Predictive Biomarkers in Small Cell Lung Carcinoma

Janakiraman Subramanian MD, MPH

Small Cell Lung Carcinoma

- Poorly differentiated neuroendocrine tumor characterized by lack of actionable driver mutations.
- Express at least 1 NE marker Chromogranin A, synaptophysin, CD56 & INSM1 on IHC
- Near universal loss of TP53 & RB1

Barnard. J Pathol Bacteriol 1926 Bensch Cancer 1968 Takahashi. Science 1989 Harbour, Science 1988

Small Cell Lung Carcinoma

SCLC subtypes defined by dominant transcriptional regulator

Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data

Charles M. Rudin^{1,*}, John T. Poirier^{1,*}, Lauren Averett Byers², Caroline Dive³, Afshin Dowlati⁴, Julie George⁵, John V. Heymach², Jane E. Johnson⁶, Jonathan M. Lehman⁷, David MacPherson⁸, Pierre P. Massion⁷, John D. Minna⁶, Trudy G. Oliver⁹, Vito Quaranta⁷ Julien Sage¹⁰, Roman K. Thomas⁵, Christopher R. Vakoc¹¹, and Adi F. Gazdar^{6,12} 1.5 Study NE Non-NE Non-NE Character NE CCLE Subtype SCLC-A SCLC-N SCLC-P Study George et al. (2015) ASCL1 0.5 Rudin et al. 0 NEUROD1 (2012)Relat -0.5 POU2F3 -1 YAP1 SCLC-A SCLC-A SCLC-A ... SCLC-A - 0.7 [0.6, 0.79] SCLC-N SCLC-N SCLC-N 0.11 [0.06, 0.2] SCLC-N 4. SCLC-P SCLC-P SCLC-P SCLC-P -----SCLC-Y 0.07 [0.01, 0.09] SCLC-Y SCLC-Y SCLC-Y 0.0 0.6 0.8 1.0 50 100 150 20 40 60 80 100 20 40 60 80 100 0.2 0.4 0 0 Proportion of primary SCLC. MYC BCL2 DLL3

SCLC subtypes defined by dominant transcriptional regulator

SCLC subtypes defined by dominant transcriptional regulator

Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data

Charles M. Rudin^{1,*}, John T. Poirier^{1,*}, Lauren Averett Byers², Caroline Dive³, Afshin Dowlati⁴, Julie George⁵, John V. Heymach², Jane E. Johnson⁶, Jonathan M. Lehman⁷, David MacPherson⁸, Pierre P. Massion⁷, John D. Minna⁶, Trudy G. Oliver⁹, Vito Quaranta⁷ Julien Sage¹⁰, Roman K. Thomas⁵, Christopher R. Vakoc¹¹, and Adi F. Gazdar^{6,12}

- 4 subtypes SCLC-A, SCLC-P, SCLC-N & SCLC-Y!
- SCLC-Y reclassified as SCLC-
 - I Inflamed phenotype

Gav. Cancer Cell 2021

There is more!... SCLC exhibits plasticity enhanced by treatment & tumor evolution

Clinical Impact: SCLC-I subtype may predict response to CONTROL Schar Cancer Institute

- SCLC-I subtype responsive to ICI
- But gene expression based signatures may not be viable in clinic

ICI treatment – Role of Tumor antigen presentation and Epigenetic silencing

Sensitizing SCLC to immune checkpoint inhibitors

Epigenetic reprogramming by EZH2 or LSD-1 inhibition

Hiatt. Clin Cancer Res 2022 Taniguchi. Cancer Cell 2022 Sen. Cancer Discovery 2019

Targeting Cell Cycle or DNA damage repair

Targeting DLL3 in SCLC

Tarlatamab, a First-in-Class DLL3-Targeted Bispecific T-Cell Engager, in Recurrent Small-Cell Lung Cancer: An Open-Label, Phase I Study

Luis Paz-Ares, MD, PhD²; Stephane Champiat, MD, PhD²; W. Yictoria Lai, MD²; Hiroki Izumi, MD, PhD²; Ramaswamy Govindan, MD²; Michael Boyer, MB, BS, PhD²; Horst-Dieter Hummel, MD²; Hossein Borghaei, DO⁴; Melissa L. Johnson, MD²; Neeltje Sterghs, MD, PhD¹³; Fiona Blackhall, MD, PhD²²; Afshin Dowlati, MD¹²; Noemi Reguart, MD, PhD²²; Tatsuya Yoshida, MD, PhD¹⁴; Kai He, MD, PhD¹⁵; Shirish M. Gadgeel, MD¹⁶; Enriqueta Felip, MD, PhD¹⁷; Yiran Zhang, PhD¹⁸; Amrita Pati, PhD¹⁸; Mukul Minocha, PhD¹⁸; Sujoy Mukherjee, MD¹⁶; Amanda Goldrick, MD¹⁶; Dirk Nagorsen, MD, PhD¹⁶; Nooshin Hashemi Sadrael, MD¹²; and Taofeek K. Owonikoko, MD, PhD¹⁵

Paz-Ares. JCO 2023

C/C

Clinical implications for SCLC subtypes

SCLC subtype ID by tissue or blood

Beyond the SCLC subtypes

Targeting MYC in SCLC

SLFN11 predicted improved PFS and OS in Veliparib (PARPi) - Temozolomide (TMZ) combination cohort

- FFPE sections from archival (diagnostic) tumors stained for SLFN11 (>1% = positive)
- High SLFN11 (IHC) predicts improved outcome in Veliparib/TMZ arm (PFS, OS) (Interaction p-value 0.009)

S1929: Phase II Study of Maintenance Atezolizumab Versus Atezolizumab in Combination with Talazoparib in Patients with SLFN11 Positive Extensive Stage Small Cell Lung Cancer (ES-SCLC) NCT04334941

Hypothesis: The addition of talazoparib to maintenance atezolizumab will improve PFS in SLFN11+ SCLC.

PRESENTED BY: Nagla Abdel Karim, MD

Primary Endpoint: PFS Secondary endpoints: OS, ORR, AE. TM Objective: To bank specimens for future correlative studies.

*Atezolizumab was optional if the patient is hospitalized for cycle 1 A maximum of 9 weeks after the end of cycle 4 was allowed prior to randomization

#ASCO23

2023 ASCO

ANNUAL MEETING

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Progression Free Survival

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Personalizing SCLC Treatment

SCLC Biomarker Scorecard - Conclusion

- At present biomarker testing in SCLC has minimal impact in clinic
- Transcriptional subtypes
 - Need simple & robust test platforms
 - IHC or blood-based testing
 - Guide selection of patients for clinical trials
- Continued surveillance during treatment
- BiTEs targeting DLL3 are promising
- Other targets SLFN11, c-Myc and LSD1