Health Care Disparities in Lung Cancer Genomic Profiling: Has Precision Oncology Widened the Gap?

Estelamari Rodriguez, MD, MPH Clinical Research Lead, Thoracic SDG Assistant Director of Diversity, Equity & Inclusion Sylvester Comprehensive Cancer Center University of Miami

Albuquerque, New Mexico | November 16 - 19, 2023

Accelerated Biomarker Discovery: Driving Targeted Therapy Advancements and Biomarker Testing Demand

1. Hadju SJ. Ann Clin Lab Sci. 2006;36(2):222-223; 2. Bence Jones H. On a new substance occurring in the urine of a patient with "mollities ossium." Philos Trans 1848; 138:55–62; 3. Polti K, et al. Clin Cancer Res. 2015;21(10):2213-2220.

Increased complexity of genomic alterations is expanding treatment options

Li. JCO. 2013;31:1039. Tsao. J Thorac Oncol. 2016;11:613. Slide credit: clinicaloptions.com

EGFR 20ins: Amivantamab Mobocertinib

EGFR Other 4% **MET 3%** > 1 Mutation 3% HER2 2% **ROS1 2% BRAF 2% RET 2% NTRK1** 1% **PIK3CA** 1% *MEK1* < 1%

METex14:

nib

Capmatinib/Tepoti

ROS1:

Crizotinib Entrectinib

BRAF V600E: Dabrafenib/Trametinib Encorafenib/Binimetinib

RET fusion: Selpercatinib

Pralsetinib

NTRK fusion:

Entrectinib Larotrectinib

The Gentrification of Lung Cancer Treatment

When I completed fellowship

- Chemo+/-**Bevacizumab**
- Erlotinib
- Hospice

Platinum-based Chemotherapy ECOG 1594, **ECOG 4599**

Erlotinib **BR.21**

Brickell Avenue, Miami \$60/sqft → \$666/sqft

With more Complexity in Testing & Treatment, There is more Room for Disparities

Today

- Chemo-Immuno
- Immunotx
- Targeted **Therapies:**
- ✓ EGFR ✓ ALK ✓ ROS ✓ BRAF V600E ✓ Met Ex 14 Skip ✓ RET ✓ KRASG12C ✓ ERBB2 ✓ NTRK

Increasing Biomarker Testing Volumes in Lung Cancer

Biomarker Testing Rates: MYLUNG

(Molecularly Informed Lung Cancer Treatment in a Community Cancer Network)

Test types	Overall N=3474	Nonsquamous N=2820
EGFR	70%	76%
ALK	70%	76%
ROS1	68%	73%
BRAF	55%	59%
PD-L1	83%	83%
Any biomarker	90%	91%
All 5 biomarker tests	46%	49%
NGS	37%	39%

Retrospective single-institution study of pts w/ newly diagnosed stage IV non-Sq NSCLC (N=335)²

- **Disparities in comprehensive biomarker testing**
- 18%-39% of patients began treatment before receiving molecular profiling results

Patients with comprehensive genotyping have improved OS compared to patients with incomplete or no testing.

1. Robert NJ, et al. ASCO 2021. Abstract 9004. 2. Aggarwal C, et al. ASCO 2022. Abstract 9022.

Testing Disparities: Community vs Academic Centers

Disparities in Access to Molecular Testing is Multifactorial

RESEARCH ARTICLE

Underutilization and disparities in access to EGFR testing among Medicare patients with lung cancer from 2010 – 2013

Julie A. Lynch^{1,7*}, Brygida Berse^{2,3}, Merry Rabb⁴, Paul Mosquin⁴, Rob Chew⁴, Suzanne L. West⁴, Nicole Coomer⁴, Daniel Becker^{5,6} and John Kautter²

- Medicare claims data 2010-2013
- Geographic area most strongest predictor
- Race predictor (Blacks less likely, Asians more likely)
- Distance from a NCI Cancer Center
- Zip cide and built environment

Racial disparities in biomarker testing and clinical trial enrollment

- Real World Practice Cohort (Flatiron)
 - N=14,768 Stage IV NSCLC
 - Diagnosed 1/2017-10/2020
 - Treated within 120 days of diagnosis
 - Black patients less likely to get NGS biomarker testing (39% vs 50% NHWs)
- Participation in clinical trials higher in pts getting NGS

Bruno et al. Presented at ASCO 2021. Abstract 9003.

