Advanced NSCLC*

Oncogene driver

EGFR: Osimertinib**, erlotinib, afatinib, gefitinib, erlotinib + ramucirumab

ALK: Alectinib**, brigatinib, lorlatinib, crizotinib, ceritinib

ROS1: Entrectinib**, crizotinib, ceritinib

RET: Selpercatinib**, pralsetinib**, cabozantinib

BRAF V600E: Dabrafenib / trametinib**

MET Exon 14: Capmatinib, tepotinib, crizotinib

NTRK: Larotrectinib, entrectinib

EGFR Exon 20⁺: Larotrectinib, entrectinib KRAS G12C⁺: Sotorasib

No driver mutation

Adenocarcinoma

Squamous

PDL1 ≥ 1% - Pembrolizumab

- Pembrolizumab
- Carboplatin + pemetrexed + pembrolizumab
- Carboplatin + paclitaxel +
- bevacizumab + atezolizumab
- Carboplatin + abraxane + atezolizumab
- Nivolumab + ipilimumab
- Nivolumab + ipilimumab + platinum + pemetrexed

PDL1 ≥ 50% (including above)

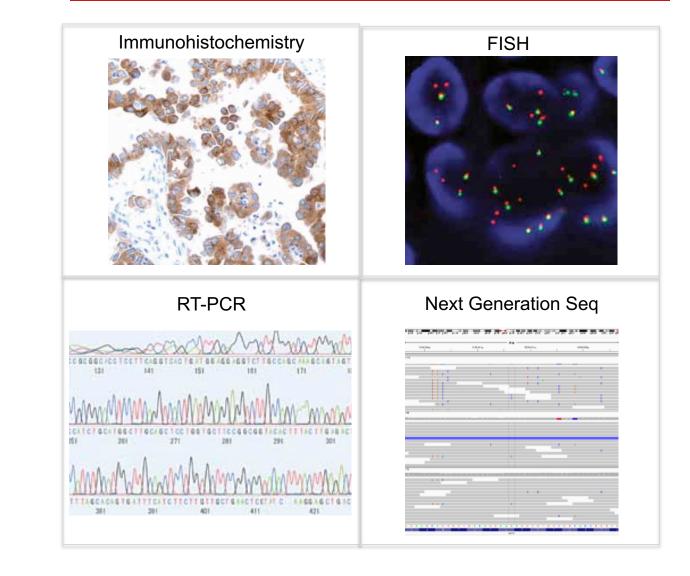
- Atezolizumab
- Cemiplimab

Pembrolizumab Carboplatin + paclitaxel + pembrolizumab Carboplatin + paclitaxel + bevacizumab + atezolizumab Carboplatin + abraxane + pembrolizumab Nivolumab + ipilimumab +

PDL1 ≥ 1%

- Nivolumab + ipilimumab + platinum + paclitaxel

PDL1 ≥ 50% (including above)


- Atezolizumab
- Cemiplimab

*Locally advanced (not amenable to chemoXRT) or metastatic **Indicates preferred options

