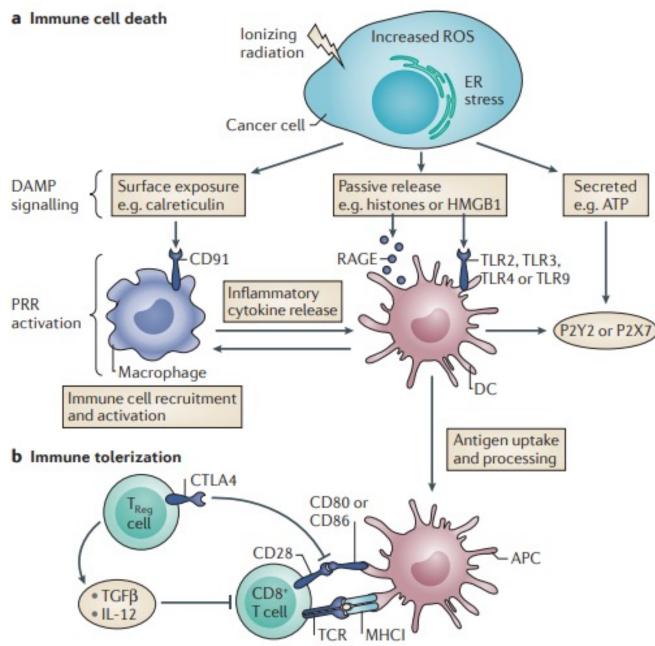
Published: 24 June 2015

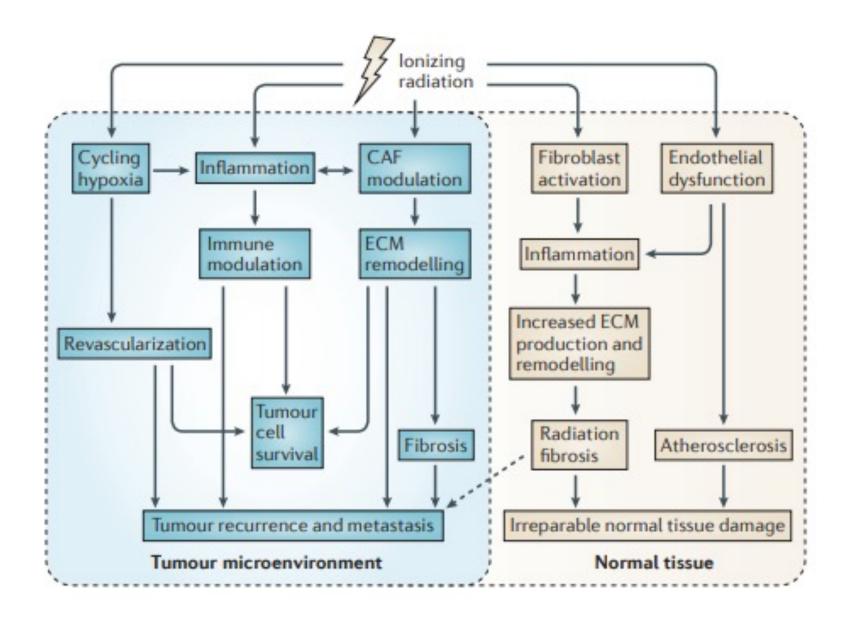

The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence

Holly E. Barker[™], James T. E. Paget, Aadil A. Khan & Kevin J. Harrington


Nature Reviews Cancer 15, 409–425 (2015) Cite this article


33k Accesses | 1248 Citations | 45 Altmetric | Metrics




Table 1 Cur	rent and future TME targets for ra	diosensitization	
Resistance mechanism	Drugs	Targets	Mode of action
Immune	lpilimumab	CTLA4	T cell activation
response	Nivolumab and pembrolizumab	PD1	T cell exhaustion
	Imiquimod	TLR7	DC activation
	Oncolytic viruses	Tumour cells	Activate immune response
	Future inhibitors	IL-6 and IL-10	T cell activation
		PDL1, TIM3 and LAG3	Prevent T cell exhaustion
	Future agonists	GM-CSF, CXCL16, OX40, CD40L, CD80 and CD137	T cell recruitment and activation
		CCL3, CCL5, IL-2, IL-4, IL-12 and IRX-2	Activate immune response
Hypoxia	Nitroimidazole derivatives (that is, nimorazole)	Hypoxic cells	Reduce tumour hypoxia
	Bioreactive albumin–MnO ₂ nanoparticles	Hypoxic cells	Reduce tumour hypoxia
	Acriflavine and YC-1	HIF1a	Reduce hypoxia response pathway activity
	Aflibercept	All VEGF molecules and PIGF	Vessel normalization
	AMG386	ANG1 and ANG2	Inhibit pBMDC recruitment
	Endostar	VEGF, TGFβ, HIF1α and bFGF	Inhibit angiogenesis
	AMD3100	CXCL12 and CXCR4	Inhibit BMDC recruitment and vasculogenesis
	Integrin inhibitors (cilengitide, vitaxin and volociximab)	Integrins ανβ3, ανβ5 and α5β1	Inhibit angiogenesis
	Future inhibitors	Integrins α6β1 and α6β4	Reduce endothelial cell survival and inhibit angiogenesis
	Future inhibitors	PIGF and ANG2	Vessel normalization and overcome resistance to anti-VEGF therapies
Fibrotic processes	BIBF1000 and BIBF1120	PDGF, VEGF and bFGF receptors	Reduce GF signalling and TME remodelling; fibrosis
	Imatinib, nilotinib and dasatinib	TGFβ and PDGF	GF signalling; collagen synthesis
	Vismodegib, saridegib and sonidegib	SMO	Reduce HH signalling; fibrosis
	Suramin	PDGF, EGF, TGFβ, FGF2 and IGF receptors and heparanase enzymes	Reduce GF signalling and TME remodelling; fibrosis
	ST0001, PG545, M402 and PI-88	Heparanase	Inhibit TME remodelling
	SD-208	TGFβR1	Inhibit TGFß signalling
