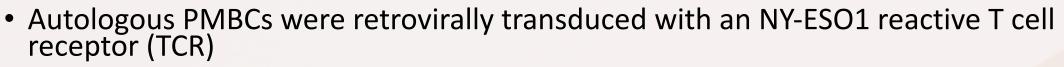
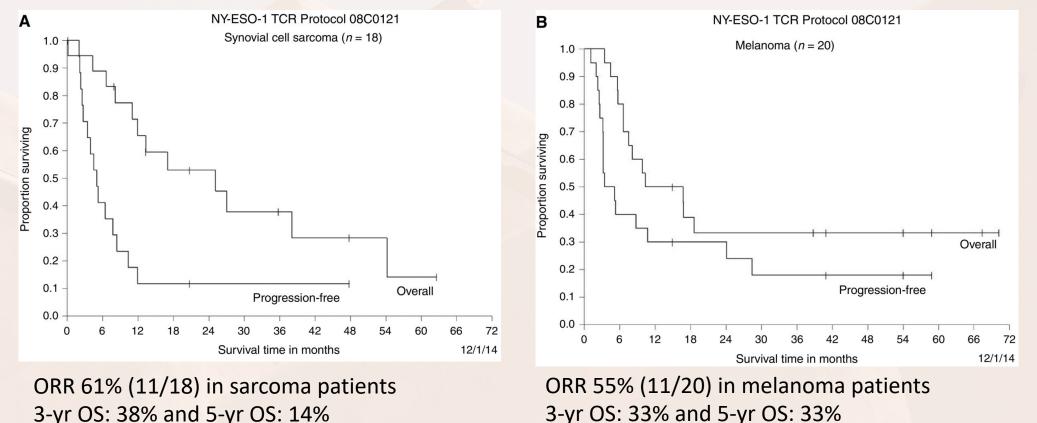


Cellular Therapies in NSCLC – Is it feasible?

MaTOS – November 18th, 2023

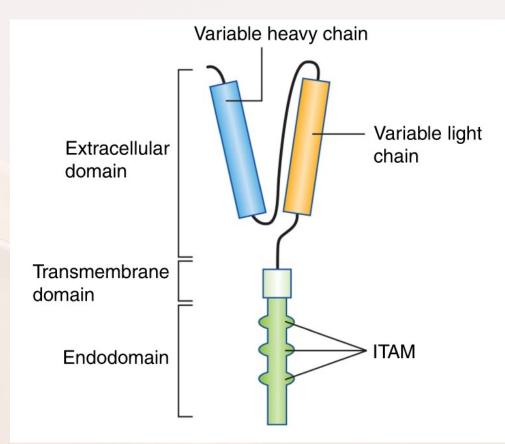

Sally Lau, MD MPH Assistant Professor of Medicine NYU Langone Perlmutter Cancer Center

Cellular Therapies



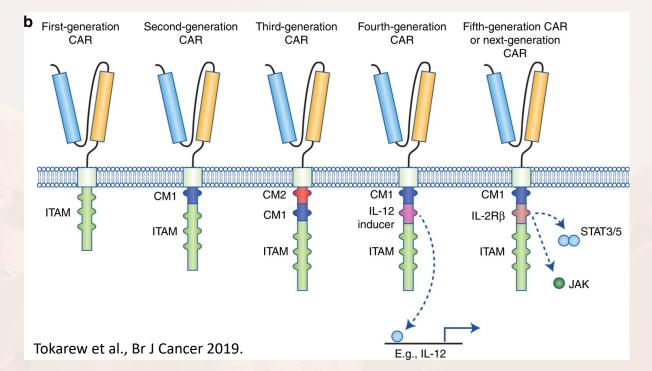
- Encompasses T-cell engaging therapies (TCEs) tumor-infiltrating lymphocytes (TILs), chimeric antigen receptor (CAR) T cell therapies and tumor vaccines.
- Key advantages of leveraging the adaptive immune system:
 - Inherent cytotoxicity
 - Ability to overcome MHC downregulation
 - Cellular memory
- Successes seen in hematologic malignancies using TCEs (ie blinatumomab) and CAR-T (ie tisagencleucel, axicabtagene ciloleucel and lisocabtagene maraleucel)

TCR Therapy in NY-ESO1 Expressing Tumors


• NY-ESO-1 is expressed in 70-80% of synovial sarcomas and 25% of melanomas

Masters in Thoracic Oncology Summit Albuguergue, New Mexico | November 16 - 19, 2023