†Second line setting only

Testing methodologies

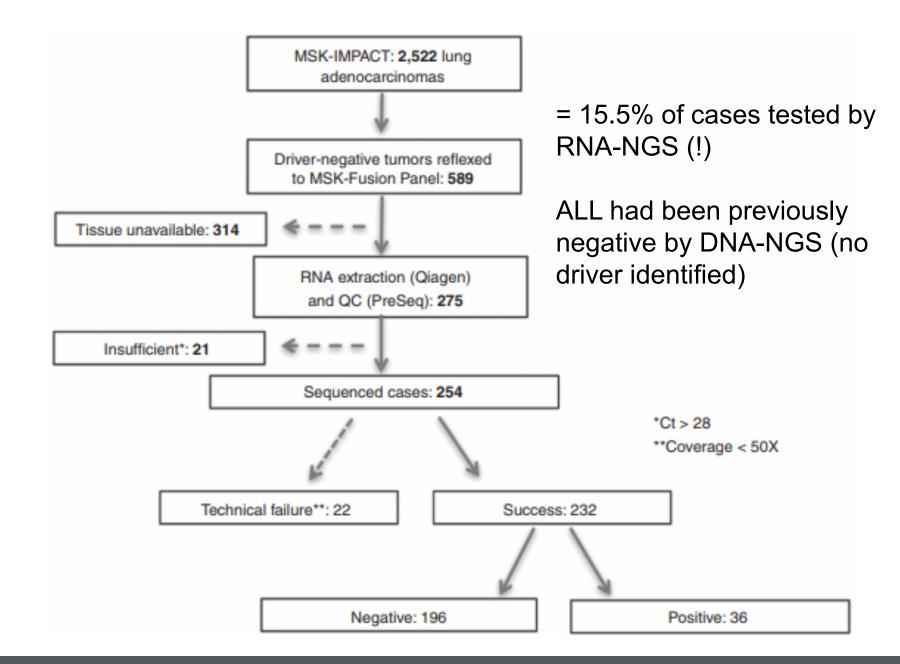
Current actionable oncogenes

- IHC ALK, ROS1, MET, HER2, PD-L1
- FISH ALK, ROS1, RET, NTRK, MET amp, HER2 amp, NRG1*
- RT-PCR EGFR, KRAS, BRAF, HER2 Exon 20, FGFR3*, PIK3CA*
- NGS All of the above
 - RNA-NGS may be better for MET Ex14, gene fusions
 - FISH may be better for gene amplification than NGS

IHC – practical applications

Used as target in antibody drug conjugate trials¹

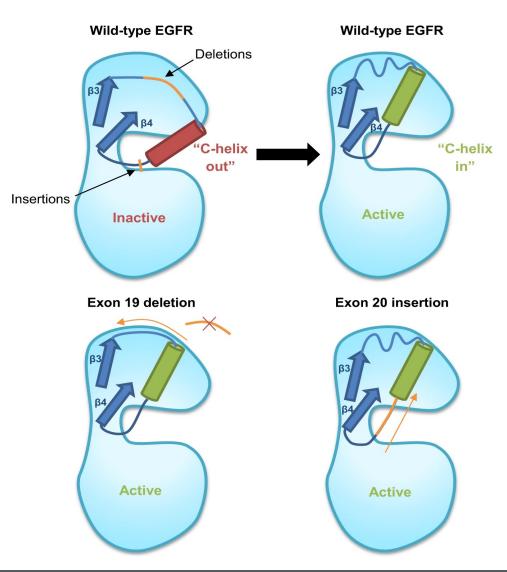
ADC	Target	NCT
DS-8201a	HER2	NCT02564900
ABBV-399	MET	NCT03311477
DS-1062a	TROP2	NCT03401385
ASG-22CE	Nectin-4	NCT02091999
PF-06647020	PTK7	NCT02222922
HuMax-AXL-ADC	AXL	NCT02988817



Pacheco and Camidge Lung Cancer 2018

Different types of NGS

	DNA-NGS (capture)	RNA-NGS (amplicon)	RNA-NGS (capture)
Major strength(s)	 Fusion targets already included in many NGS assays Does not require a second/separate assay 	 Already included in some commercially available assays (e.g. Oncomine) 	 Best performance for <u>challenging</u> <u>fusions</u>
Major weakness(es)	 Significant false negative for <u>challenging fusions</u> (e.g. ROS1-GOPC) 	 Like qRT-PCR, will only detect fusions where there is a primer for the fusion partner 	 Performance relies on RNA quality

