

Other Oncogene-Driven Cancers

Nathaniel Myall, MD MS Stanford Cancer Institute Stanford, CA

Discussion Outline

1. MET exon 14 – Resistance and Novel Therapies

OA21.04 – Amivantamab in Patients With Advanced NSCLC and MET Exon 14 Skipping Mutation: Results From the CHRYSALIS Study

2. KRAS G12C – TKI Updates and Beyond

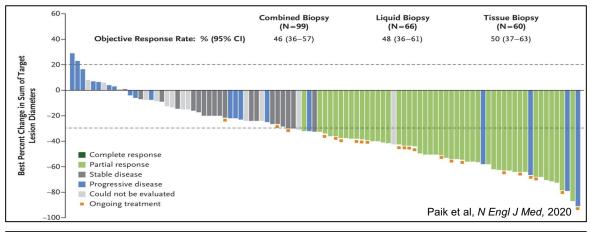
MA06.04 – KRYSTAL-1: Two-Year Follow-Up of Adagrasib (MRTX849) Monotherapy in Patients With Advanced/Metastatic KRAS^{G12C}-Mutated NSCLC

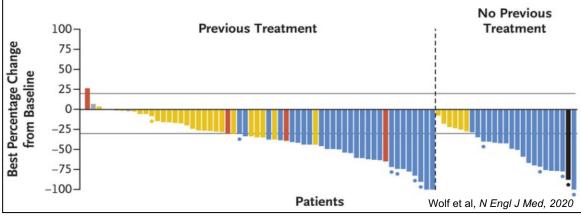
MA06.05 – CodeBreak 101: Safety and Efficacy of Sotorasib with Carboplatin and Pemetrexed in KRAS G12C-Mutated Advanced NSCLC

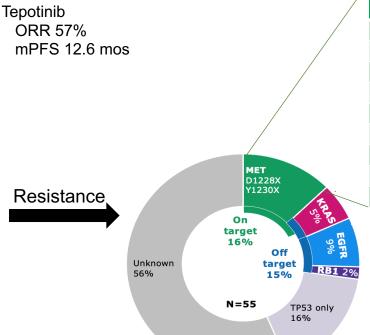
MA06.03 – KontRASt-01: Preliminary safety and efficacy of JDQ443 + TNO155 in patients with advanced, KRAS G12C-mutated solid tumors

3. HER2 – Optimal Dosing of Trsastuzumab Deruxtecan

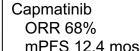
MA13.10 – Trastuzumab Deruxtecan in Patients With *HER2*-Mutant Metastatic Non-Small Cell Lung Cancer: Primary Results of DESTINY-Lung02


Amivantamab in Patients With Advanced NSCLC and *MET* Exon 14 Skipping Mutation: Results From the CHRYSALIS Study


Natasha B. Leighl,¹ Byoung Chul Cho,² Sandrine Hiret,³ Ji-Youn Han,⁴ Ki Hyeong Lee,⁵ Casilda Llacer Perez,⁶ Matthew G. Krebs,⁷ Filippo De Braud,⁸ Eric Haura,⁹ Rachel E. Sanborn,¹⁰ James Chih-Hsin Yang,¹¹ Catherine A. Shu,¹² Koichi Goto,¹³ Makoto Nishio,¹⁴ Jun Zhao,¹⁵ Zhijie Wang,¹⁶ Pascale Tomasini,¹⁷ Enriqueta Felip,¹⁸ Jonathan W. Goldman,¹⁹ Sai-Hong Ignatius Ou,²⁰ Michael Boyer,²¹ Grace Gao,²² Siyang Qu,²² Joshua C. Curtin,²³ Xuesong Lyu,²² Amy Roshak,²³ Robert W. Schnepp,²³ Priya Kim,²³ Jaime Mertz,²³ Meena Thayu,²³ S. Martin Shreeve,²⁴ Roland E. Knoblauch,²³ Alexander I. Spira²⁵


¹Princess Margaret Cancer Centre, Toronto, ON, Canada; ²Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ³Medical Oncology Department, Institut Cancérologie de l'Ouest, Saint Herblain, France; ⁴National Cancer Center, Goyang-si, Republic of Korea; ⁵Chungbuk National University Hospital, Cheongju, Republic of Korea; ⁵Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain; ¹Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK; ⁵Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ³H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; ¹OEarle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA; ¹¹National Taiwan University Cancer Center, Taipei, Taiwan; ¹²Columbia University Medical Center, New York, NY, USA; ¹³National Cancer Center Hospital East, Kashiwa, Japan; ¹⁴The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; ¹⁵Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, China; ¹⁶Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China; ¹⁶Cencer Hospital, Barcelona, Spain; ¹⁰Devid Geffen School of Medicine, University, CNRS, INSERM, CRCM, APHM, Marseille, France; ¹ðVall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; ¹⁰David Geffen School of Medicine, University of California Irvine, Orange, CA, USA; ²¹University of California Irvine, Orange, CA, USA; ²¹University of California Irvine, Orange, CA, USA; ²¹University, VA, USA.