	Simtuzumab	LOXL2	Reduce TME remodelling; liver fibrosis
	81C6 and F16SIP	TNC	Reduce CAF-mediated TME remodelling
	Future inhibitors	HGF, CTGF, MMP2, MMP3, and integrins a 11 β 1, av β 6 and a 3 β 1	TME activation and remodelling; radiation-mediated fibrosis

Study type	Cancer type	Intervention	Outcome	Refs
Fractionation				
Preclinical	Murine glioma	 RT: 10 Gy in one fraction Immunomodulation: anti-PD1 	Longer survival seen (53 days (RT and anti-PD1) versus 25 days (control), 27 days (anti-PD1) or 28 days (RT))	190
Preclinical	Murine breast cancer	 RT: 20 Gy in one fraction, 24 Gy in three fractions or 30 Gy in five fractions Immunomodulation: anti-CTLA4 	Best response seen in 24 Gy in three fractions	171
Preclinical	Murine breast cancer	 RT: 12 Gy in one fraction, 24 Gy in two fractions Immunomodulation: anti-CTLA4 	CD8 ⁺ T cell antitumour immunity demonstrated	191
Clinical	Patients with hepatoma	 RT: 8 Gy in one fraction Immunomodulation: DC vaccine 	Two partial responses, four minor ones	192
Clinical	Prostate cancer	 RT: 70 Gy in 30 fractions Immunomodulation: IL-2 and GM-CSF 	Increased levels of PSA-specific T cells	193
Clinical	MF	 RT: 9–18 Gy in nine fractions Immunomodulation: injected TLR9 agonist 	5 out of 15 responses	194
Timing				
Clinical	MM or RCC	 RT: 60 Gy in three fractions Immunomodulation: IL-2 	8 out of 12 responses	195
Preclinical	Murine prostate cancer expressing HA	 RT: 15 Gy in one fraction Immunomodulation: CD4⁺ T cells primed against HA (given at points on a time course after RT) 	Tolerance seen between days 3 and 16. Normal T cell response by day 33	55
Clinical case report	ММ	 RT: 28.5 Gy in three fractions Immunomodulation: ipilimumab (anti-CTLA4) at 1 month after RT 	Complete response	74
Clinical case report	MM	 RT: 54 Gy in three fractions Immunomodulation: ipilimumab 	Complete response	54

Table 2 | Fractionation of radiotherapy and timing of immunomodulation

CTLA4, cytotoxic T lymphocyte antigen 4; DC, dendritic cell; HA, haemagglutinin antigen; MF, mycosis fungoides; MM, malignant melanoma; PD1, programmed cell death protein 1; PSA, prostate-specific antigen; RCC, renal cell carcinoma; RT, radiotherapy; TLR, Toll-like receptor.