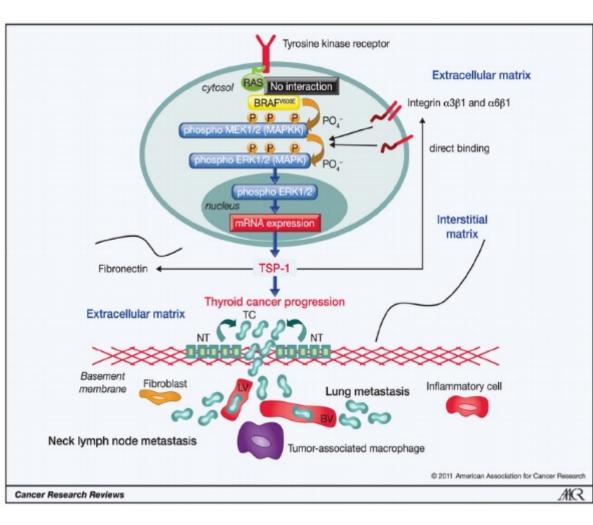


Benayed Clin Can Res 2019

EGFR mutations

Knowing that your patient is EGFR positive is **not** enough! You need to know which mutations are sensitizing to TKIs

- Drug-sensitive: Exon 19 del, L858R
- Less drug-sensitive: G719, L861Q
- Insensitive: Exon 20 insertions (except FQEA)

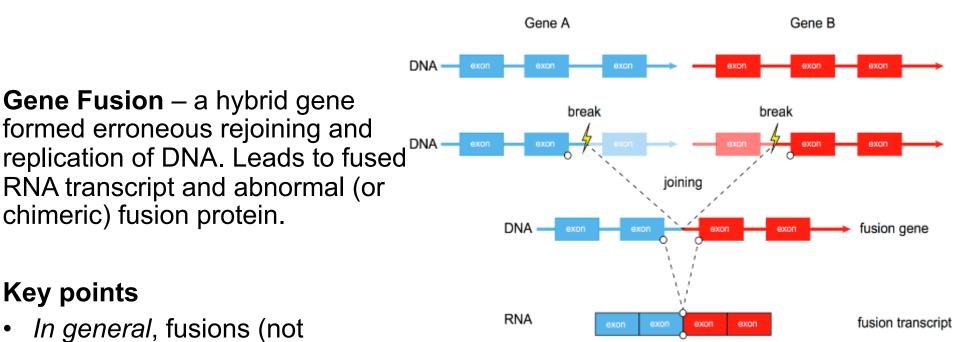

For EGFR Exon 20 insertions

- Clinical trial (preferred)
- Amivantamab
- Afatinib > osimertinib > erlotinib

University of Colorado Cancer Center

BRAF mutations

BRAF V600E/K/D/R mutations will respond to BRAF + MEK TKIs


Do **not** use these for other BRAF mutations (eg, G465A) - many do not have the same mechanism for activating signaling

University of Colorado Cancer Center

de Langen Ther Adv Med Oncol 2017

Gene fusions (ALK, ROS1, RET, NTRK, NRG1)

junction point

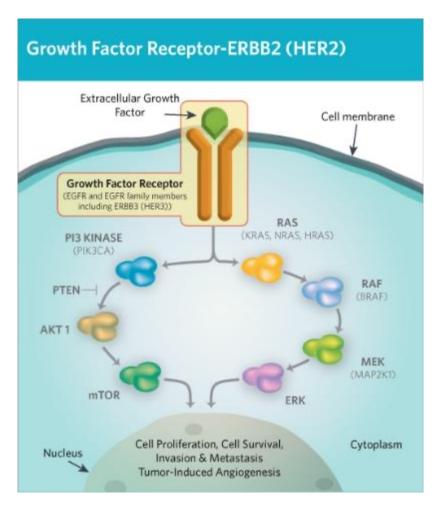
EML4-ALK \rightarrow alectinib, brigatinib, lorlatinib CD74-ROS1 \rightarrow entrectinib, crizotinib KIF5B-RET \rightarrow selpercatinib, pralsetinib NTRK2-ETV6 \rightarrow larotrectinib, entrectinib CD74-NRG1* \rightarrow clinical trials