Biomarker Testing

All patients with NSCLC					
	NSCLC overall N=14,768	White N=9,793	Black/AA N=1,288	P-value, White vs Black/AA	
Ever tested	11,297 (76.5%)	7477 (76.4%)	948 (73.6%)	0.03	
Tested prior to first line therapy		6,064 (61.9%)	784 (60.9%)	0.47	
Ever NGS tested	7,185 (48.7%)	4,904 (50.1%)	513 (39.8%)	<0.0001	
NGS tested prior to first line therapy		3,081 (31.5%)	332 (25.8%)	<0.0001	
Patients with non-squamous NSCLC					
	Non-squamous N=10,333	White N=6,705	Black/AA N=922	P-value, White vs Black/AA	
Ever tested	8,786 (85.0%)	5,699 (85.0%)	764 (82.9%)	0.09	
Tested prior to first line therapy		4,881 (72.8%)	662 (71.8%)	0.52	
Ever NGS tested	5,494 (53.2%)	3,668 (54.7%)	404 (43.8%)	<0.0001	
NGS tested prior to first line therapy		2,452 (36.6%)	274 (29.7%)	<0.0001	

AA = African American; NGS = next-generation sequencing

Clinical Trial Participation, Logistic Regression

Among Patients who were Black/African American (AA) and White - overall NSCLC

Variable	Odds ratio (95% CI)	P-value
Biomarker testing before start of first-line therapy (yes vs no)	2.29 (1.64-3.20)	<0.0001
Ever NGS (yes vs no)	2.41 (1.56-3.70)	<0.0001
Race (Black/AA vs White)	0.45 (0.26-0.79)	0.005

Among all covariates evaluated, the additional factors associated with clinical trial participation among Black and White patients included: age at diagnosis, histology, stage III vs IV, and practice volume

Osimertinib or Alectinib Use by State Medicaid Programs, **Compared With Expected Levels of Use, 2020-2021**

ge treated	
l range	
feasible	

- Est 66% of patients with EGFRand ALK-altered metastatic disease received indicated targeted therapies across all states
- Rates of targeted therapy use ranged from 18% (Arkansas) to **113%** (Massachusetts)
- 91% of states had lower rates of targeted therapy use than expected

Real World Data Analysis of Patients Lost at Each Step of the Precision Oncology Pathway

Sadik, H, et al. JCO Precision Oncol. 2022;6:e2200246.

Clinical Practice Gaps with Biomarker Testing in Advanced NSCLC

Sadik, H, et al. JCO Precision Oncol. 2022;6:e2200246.

IASLC: Barriers to Biomarker Testing

Timing

- Turnaround time requesting and treating respondents
 - <u>≥10 days 29%</u> (highest % in North America)
- Turnaround time performing and interpreting assay respondents
 - 0 to 5 days **29%**
 - 6 to 10 days –
 53%
 - 11 to 15 days –
 16%
 - >15 days **2%**

Awareness

- ~33% unaware of most recent testing guidelines
- 75% hold multidisciplinary tumor boards to discuss cases

Access

- Molecular testing:
- In-house laboratories – 30%
- Completely outsource **43%**
- Partially in-house and partially outsource – 28%

Hess, LM, et al. JTO Clinical and Research Reports. 2022;3(6):100336.

Quality

- Insufficient tumor cells 83%
- Inadequate tissue quality – 55%
- Lack of sensitivity of assay or assay use failure – 18%
- Inadequate technical laboratory expertise – 10%

Cost

- Direct patient pay -44 – 63%
- Public/government support – 40 – 61%
- Pharmaceutical company sponsorship 29%
- Private insurance 16 -27%

How to Address Disparities in Testing

- 1. Advocate for Legislation for Universal coverage of guideline-recommended biomarker tests
- Ensuring coverage of biomarker testing for all patients

 including those insured through Medicaid
- 3. Uniform Payer Coverage Policies of Tumor Biomarker Testing
- 4. Guidelines for Uniform Testing & Reporting of Results
- 5. Talk to your Institution about Reflex Testing- Simplify the Process

Health Equity in Biomarker Testing and Targeted Therapy

Targeted therapy can improve survival and quality of life by connecting patients to the most beneficial treatment for their disease.

Advancements in cancer treatment are saving more lives – leading to declines in cancer deaths in recent years.¹ This important progress is driven by developments in *targeted therapy* which identifies and attacks certain types of cancer cells with specific *biomarkers* – molecules like proteins or genetic alterations such as mutations, rearrangements, or fusions.

Dr. Estela Rodriguez & @Latinamd · Oct 26, 2022 ···· Started the week with an excellent lecture by @RamalingamMD on Challenges of #biomakertesting as part of @AmericanCancer #ECHO series where "Everybody Teaches, Everybody learns" Delighted to represent @sylvestercancer and partner with @JhanelleGray as faciltative sites for FL CHALLENGES TO BIOMARKER TESTING • Rapidly changing landscape • Awareness • Tissue availability • Ability to obtain biopsy in a timely manner • Turnaround time • Cost/Insurance coverage

Dr. Bruce Johnson and Rami Manochakian, MD 💷 💳 #CancerEducation

Thank You

@latinamd estelarodriguez@miami.edu