Balance immune-stimulatory effects and suppressive effects of RT

Intrinsic effect of RT

- Increased antigen presentation
- Dendritic cell maturation
- Cytoreduction of large tumor masses **Modifiable factors**

Immune stimulation

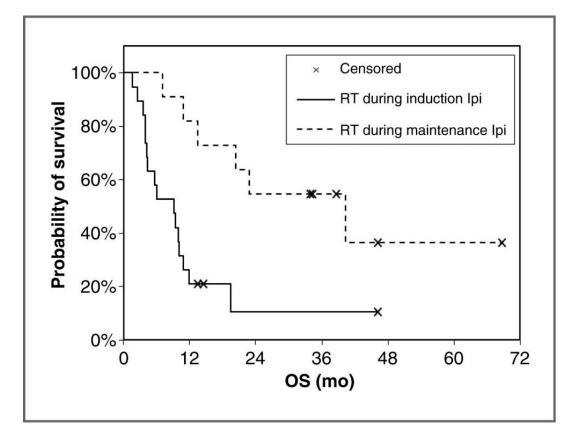
- Immunomodualtors (e.g., PD-1 inhibitors)
- Tumor vaccines

Intrinsic effect of RT

- Destruction of CD4 helper cells
- Upregulated Tregs
 Modifiable factors
- Large radiation fields
- Chemotherapy
- Steroid use

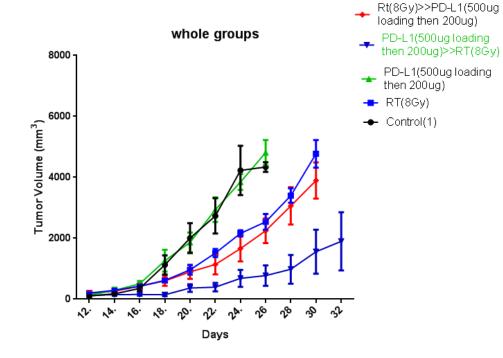
Immune suppression

Lawrence, Future Medicine 2014


Potential Benefits of Combining RT and Immunotherapy

- SBRT is less immunosuppressive than conventionally fractionated RT or sx
 - SBRT specifically can even be immunostimulatory and deplete immunosuppressive cells
- RT can improve antigen presentation by antigen presenting cells
 - SBRT specifically can release high levels of tumor antigens
- SBRT upregulates immunogenic cell surface markers (ie. MHC-1)
- SBRT can induce immunogenic cell death
- RT and especially SBRT can increase homing of immune cells to tumor
- RT can recruit regulatory T cells (Tregs)
- RT can shift tumor-associated macrophages polarization from M2 to M1
- RT can induce secretion of danger signals and cytokines (ie. TNFalpha)
- RT can upregulate cell-surface expression of PD-L1

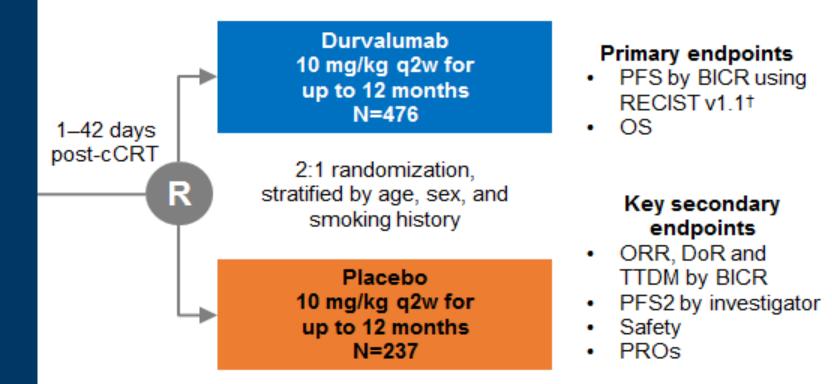
RT + Immunotherapy: The Importance of Timing


- MSKCC retrospective study of melanoma patients treated with ipilimumab and extracranial RT
- Median OS: 9 months when RT given during induction vs. 39 months when RT given during maintenance

Barker CA, et al. Cancer Immunol Res. 2013;1(2):92-98.