Targeted Therapy Landscape for MET exon 14 Skipping Mutations



MET resistance mutations	BOR	PFS, months
D1228N	PR	13.9
D1228N	PR	11.2
D1228G	PR	10.6
D1228H	PR	8.3
Y1230C	PR	6.9
Y1230C	PR	6.9
Y1230H	PR	5.7
D1228H/Y, Y1230C/H	PD	2.7
D1228Y, Y1230H	NE	2.7

Le et al, WCLC Abstract OA21.06, 2023

Study Schema – CHRYSALIS

Doseescalation phase

RP2D was identified:
Amivantamab
1050 mg IV
(1400 mg if ≥80 kg)

Dose-expansion cohorts

Cohort A: Post–any EGFR TKI (T790M+, C797S+)

Cohort B: Post-any EGFR TKI (T790M-, C797S-)

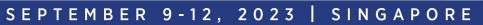
Cohort C: Post-osimertinib (C797S+)

Cohort D: EGFR Ex20insa

Cohort MET-1: Post–any EGFR TKI (*MET* amplified)

Cohort MET-2: METex14b

Cohorts WT: EGFR wild-type status


Endpoints

- Objective response rate (primary)
- Duration of response
- Clinical benefit rate^c
- · Progression-free survival
- Overall survival
- Adverse events

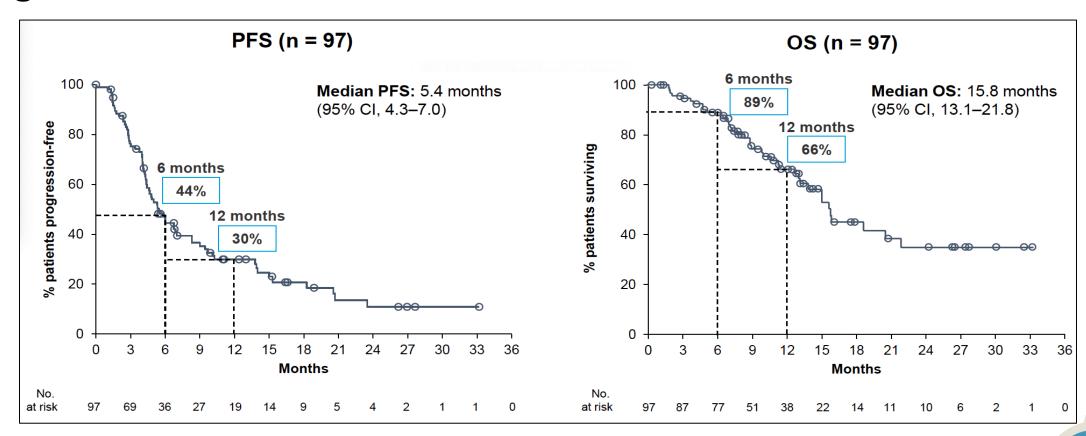
Focus of this presentation

W.C. A. D. C. D. E.

Baseline Demographics

		Previously treated		
Characteristic, n (%)	Treatment-naïve (n = 16)	No prior MET therapies (n = 28)	Prior MET therapies (n = 53)	Total (n = 97)
Median age, years (range)	70 (57–86)	69 (49–83)	71 (43–88)	70 (43–88)
Female / male	8 (50) / 8 (50)	15 (54) / 13 (46)	29 (55) / 24 (45)	52 (54) / 45 (46)
Race				
Asian	10 (63)	16 (57)	21 (40)	47 (49)
White	6 (38)	9 (32)	23 (43)	38 (39)
Black	0	0	2 (4)	2 (2)
Not reported	0	3 (11)	7 (13)	10 (10)
History of brain metastases	1 (6)	4 (14)	9 (17)	14 (14)
ECOG PS				
0	7 (44)	4 (14)	8 (15)	19 (20)
1	9 (56)	23 (82)	45 (85)	77 (79)
2	0	1 (4)	0	1 (1)
History of smoking: yes / no	10 (63) / 6 (38)	14 (50) / 14 (50)	26 (49) / 27 (51)	50 (52) / 47 (48)
Median number of prior lines (range)	0	1 (1–4)	3 (1–10)	2 (0–10)

