

### ROLE OF INTERLEUKINS TO IMPROVE EFFICACY OF IMMUNOTHERAPY

Suresh S. Ramalingam, MD, FACP, FASCO Roberto C. Goizueta Chair in Cancer Research Executive Director Winship Cancer Institute of Emory University





### **nature** Defining CD8<sup>+</sup> T cells that provide the proliferative burst after PD-1 therapy

Se Jin Im<sup>1</sup>, Masao Hashimoto<sup>1</sup>, Michael Y. Gerner<sup>2,3</sup>, Junghwa Lee<sup>1</sup>, Haydn T. Kissick<sup>1,4</sup>, Matheus C. Burger<sup>5</sup>, Qiang Shan<sup>6</sup>, J. Scott Hale<sup>1</sup>, Judong Lee<sup>1</sup>, Tahseen H. Nasti<sup>1</sup>, Arlene H. Sharpe<sup>7,8</sup>, Gordon J. Freeman<sup>9</sup>, Ronald N. Germain<sup>2</sup>, Helder I. Nakaya<sup>5</sup>, Hai–Hui Xue<sup>6,10</sup> & Rafi Ahmed<sup>1</sup>

15 SEPTEMBER 2016 | VOL 537 | NATURE | 417

## Immunity

### Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1<sup>+</sup> Stem-like CD8<sup>+</sup> T Cells during Chronic Infection

William H. Hudson,<sup>1</sup> Julia Gensheimer,<sup>1</sup> Masao Hashimoto,<sup>1</sup> Andreas Wieland,<sup>1</sup> Rajesh M. Valanparambil,<sup>1</sup> Peng Li,<sup>2</sup> Jian-Xin Lin,<sup>2</sup> Bogumila T. Konieczny,<sup>1</sup> Se Jin Im,<sup>1</sup> Gordon J. Freeman,<sup>4</sup> Warren J. Leonard,<sup>2</sup> Haydn T. Kissick,<sup>3</sup> and Rafi Ahmed<sup>1,5,\*</sup>

Immunity 51, 1043–1058

Zajac et al. J Exp Med 1998 Barber et al. Nature 2006 Wherry et al. Immunity 2007

### **REGULATION AND MAINTENANCE OF CD8 T CELL EXHAUSTION**



### CD8 T CELL EXHAUSTION REGULATION BY PD-1



## Rational design of immunotherapy



- Increasing the number of stem-like CD8 T cells?
- Improving the quality of effector CD8 T cells?

PD-1/IL-2 combination therapy (West et al. JCI 2013)

### LOCATION OF STEM-LIKE CD8 T CELLS





Im S et al, PNAS, 2023.

#### THE GENE SIGNATURE (RNASEQ) OF PROLIFERATING PD-1+ HLA-DR+/CD38+ CELLS FROM CANCER PATIENTS DIFFERS FROM EFFECTOR CELLS GENERATED FROM AN ACUTE VIRAL INFECTION

YFV Tetramer

**CD38** 

**D14 YFV** Naïve HLA-DR+/CD38+ YFV effectors 10<sup>5</sup> - 0.24 1.89 IL7R SELL BCL2 10<sup>4</sup> IL24 CCR7 TCF7 NR4A1 IL2RA BCL6 PRF1 GZMA IL2RB IL2RG CD274 KLRG1 **Ki67** PRDM1 CD27 CXCR3 LAG3 GZMB TOX2 91.3-10 CXCR6 HLA-DR HAVCR2 IL10 CTLA4 CD244 PDCD1 TOX 10<sup>5</sup> 104

Ahmed et al, Unpublished data

### Article

# Understanding how IL-2 cytokine synergizes with PD-1 directed immunotherapy during chronic viral infection

Hashimoto M et al, Nature, 2022.

### IL-2/IL-2R SYSTEM



### PD-1 BLOCKADE + IL-2 PROMOTE SUPERIOR QUALITY T CELLS



### NKTR-214: Biasing Action to CD 122, or IL-2R Beta, to Stimulate T-Cell Production

- Biases signaling to favor the CD122 Receptor (IL-2Rβγ complex)
- Eliminates over-activation of IL-2 pathway that results in serious safety issues
- Achieves antibody-like dosing schedule in outpatient setting





### IL-2 WILD TYPE VERSUS IL-2 VARIANT: FUNCTIONAL CONSEQUENCES



### ANTIGEN-SPECIFIC VERSUS BYSTANDER CD8 T CELLS



### IMPROVING EFFICACY OF IMMUNOTHERAPY FOR LUNG CANCER: BEDSIDE TO BENCH TO BEDSIDE



Proliferating T-cells with PD-1 blockade in advanced NSCLC

Obeng R et al, SITC 2021, Manuscript under review.



Hashimoto et al, Nature, 2022 (in press)



### ENGINEERED IL2 TARGETED TO PD-1



Umana et al, Pre-publication; Source: Research Square

### CONCLUSIONS

- PD-1 blockade promotes reversal of T cell exhaustion
- The proliferating T cells are lacking in quality
- Combination of PD-1 blockade with IL-2 produces effective qualitative and quantitative T cell response
- CD25 engagement appears critical for IL-2 efficacy
- Clinical trials are ongoing