Timing of Immunotherapy and SBRT

Significantly superior tumor control was achieved in Balb/c mice when the PD-L1 blockade was delivered prior to radiotherapy to 8 Gy


PACIFIC: Study Design

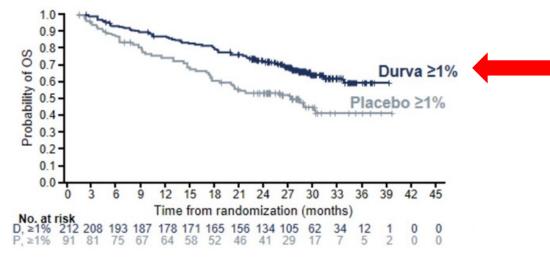
Phase 3, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study

- Unresectable, Stage III NSCLC without progression after definitive platinum-based cCRT (≥2 cycles)
- 18 years or older
- WHO PS score 0 or 1
- If available, archived pre-cCRT tumor tissue for PD-L1 testing*

All-comers population (i.e. irrespective of PD-L1 status)

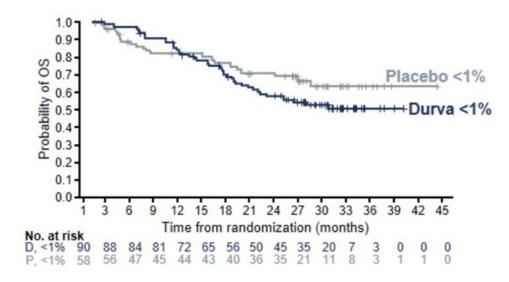
N=713 randomized

PACIFIC: Prognostic baseline factors for OS (ITT)


	Comparator		Reference			
Baseline Variable	Group	No. of Events/Total No. of Patients (%)	No. of Events/Total No. of Group Patients (%)		HR (95% CI)	
Treatment arm	Durvalumab	264/476 (55.5)	Placebo	155/237 (65.4)	0.71 (0.58 to 0.87) ^a	
Age, years	≥ 65	210/322 (65.2)	< 65	209/391 (53.5)	1.30 (1.06 to 1.59) ^a	
Disease stage ^b	IIIB	182/319 (57.1)	IIIA	227/377 (60.2)	1.03 (0.84 to 1.26)	
Best response to prior treatment ^c	CR/PR	195/365 (53.4)	SD	216/338 (63.9)	0.88 (0.72 to 1.08)	
Tumor histologic type	Squamous	205/326 (62.9)	Nonsquamous	214/387 (55.3)	1.28 (1.04 to 1.58) ^a	
WHO PS	1 ^d	233/365 (63.8)	0	186/348 (53.4)	1.23 (1.01 to 1.50) ^a	
Prior platinum CT agent ^e	Cisplatin	215/395 (54.4)	Carboplatin	190/301 (63.1)	0.84 (0.69 to 1.03)	
Race	Asian	95/192 (49.5)	White	310/494 (62.8)	0.63 (0.49 to 0.81) ^a	
	Black or African American	7/14 (50.0)			0.81 (0.38 to 1.73)	
-	Other ^f	7/13 (53.8)			0.91 (0.41 to 1.99)	
Sex	Male	304/500 (60.8)	Female	115/213 (54.0)	1.27 (1.01 to 1.61) ^a	
Smoking status	Smoker	384/649 (59.2)	Nonsmoker	35/64 (54.7)	0.83 (0.56 to 1.22)	
Time from CRT to random assignment, days	≥ 14	312/531 (58.8)	< 14	107/182 (58.8)	0.97 (0.77 to 1.22)	
EGFR or ALK aberration	Positive ^g	25/43 (58.1)	Negative	275/482 (57.1)	1.06 (0.69 to 1.64)	
status	Unknown	119/188 (63.3)			0.95 (0.73 to 1.23)	
PD-L1 expression level	$TC \ge 25\%$	78/159 (49.1)	TC < 25%	175/292 (59.9)	0.82 (0.62 to 1.07)	
	Unknown	166/262 (63.4)			1.19 (0.92 to 1.54)	

Spigel, D JCO, December 2021.

Conclusions on Outcomes by PD-L1 Status is not definitive due to limitations


	No. events / no. patients (%)	Median OS (95% Cl), mo
Durvalumab, ≥1%	70/212 (33.0)	NR (NR, NR)
Placebo, ≥1%	45/91 (49.5)	29.1 (17.7, NR)
	≥1% OS HR 0.53	(95% CI 0.36, 0.77)

OS (BICR) by PD-L1 TC ≥1%

OS (BICR) by PD-L1 TC <1%

	No. events / no. patients (%)	Median OS (95% CI), mo	
Durvalumab, <1%	41/90 (45.6)	NR (20.8, NR)	
Placebo, <1%	19/58 (32.8)	NR (27.3, NR)	
	≥1% OS HR 1.36 (95% CI 0.79, 2.34)		

- In the PD-L1 TC <1% subgroup, imbalances exist in baseline characteristics.
- Placebo arm: > more males, SQCLC, and Stage IIIB.