Efficacy of Amivantamab


	Treatment- naïve	No prior MET therapy	Prior MET therapy
ORR	50%	46%	21%
CBR	88%	64%	66%

ORR = objective response rate; CBR = clinical benefit rate

Progression-Free and Overall Survival

Overcoming Secondary MET Resistance

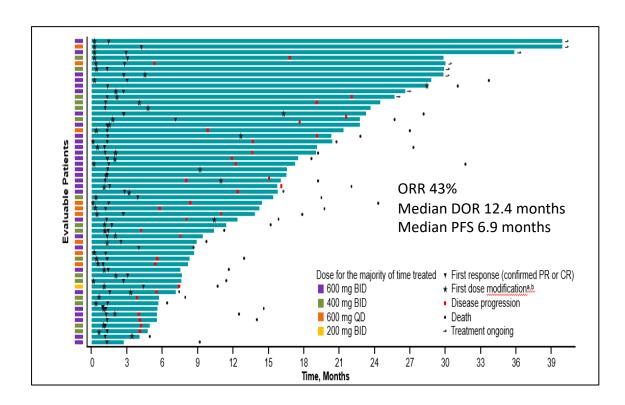
	D	RESISTANCE MUTATION ACTIVITY				
	Drug name	Inhibitor type	Solvent-Front	Activation-Loop	Beta-9 strand	Hydrophobic-core
state of MET	Crizotinib	DFG-Din	G1163R	Y1230C/H/N/S; D1231Y	D1228N/H/E	L1995V
e s	Tepotinib	DFG-Din	G1163E	Y1230X	D1228X	L1995V
Target <u>active</u>	Capmatinib	DFG-Din	Active on cell lines	Y1230H	D1228N/H	L1995V
_	Savolitinib	DFG-Din	Active on cell lines	Y1230S	D1228N/V	L1995V
state of MET	Cabozantinib	DFG-Dout	Variably active on cell lines	Known to be active	D1228Y/A/N	L1195V; F1200L
	Merestinib	DFG-Dout	Active on cell lines	Known to be active	D1228Y	F1200I
yet inactive	Glesatinib	DFG-Dout	H1094Y	Known to be active	D1228Y/A	L1195V

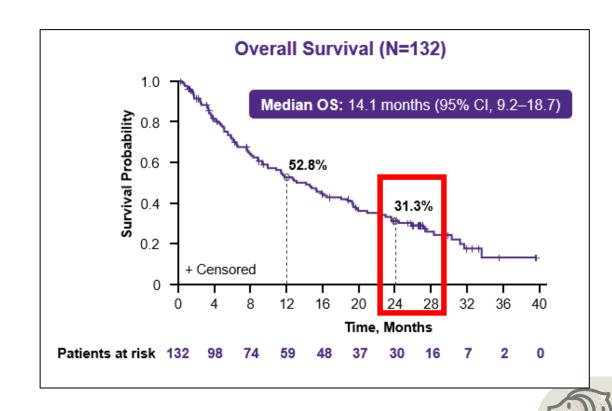
- Amivantamab is active MET exon 14 skippingpositive NSCLC, although response rates are higher in those without prior MET-directed therapy (ORR 46 vs 21%).
- Among TKI therapies targeting MET, there are type I and type II inhibitors (see table) that have variable activity against different resistance mutations.
- Further understanding of amivantamab's activity against MET resistance mutations will help identify the best sequence of use for different MET-directed targeted therapies.

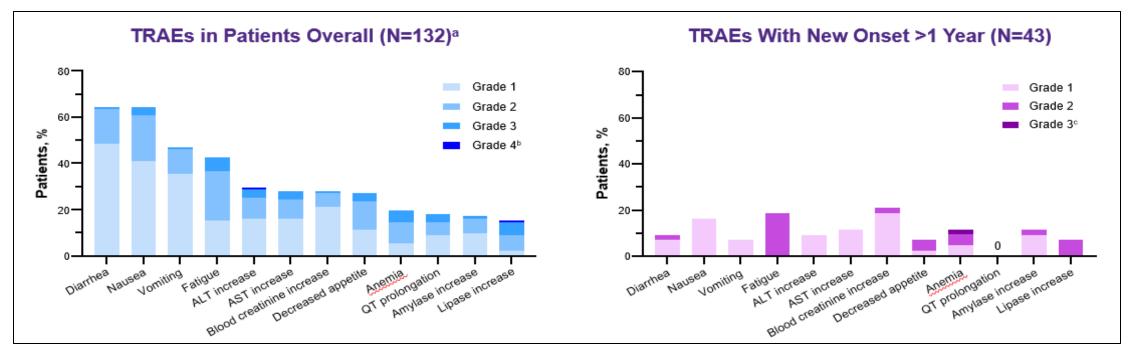
Fujino et al, *J Thorac Oncol*, 2019 Drilon et al, WCLC Abstract OA21.07, 2023