CAR Structure

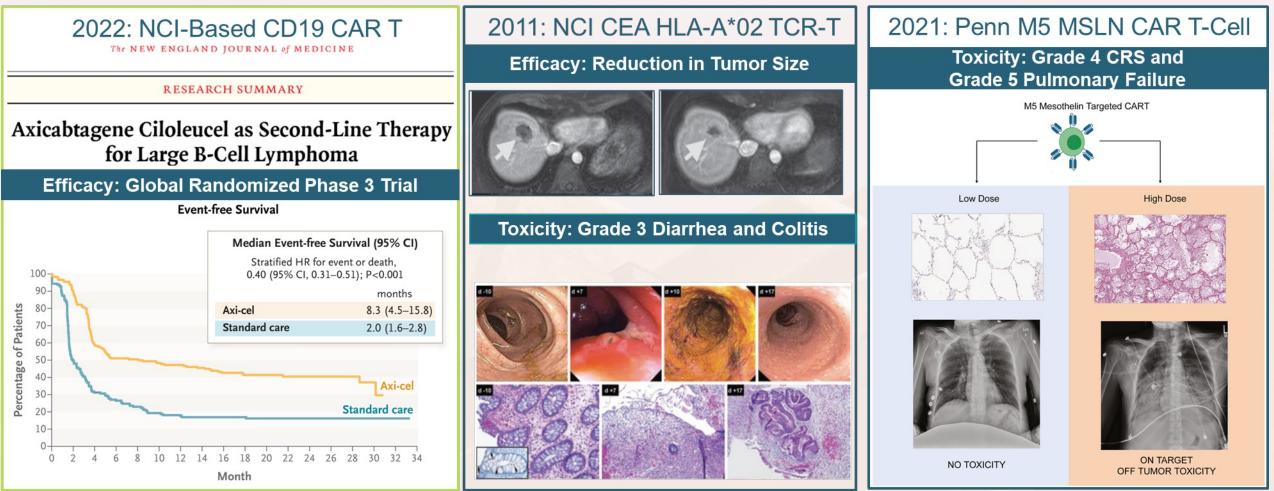

1. Single chain variable domain (scFV) for antigen recognition

2. Transmembrane domain

3. Intracellular **T cell co-receptor CD3**ζ – most important for **signal transduction** and **activation**. (ITAM: immunoreceptor tyrosine-based activation motifs)

Tokarew et al., Br J Cancer 2019.

Overcoming Challenges in Solid Tumors


• Improving **T cell recruitment** to tumors

Masters in Thoracic Oncology Summit Albuguergue, New Mexico | November 16 - 19, 2023

- Engineering expression of chemokine receptors (CCR2, CCR4, CCR7, CXCR2, CXCR3, CXCR4) onto CARs
- Enhancing **T cell survival and** activation
 - Addition of co-stimulatory molecules such as CD23, 41BB , IL2
- Overcoming the immunosuppressive TME
 - Chimeric switch receptors immunomodulatory fusion proteins
 - Extracellular ligand binding domain is fused with a co-stimulatory pathway – PD1-CD28 CSR

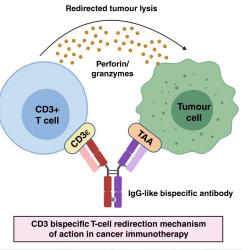
On-Target, Off-Tumor Toxicities

Axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; CI, confidence interval; CRS, cytokine release syndrome; HLA, human leukocyte antigen; HR, hazard ratio; MSLN, mesothelin; NCI, National Cancer Institute; TCR-T, T-cell receptor T-cell.

1. Locke F, et al. N Engl J Med. 2022;386(7):640-654; 2. Parkhurst M, et al. Mol Ther. 2011;19(3):620-626; Haas AR, et al. Mol Ther. 2023;31(8):2309-2325.