University of Colorado Cancer Center

sensitizing in NSCLC

novel partners

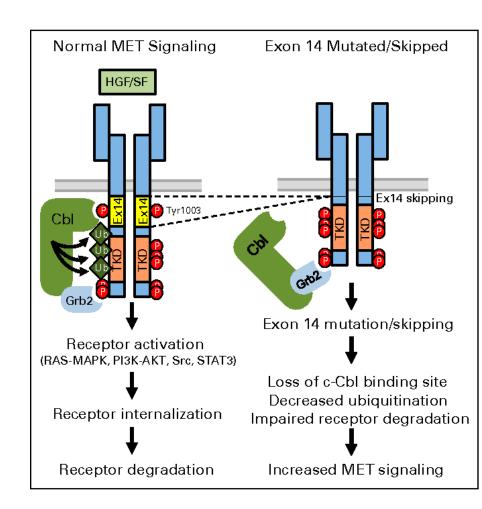
mutations) are expected to be


better at detecting fusions with

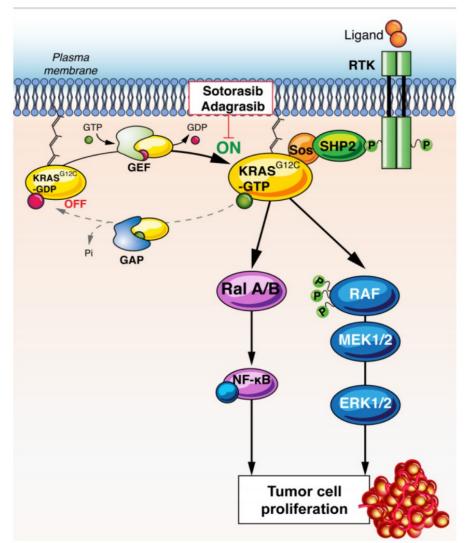
RNA-based NGS potentially

*NRG1 fusions unique in that chimeric protein functions as ligand

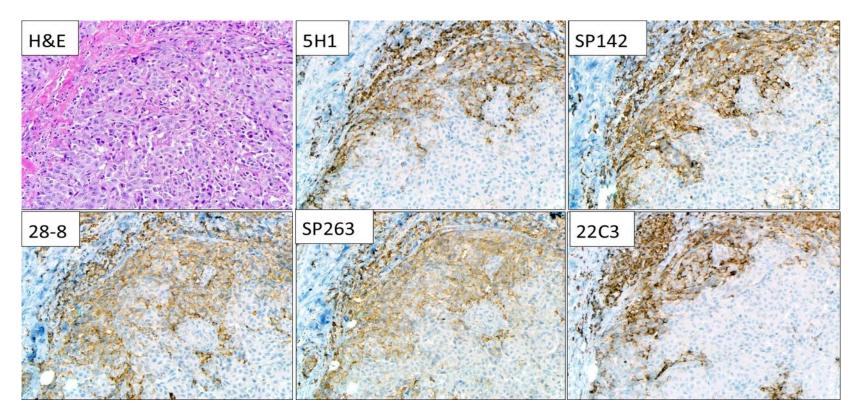
HER2 (ERBB2) alterations


- Current options
 - □ Clinical trial (preferred)
 - HER2 ADCs: Trastuzumab deruxtecan
 - HER2 mABs: TDM1, trastuzumab +/- pertuzumab
 - □ TKIs: Afatinib, Iapatinib, neratinib
- Most data regarding efficacy relates to HER2 exon 20 insertions. HER2 gene amplification less well defined
 - Definitional problem: copy number vs ratio
 - □ What is optimal threshold?
 - Are TKI based approaches more effective than monoclonal antibodies?