KRYSTAL-1: Two-Year Follow-Up of Adagrasib (MRTX849) Monotherapy in Patients With Advanced/Metastatic KRAS^{G12C}-Mutated NSCLC

Shirish M. Gadgeel¹, Pasi A. Jänne², Alexander I. Spira³, Sai-Hong Ignatius Ou⁴, Rebecca S. Heist⁵, Jose M. Pacheco⁶, Melissa L. Johnson⁷, Joshua K. Sabari⁸, Konstantinos Leventakos⁹, Joshua A. Mason¹⁰, Karen Velastegui¹⁰, Xiaohong Yan¹⁰, Richard Chao¹⁰, Gregory J. Riely¹¹


¹Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; ²Dana-Farber Cancer Institute, Boston, MA, USA; ³Virginia Cancer Specialists, Fairfax, VA, USA; US Oncology Research, The Woodlands, TX, USA; ⁴University of California Irvine, Chao Family Comprehensive Center, Orange, CA, USA; ⁵Massachusetts General Hospital, Boston, MA, USA; ⁶University of Colorado Anschutz Medical Campus, Aurora, CO, USA; ⁷Sarah Cannon Research Institute Tennessee Oncology, Nashville, TN, USA; ⁸Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; ⁹Mayo Clinic, Rochester, MN, USA; ¹⁰Mirati Therapeutics, Inc., San Diego, CA, USA; ¹¹Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.



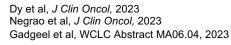

Updated Efficacy and Survival With Adagrasib

Treatment-Related Adverse Events (TRAEs)

No grade ≥3 hepatic dysfunction in 12 patients receiving immunotherapy within 30 days before adagrasib

Late-onset TRAEs (defined as occurring >1 year) occurred in 29 patients (43 remained on therapy >1 year) and were mostly grade 1-2

Comparing Adagrasib vs Sotorasib


	Sotorasib	Adagrasib
ORR	41%	43%
DOR	84%	80%
PFS	6.3 mos	6.9 mos
os	12.5 mos	14.1 mos
2-yr OS	32.5%	31.3%

ORR = objective response rate; DCR = disease control rate; PFS = progression free survival; OS = overall survival

Is there a better CNS signal with adagrasib?

	Sotorasib	Adagrasib
iORR	19%	42%
iDCR	88%	90%
iPFS	NRª	6.3 mos

Stable, asymptomatic, untreated CNS metastases were eligible in CodeBreak100 and KRYSTAL-1

a Not reported

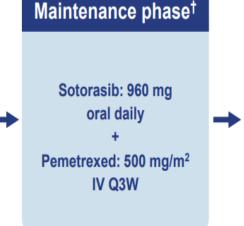
CodeBreaK 101: Safety and Efficacy of Sotorasib with Carboplatin and Pemetrexed in *KRAS* G12C–Mutated Advanced NSCLC

<u>Jeffrey M. Clarke</u>,¹ Enriqueta Felip,² Bob T. Li,³ Jose Ruffinelli,⁴ Pilar Garrido,⁵ Jon Zugazagoitia,⁶ Sarah B. Goldberg,⁷ Suresh S. Ramalingam,⁸ Ivan Victoria,⁹ Sonam Puri,¹⁰ David Gandara,¹¹ Tracy Varrieur,¹² Sophie Edmonds,¹³ Kerry Palmer,¹³ Wendy Snyder,¹² Ramaswamy Govindan,¹⁴ Igor Rybkin¹²

Duke University, Durham, NC, USA;
 Vall d'Hebron University Hospital, Barcelona, Spain;
 Memorial Sloan Kettering Cancer Center, New York, NY, USA;
 Institut Català d'Oncologia, Barcelona, Spain;
 University Hospital Ramón y Cajal (IRYCIS), Madrid, Spain;
 de Octubre Hospital, Madrid, Spain;
 Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain;
 Huntsman Cancer Institute, Salt Lake City, UT, USA;
 University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA;
 Amgen Inc., Thousand Oaks, CA, USA;
 Amgen Ltd., Cambridge, UK;
 Washington University School of Medicine, St. Louis, MO, USA

Study Schema – Phase 1b CodeBreak 101

Patient Cohorts:


- Part 1 Cohort A: prior PD(L)1 inhibitor and/or platinum-doublet chemotherapy
- Part 2 Cohort A1: no prior PD(L)1 inhibitor or platinum-doublet chemotherapy
- Part 2 Cohort A2: prior PD(L)1 monotherapy, platinum-doublet chemotherapy, or (neo)adjuvant chemotherapy

Key eligibility criteria

- KRAS G12C-mutated advanced NSCLC, identified through molecular testing
- Measurable disease per RECIST v1.1
- ECOG ≤ 2
- No active brain metastases

Sotorasib: 960 mg oral daily + Carboplatin: AUC 5 IV Q3W* + Pemetrexed: 500 mg/m² IV Q3W

Induction phase

Data were pooled and analyzed by exposure to prior therapy in the locally advanced/metastatic setting‡

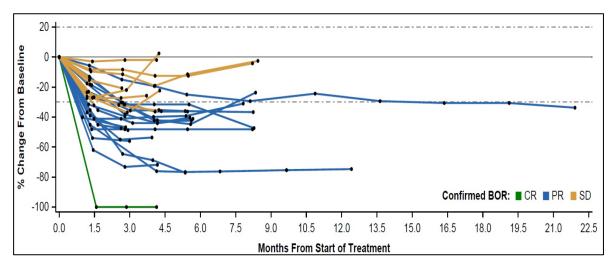
First-line (n = 25)

Second-line (n = 13)

Primary Endpoints: Safety and tolerability (including DLT)
Secondary Endpoints: Anti-tumor efficacy (ORR, DCR, DOR, TTR, OS, PFS, duration of SD) and PK

Baseline Demographics

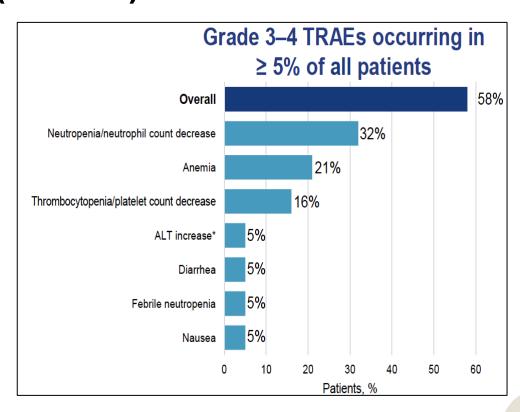
	Sotorasib + Carboplatin + Pemetrexed		
	First-line (n = 25)	Second-line (n = 13)	
Median age, years (range)	64 (46, 82)	67 (44, 74)	
Male, n (%)	12 (48)	8 (62)	
ECOG performance score 0 / 1, n (%)	12 (48) / 13 (52)	7 (54) / 6 (46)	
Stage III / IV at screening, n (%)	1 (4) / 24 (96)	0 / 13 (100)	
History of brain metastasis, n (%)	4 (16)	3 (23)	
Prior neoadjuvant / adjuvant chemotherapy, n (%)	2 (8)	2 (15)	
Prior non-neoadjuvant / adjuvant chemotherapy, n (%)	0	6 (46)	
Prior anti–PD-1 / anti–PD-L1 therapy, n (%)	0	11 (85)	
PD-L1 protein expression, n (%)			
< 1%	16 (64)	4 (31)	
1% – 49%	5 (20)	3 (23)	
≥ 50%	3 (12)	6 (46)	
Unknown	1 (4)	0	


Aside from autoimmunity or patient choice, is there acceptable rationale for deferring upfront immunotherapy?

Efficacy Results

	Sotorasib + Carbo	Sotorasib + Carboplatin + Pemetrexed			
Response by Investigator Assessments*	First-line (n = 20)	Second-line (n = 13)			
ORR, n (%)	13 (65) [†]	7 (54)			
Best overall response, n (%)					
Complete response	0	1 (8)			
Partial response	13 (65)	6 (46)			
Stable disease	7 (35)	4 (31)			
Progressive disease	0	1 (8)			
Not evaluable / not done	0	1 (8)			
DCR (95% CI)	20 (100) (83.2, 100)	11 (85) (54.6, 98.1)			

Favorable ORR compared to historical controls in the non-immunotherapy era


PFS and OS data have not matured but durable responses observed

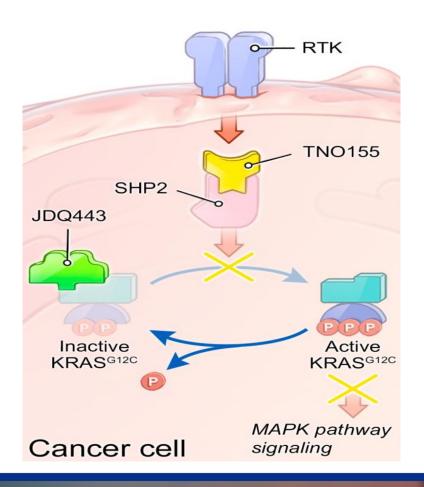
Treatment-Related Adverse Events (TRAEs)