DFS by EGFR status

Subgroup	Durvalumab	Placebo	Unstratified Hazard Ratio for Disease Progression or D	Death (95% CI)
	no. of pa	atients		
All patients	476	237		0.55 (0.45-0.68)
Sex				
Male	334	166		0.56 (0.44-0.71)
Female	142	71	⊢ I	0.54 (0.37-0.79)
Age at randomization				(/
<65 yr	261	130		0.43 (0.32-0.57)
≥65 yr	215	107	⊢	0.74 (0.54-1.01)
Smoking status				
Smoker	433	216	⊢ •	0.59 (0.47-0.73)
Nonsmoker	43	21	→	0.29 (0.15-0.57)
NSCLC disease stage				
IIIA	252	125	⊢ • · · · ·	0.53 (0.40-0.71)
IIIB	212	107		0.59 (0.44-0.80)
Tumor histologic type				
Squamous	224	102		0.68 (0.50-0.92)
Nonsquamous	252	135		0.45 (0.33-0.59)
Best response				(/ /
Complete response	9	7		
Partial response	232	111		0.55 (0.41-0.75)
Stable disease	222	114		0.55 (0.41-0.74)
PD-L1 status				
≥25%	115	44	⊢	0.41 (0.26-0.65)
<25%	187	105		0.59 (0.43-0.82)
Unknown	174	88	⊢	0.59 (0.42-0.83)
EGFR mutation				~ /
Positive	29	14	► − − − − − − − − − − − − − − − − − − −	0.76 (0.35-1.64)
Negative	315	165	⊢ ● − i	0.47 (0.36-0.60)
Unknown	132	58		0.79 (0.52–1.20)
			0.25 0.50 1.00 2	
Antonia SJ et al. N Engl J Med 202	7		Durvalumab Better Placebo Better	

Consolidation Durvalumab for Stage III EGFRmut NSCLC — Stanford, City of Hope, UCSF, UC Davis

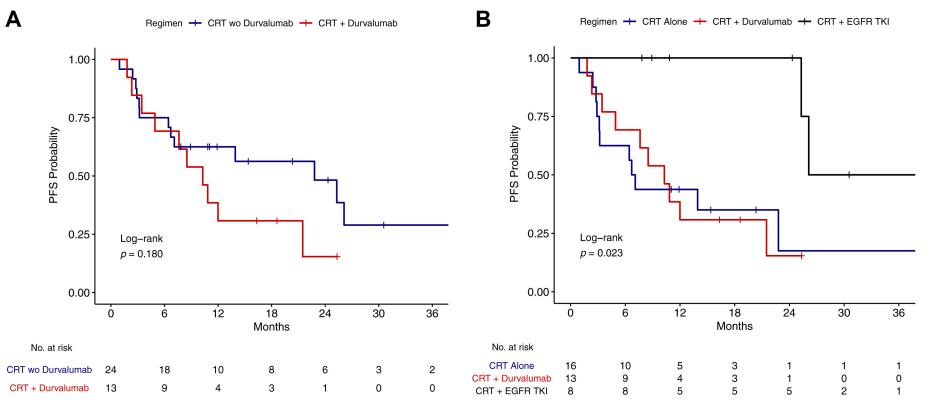


Figure 3: PFS after chemoXRT +/- Durva
(A) Median PFS CRT + durvalumab versus CRT wo durvalumab
10.3 months versus 22.8 months (log-rank p = 0.180).
(B) Median PFS CRT alone versus CRT durvalumab versus CRT + EGFR TKI :
6.9 mo vs 10.3 mo vs 26.1 mon (log-rank p = 0.023).

Aredo JTO 2021

Conclusions

Radiation therapy effects on TIMEs and, as a consequence, tumor control can be influenced by:

- 1. Sequencing of systemic therapy and local therapy
- 2. Type of systemic therapy and type of radiation
- 3. Dose of radiation

4. The understudied variation in host immune and systemic biology responses to tumor and therapy (systemic therapy and/or radiation)