MET alterations


- Current options (outside of a clinical trial)
 - Capmatinib, tepotinib, and crizotinib (off-label)
- Greatest efficacy seen with MET Exon 14 mutations
 - RNA NGS will likely improve detection of these skip mutations
 - Not all MET Exon 14 are functional - need better assays
 - Overlap with MET amplification

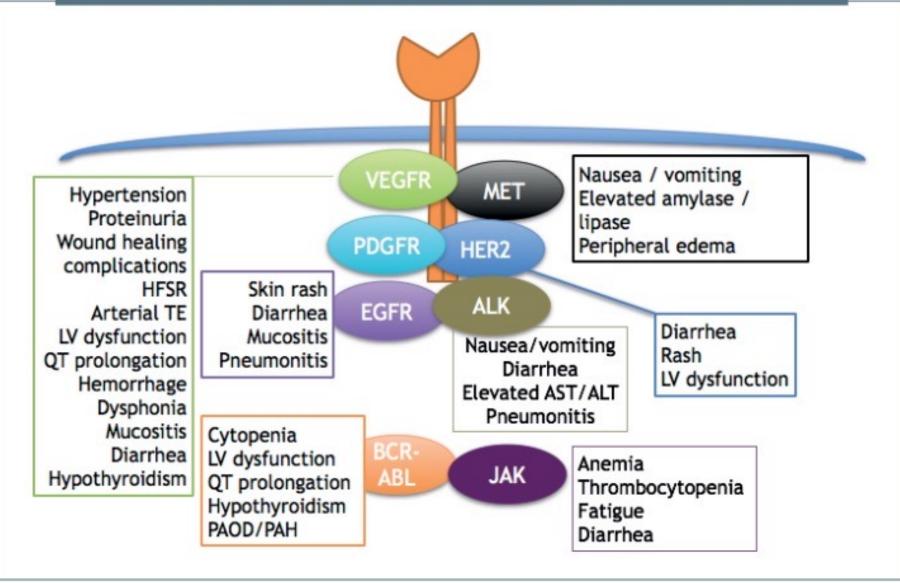
KRAS alterations


- KRAS proto-oncogenes → Ras-Raf-Mek-Erk pathway
 - GTP-bound = active
 - GDP-bound = inactive
- Missense mutations in codon 12, 13 and 61 hinder GTP hydrolysis → activation
- Sotorasib (and adagrasib)
 - Irreversibly bind mutant cysteine
 - Disrupt switch I/II and lock KRAS into a GDP bound state
 - Inhibits Raf signaling
- Response rates not as high as other oncogene drivers (e.g. *ALK, ROS1, RET*)

University of Colorado Cancer Center

Addeo Cancers 2021

PD-L1 in lung cancer


Remember that PD-L1 is a *qualitative* score and reported as a *continuous* variable

PD-L1 - important considerations

- **PD-L1 is a reported as a range**. Trials will use different cut-offs, but this may be arbitrary
 - KEYNOTE-024: PD-L1 ≥ 50%
 - − PACIFIC: PD-L1 \ge 25%*
- Recognize that different companies have different companion PD-L1 IHC assays (e.g. DAKO 22C3, Ventana SP263, etc)
- Many trials will try to collapse PD-L1 (continuous variable) into a categorical variable
 - KEYNOTE-189: Subset analysis