	Sotorasib + Carboplatin + Pemetrexed		
TRAEs, n (%)	First-line (n = 25)	Second-line (n = 13)	
Any grade	23 (92)	13 (100)	
Grade 1	4 (16)	1 (8)	
Grade 2	7 (28)	2 (15)	
Grade 3	10 (40)	8 (62)	
Grade 4	2 (8)	2 (15)	
TRAEs leading to discontinuation of any treatment	3 (12)	4 (31)	
Discontinuation of sotorasib	2 (8)	2 (15)	
Discontinuation of carboplatin	1 (4)	2 (15)	
Discontinuation of pemetrexed	3 (12)	3 (23)	

Conclusions

- In the setting of FLAURA2, there is likely to be increased interest in other TKIchemotherapy combinations.
- However, would recommend caution in pursuing this at the expense of immunotherapy for driver mutations other than EGFR/ALK/ROS1 given the known benefit of immunotherapy-based regimens in the front-line metastatic setting and the known association of KRAS G12C with smoking history.
- The combination of chemotherapy plus sotorasib had an acceptable safety profile, and if studied further, may be best done so in the post-immunotherapy setting.

KontRASt-01: Preliminary safety and efficacy of JDQ443 + TNO155 in patients with advanced, *KRAS G12C*-mutated solid tumors


Marcelo V Negrao,¹ Philippe Cassier,² Benjamin Solomon,³ Martin Schuler,⁴ Kristoffer Staal Rohrberg,⁵ Sara Cresta,⁶ Christophe Dooms,⁷ Daniel SW Tan,⁸ Herbert HF Loong,⁹ Alessio Amatu,¹⁰ Kimberly Krueger Assmann,¹¹ Lauren Fairchild,¹² Laurent Sansregret,¹³ Liqiong Fan,¹² Anna F Farago,¹² Byoung Chul Cho¹⁴

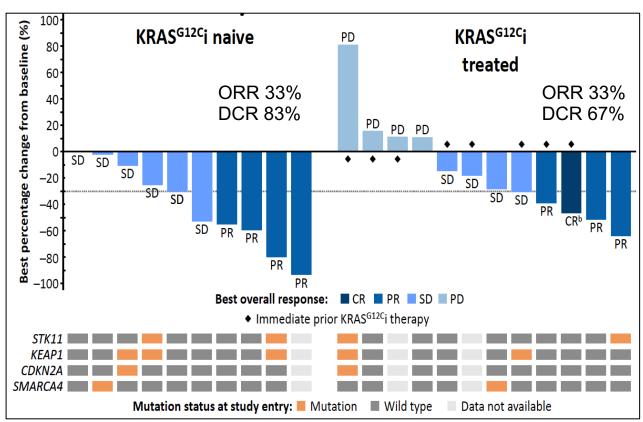
- 1. MD Anderson Cancer Center, Houston, TX, USA; 2. Centre Léon Bérard, Lyon, France; 3. Peter MacCallum Cancer Centre, Melbourne, Australia; 4. West German Cancer Center, University Hospital Essen, Essen, Germany;
- 5. Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; 6. Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; 7. University Hospitals Leuven, Leuven, Belgium; 8. National Cancer Centre Singapore, Duke-NUS Medical School, Singapore;
- 9. Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong; 10. Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy;
- 11. Novartis Institutes for BioMedical Research, East Hanover, NJ, USA; 12. Novartis Institutes for BioMedical Research, Cambridge, MA, USA;
- 13. Novartis Institutes for BioMedical Research, Basel, Switzerland; 14. Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.