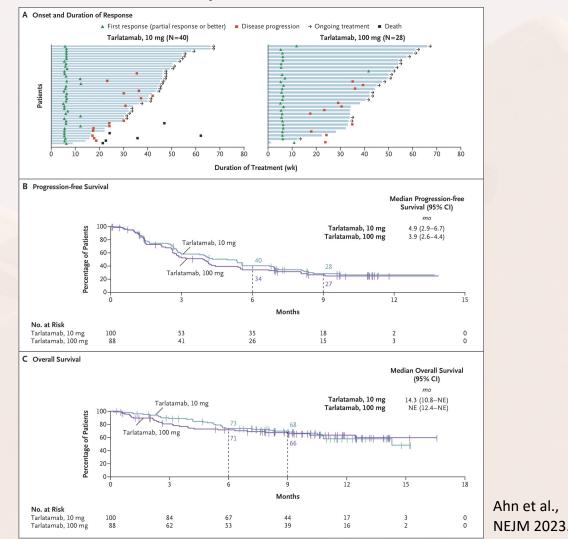
Slide reproduced with permission – Simeone et al., SITC 2023

Candidate Antigens


Candidate Antigens	Solid Tumors	Clinical Trials
EGFR vIII	NSCLC, CRC, gallbladder, glioblastoma	Minimal efficacy NCT02209376 NCT01454596
Mesothelin	NSCLC, mesothelioma, ovarian cancer, PDAC, CRC, gastric tumors, TNBC	Poor persistence in the TME <u>NCT01355965</u> <u>NCT02159716</u>
HER2	Breast, NSCLC, PDAC, gastric, gallbladder	Toxicity and poor persistence <u>NCT01109095</u>
CEA	CRC, PDAC, gastric, NSCLC	Toxicity <u>NCT01373047</u>
PSMA	Prostate cancer	NCT04053062 NCT04227275 NCT04249947 NCT04429451
B7H3	Ovarian, PDAC, lung, neuroblastoma	<u>NCT04185038</u> NCT04077866

DLL3 T Cell Engager Therapies in SCLC

Albuquerque, New Mexico | November 16 - 19, 2023

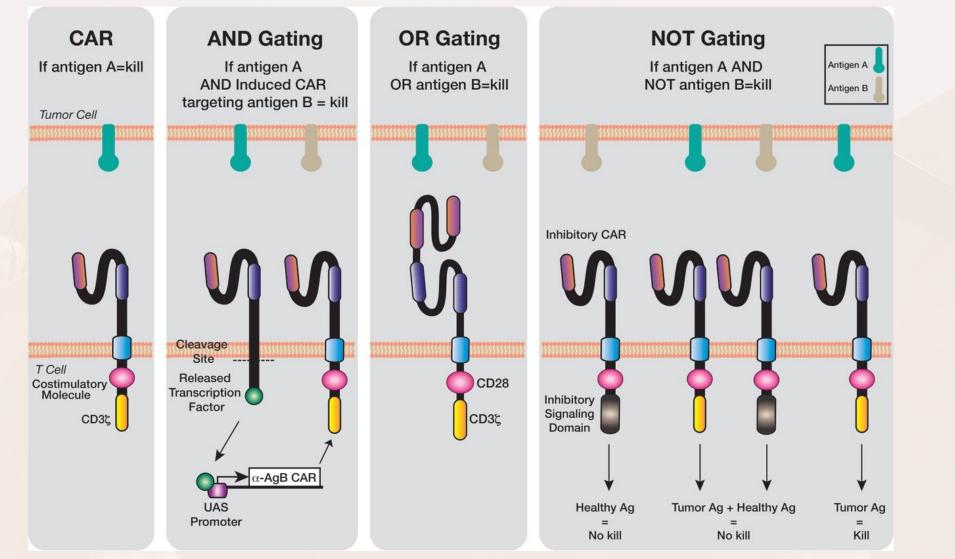

- DLL3 is an antigen that is expressed in >80% of SCLC but rarely expressed in normal cells – represents an excellent target for BiTEs.
- Cellular therapies that redirect T cells towards tumor antigens.

Singh et al., BJC 2021.

• TCEs a cytolytic synapse that bypasses the need for MHC-I antigen presentation allowing for MHC-independent cell kill.