OVERVIEW OF TOXICITIES ASSOCIATED WITH DIFFERENT TKI TARGETS

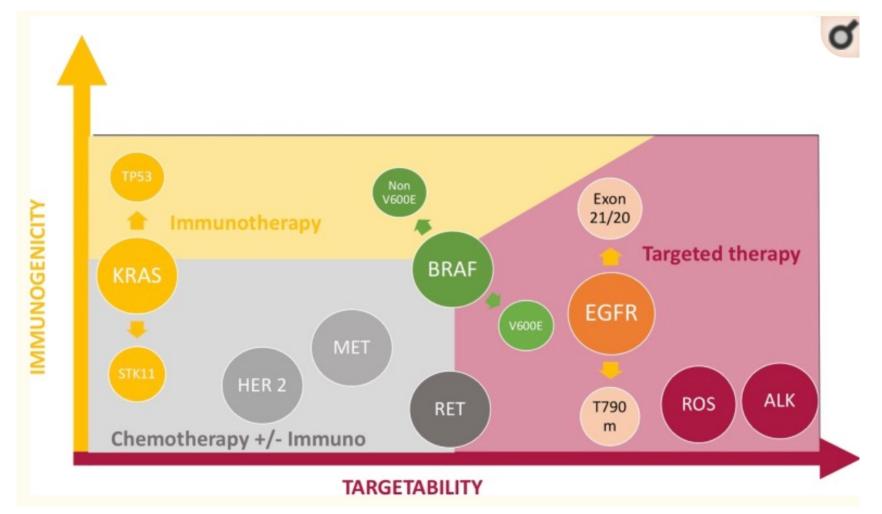
Chronic AEs of ALK inhibitors

Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib
Vision issues Hepatotoxicity Edema Nausea Diarrhea	Diarrhea Anemia Nausea Hepatotoxicity Hyperglycemia	Anemia Edema Hepatotoxicity* Myalgia Photosensitivity rash	Diarrhea Elevated CK Cough** Hypertension Hepatotoxicity* Elevated amylase / lipase	Elevated lipids Hepatotoxicity Nausea Anemia Edema Low PO4 Neurotoxicity†

*All of these cases were in lower frequency than seen with crizotinib **Brigatinib has rare incidence of early-onset pulmonary events. In most cases, this is reversible, but needs to be monitored +Unique side effect not seen in another ALK TKIs

Chronic AEs of NTRK inhibitors

Entrectinib


- Fatigue
- Taste changes
- Paresthesia
- Nausea
- Arthralgia
- Dizziness

Larotrectinib

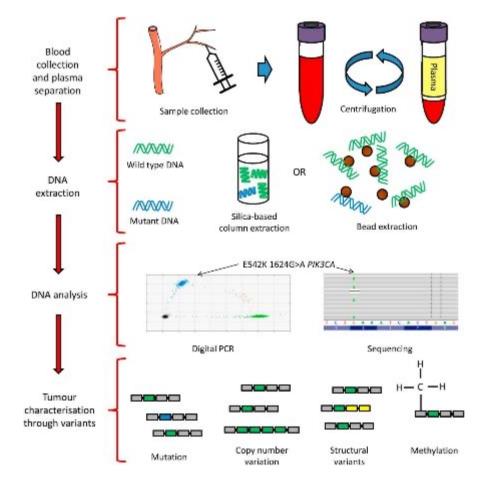
- Hepatotoxicity
- Dizziness
- Fatigue
- Nausea
- Constipation

A word on waiting for molecular testing

University of Colorado Cancer Center

Mhanna Curr Treat Options Oncol 2019

Higher iRAE with sequential immunotherapy and targeted therapy


- Remember that checkpoint inhibitors have long half lives!
- Multiple studies have shown marked increase in immune toxicity when TKI is given after checkpoint inhibitor therapy¹⁻³
- At bare minimum, wait for EGFR, ALK, and ROS1 before starting chemo-immunotherapy

¹ University of Colorado ¹Schoenfeld Annal Oncol 2019; ²Oshima JAMA Onc 2019; ³ Lin JTO 2019 Cancer Center

What about blood-based testing?

- Tumors shed DNA into the bloodstream (mostly related to tumor cell death)
- Small units of DNA are protected through binding to histones (these can be extracted and analyzed)

Caveats on circulating tumor DNA

- Highly specific, but less sensitive
 - Absence of known driver is not informative
 - Tissue is gold standard
- DNA-based assays (RNA degrades too quickly)
- Careful on over-interpreting VAF. Yield is proportional to blood flow to relevant organ sites
 - Decreased yield for lung and pleural disease
 - Decreased yield for isolated brain metastases

SUMMARY

- Understand importance of biomarker testing in lung cancer
- Understand common testing methodologies and their limitations
- Understand biology of common oncogenes
- Recognize real-world use of biomarker testing in lung cancer