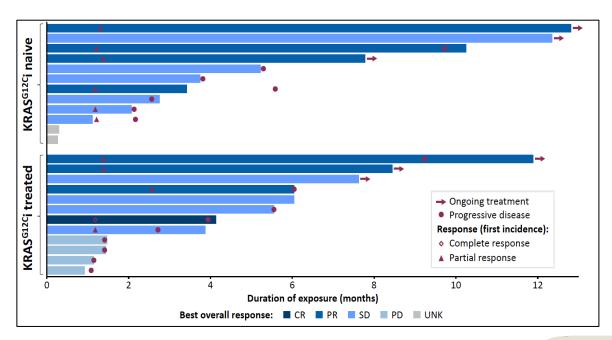
Rationale for SHP2 Inhibition

- SHP2 = Src homology region 2-containing protein tyrosine phosphatase 2 (encoded by PTPN11 gene)
- Serves regulatory role in many signaling pathways including RAS/MAPK/ERK
- In the case of KRAS, activation of SHP2 leads to downstream activation of KRAS by converting it from its inactive GDP-bound state to an active GTP-bound state
- Based on this rationale, the safety and efficacy of a SHP2 inhibitor (TNO155) combined with a KRAS G12 inhibitor (JDQ443) was assessed

Dosing and Treatment-Related Adverse Events (TRAEs)

** TRAEs occurring in >15% of patients are shown ** **JDQ443 TNO155** JDQ443 200 mg BID continuous + 200 mg QD + 20 mg QD n=12All dose levels, pooled **TNO155 10 mg BID** (N=50)2 weeks on/1 week off weeks on/1 week off (n=15)100 mg BID + 20 mg BID n=6 All grades Grade ≥3 All grades Grade ≥3 Patients with any TRAE, n (%) 44 (88.0) 14 (93.3) 18 (36.0) 4 (26.7) 200 mg BID 10 mg BID n = 15Peripheral edema 6 (40.0) 20 (40.0) Neutropenia 15 (30.0) 7 (14.0) 2 (13.3) 1 (6.7) 200 mg BID 15 mg BID n=4Thrombocytopenia 14 (28.0) 4 (26.7) 4 (8.0) Diarrhea 13 (26.0) 1 (2.0) 4 (26.7) 1 (6.7) 200 mg BID 20 mg BID 12 (24.0) 4 (8.0) 4 (26.7) Anemia Fatigue 9 (18.0) 5 (33.3) Cont. Increased blood creatine 200 mg BID 10 mg BID 8 (16.0) 1 (2.0) 1 (6.7) phosphokinase


- No episodes of pneumonitis seen
- ALT and/or AST increased in 10-12% (grade <u>></u>3 in 2%)



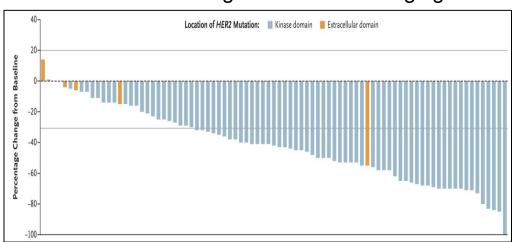
Dosing and Treatment-Related Adverse Events (TRAEs)

N = 24 (median 3 prior lines of therapy)

Conclusions

- SHP2 is a novel target in the treatment of metastatic NSCLC.
- In the case of heavily-treated *KRAS* G12C-positive NSCLC, combination of a SHP2 inhibitor plus a KRAS inhibitor resulted in a promising response rate of 30% with durable responses ongoing.
- Novel therapies are needed in the treatment of KRAS G12C-positive NSCLC, both before and after existing KRAS inhibitors (eg, sotorasib, adagrasib), and SHP2 inhibition in this setting warrants further study.

Trastuzumab Deruxtecan in Patients With *HER2*-Mutant Metastatic Non–Small Cell Lung Cancer: Primary Results of DESTINY-Lung02

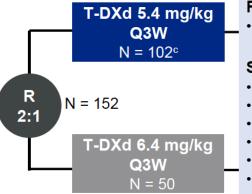

Pasi A. Jänne,^a Yasushi Goto, Toshio Kubo, Kiichiro Ninomiya, Sang-We Kim, David Planchard, Myung-Ju Ahn, Egbert F. Smit, Adrianus Johannes de Langen, Maurice Pérol, Elvire Pons-Tostivint, Silvia Novello, Hidetoshi Hayashi, Junichi Shimizu, Dong-Wan Kim, Kaline Pereira, Fu-Chih Cheng, Ayumi Taguchi, Yingkai Cheng, and Koichi Goto

On behalf of the DESTINY-Lung02 investigators

Rationale and Study Schema

DESTINY-Lung01: Enhertu 6.4 mg/kg

	Patients (N = 91)					
	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Total
Adjudicated drug- related interstitial lung disease, n (%)*	3 (3.3)	15 (16.5)	4 (4.4)	0	2 (2.2) [†]	24 (26.4)


Key Eligibility Criteria^a

- Metastatic HER2mb NSCLC
- ≥1 prior anticancer therapy (2L+), including platinumbased chemotherapy
- Measurable disease per RECIST v1.1
- · ECOG PS of 0 or 1