Tarlatamab in relapsed SCLC

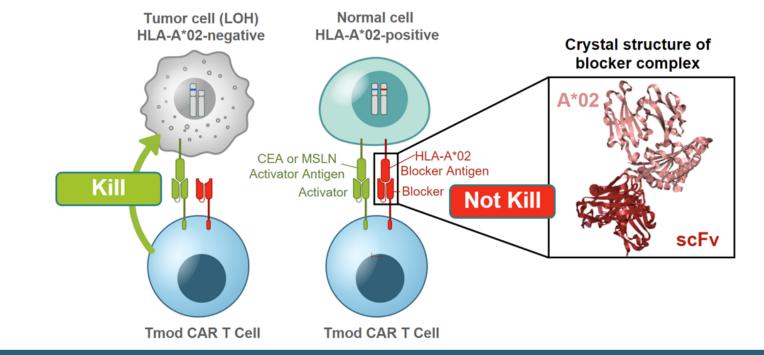
Bites vs car t



	BiTEs	CAR T cells	
Effector cell	Endogenous T cells	Engineered T cells	
MHC Dependency	MHC Independent	MHC Independent	
TCR Dependency	Independent of endogenous co- stimulatory signaling	Independent of endogenous TCR and co-stimulatory signaling	
Toxicity	CRS, ICANS	CRS, ICANS	
Cell trafficking	Passive – redistribution of endogenous T cells	Active trafficking of CAR T cells to malignant tissues with in vivo expansion after encounter with tumor antigen	
Immune escape	Loss of target antigen, upregulation of immune checkpoints	Loss of target antigen	
Long term efficacy	Repeated treatments needed	Engraftment of CAR T can provide ongoing responses	
Availability	Off the shelf	Individual	

Goebeler et al., Nat Rev Clin Oncol 2020.

Logic Gates



Abbott et al., JITC 2021.

Tmod is a Novel Logic-Gated CAR T-Cell Therapy That Discriminates Tumor From Normal Cells Designed to Mitigate On-Target, Off-Tumor Toxicity^{1,2}

LIR-1-based HLA-A*02:01 blocker is peptide-independent and recognizes diverse A*02 alleles

CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; HLA, human leukocyte antigen; LIR, leukocyte immunoglobulin-like receptor; LOH, loss of heterozygosity; MSLN, mesothelin; scFv, single-chain variable fragment. 1. Hamburger A, et al. *Mol Immunol.* 2020;128:298-310. 2. Mock J-Y, et al. *Mol Ther Oncolytics*. 2022;27:157-166.

Poster 636 | Saturday, November 4 | Exhibit Halls A & B1

Slide reproduced with permission – Simeone et al., SITC 2023

CEA Tmod CAR

Untransduced

CEA CAR T cell

CEA NCI TCR

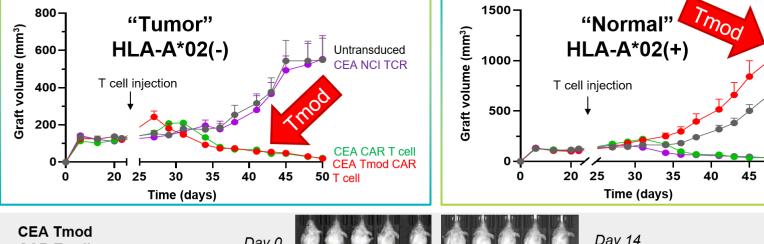
50

T cell

CEA Tmod CAR T Cell (A2B530) IND-Enabling In Vivo Study Demonstrates Potency Comparable to NCI Benchmark CEA TCR

Normal

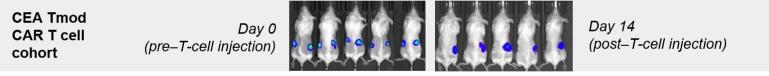
CEA(+)


HLA-A*02(+)

TCR is HLA-A*02 restricted

CEA TCRs Kill Normal Equivalent to CAR T Cells

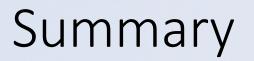
H508 colon cancer xenograft dual flank injection (2 $\times 10^7$ cells, n= 5 mice per group)


CEA Tmod CAR T Cells (With the Blocker) Kill <u>Tumor</u> Equivalent to CAR T Cells Alone (Without the Blocker)

Tumor

CEA(+)

HLA-A*02(-)



CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; HLA, human leukocyte antigen; IND, investigational new drug; NCI, National Cancer Institute; TCR, T-cell receptor. Sandberg ML, et al. Sci <u>Transl</u> Med. 2022;14(634): eabm0306.

Poster 636 | Saturday, November 4 | Exhibit Halls A & B1

Slide reproduced with permission – Simeone et al., SITC 2023

- Cellular therapies are attractive treatment strategies because of T-cell mediated cytotoxicity, memory and their ability to overcome barriers in antigen presentation.
- Major barriers for cellular therapies in solid tumors:
 - T cell trafficking
 - T cell activation
 - On target, off tumor toxicities
- Novel designs to overcome these barriers for both BiTEs and CAR-T with some impressive results seen in SCLC.
- Cellular therapies are feasible in solid tumors and we will be seeing more of them in the future.