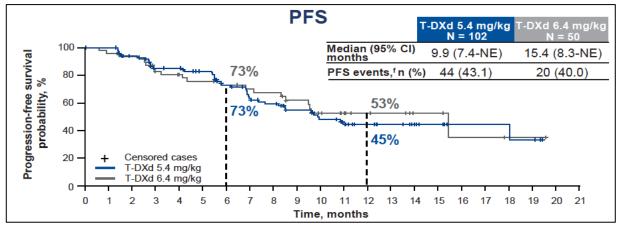
Stratification Factor:

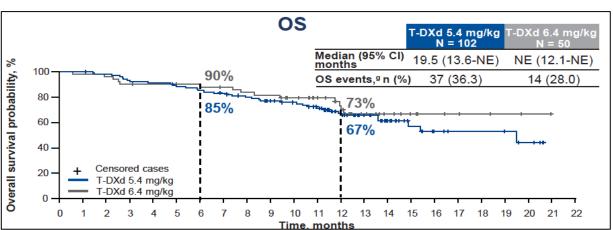
Prior anti–PD-(L)1 treatment

DESTINY-Lung02

Primary Endpoint

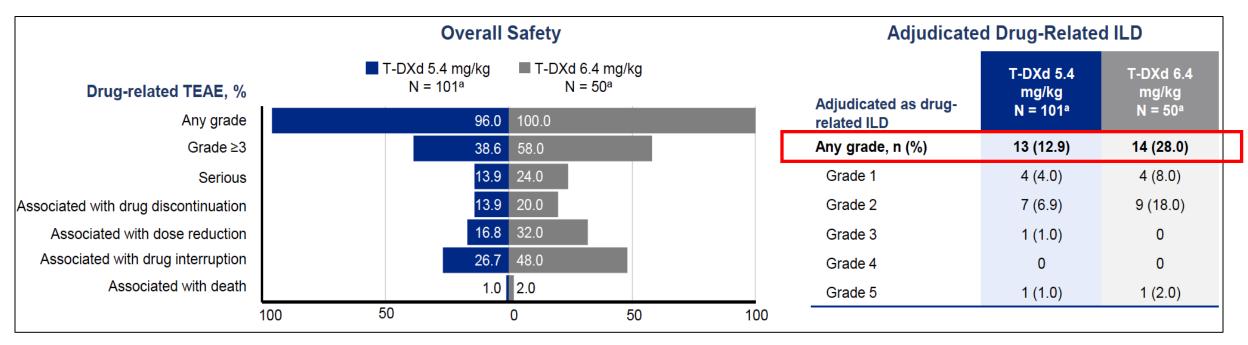
Confirmed ORR by BICR


Secondary Endpoints


- · Confirmed ORR by INV
- DoR by BICR and INV
- DCR by BICR and INV
- PFS by BICR and INV
- OS
- Safety

Patients and investigators were blinded to the dose level

Comparable Efficacy and Survival Between Dose Levels



Efficacy summary	T-DXd 5.4 mg/kg N = 102	T-DXd 6.4 mg/kg N = 50
Confirmed ORR, an (%) [95% CI]	50 (49.0) [39.0-59.1]	28 (56.0) [41.3-70.0]
CR PR SD PD Non-evaluable ^b	1 (1.0) 49 (48.0) 45 (44.1) 4 (3.9) 3 (2.9)	2 (4.0) 26 (52.0) 18 (36.0) 2 (4.0) 2 (4.0)
DCR,º n (%) [95% CI]	95 (93.1) [86.4-97.2]	46 (92.0) [80.8-97.8]
Median DoR, ^{d,e} months (95% CI)	16.8 (6.4-NE)	NE (8.3-NE)
Median TTIR, ^d months (range)	1.8 (1.2-7.0)	1.6 (1.2-11.2)
Median follow-up, months (range)	11.5 (1.1-20.6)	11.8 (0.6-21.0)

ORR = objective response rate; DCR = disease control rate; DOR = duration of response; TTIR = time to initial response

Safety Comparison Between Dose Levels

Rates of most side-effects, including drug-related interstitial lung disease, were lower in the T-DXd 5.4 mg/kg group

Conclusions

- Trastuzumab-deruxtecan (TDXd) remains an important option in the treatment of patients with HER2-mutated NSCLC.
- TDXd at 5.4 mg/kg q3 weeks appears to be better tolerated without a significant difference in efficacy or survival compared to the higher 6.4 mg/kg q3 week dosing.
- While rates of pneumonitis may be lower at the 5.4 mg/kg q3 week dose, a high index of suspicion and careful monitoring remain necessary in all patients.

