

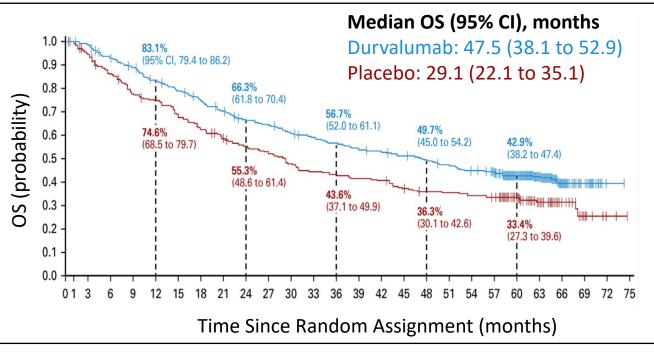
Locally Advanced Non-Small Cell Lung Cancer: Systemic Therapy

September 30, 2023

Surbhi Singhal, MD UC Davis Comprehensive Cancer Center <u>susinghal@ucdavis.edu</u>

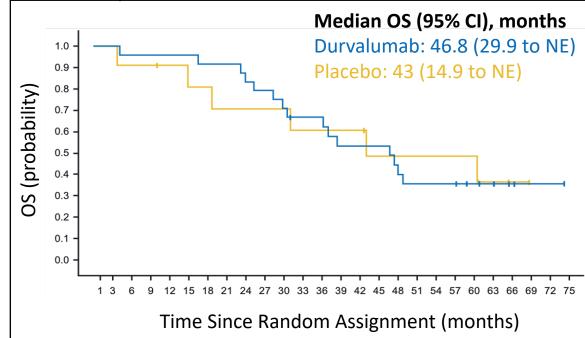
Surbhi Singhal, University of California Davis, USA

Abstracts from WCLC 2023 – Consolidative Therapy

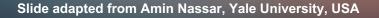

Abstract 1: Peters et al. Real-World Outcomes with Durvalumab after Chemoradiotherapy in Unresectable Stage III *EGFR*-Mutated NSCLC (PACIFIC-R).

Abstract 2: Nassar et al. Consolidation EGFR-Tyrosine Kinase Inhibitor vs. Durvalumab vs. Observation in Unresectable *EGFR*-Mutant Stage III NSCLC.

Abstract 3: Smeenk et al. Tremelimumab plus Durvalumab Prior to Chemoradiotherapy in Unresectable Locally Advanced NSCLC, the Induction Trial



PACIFIC Trial: consolidative durvalumab is the standard of care for patients with unresectable stage III NSCLC and no disease progression after chemoradiation



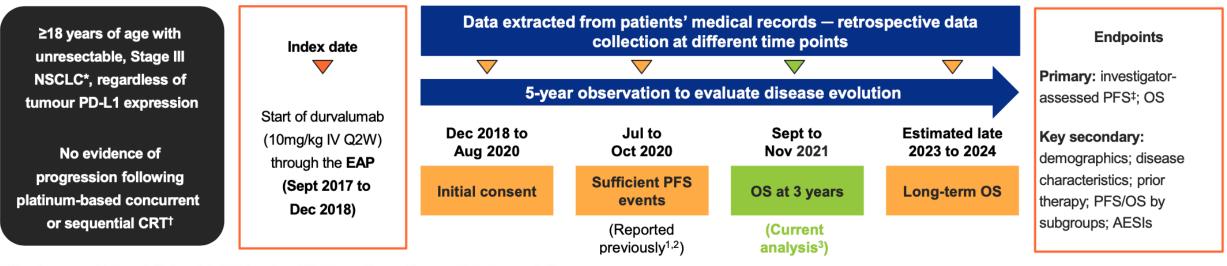
Spigel et al., JCO, 2022.

PACIFIC Trial Post-Hoc Analysis: this benefit for consolidative durvalumab is less clear among patients with *EGFR*-mutant NSCLC

Naidoo et al., JTO, 2023.

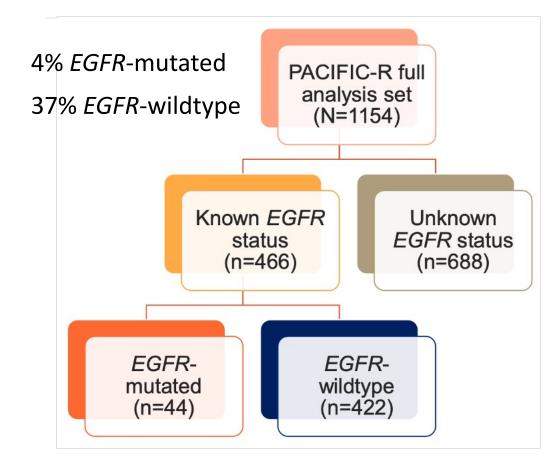
3.

Do patients who have unresectable Stage III *EGFR*-mutant NSCLC benefit from the standard of care consolidative durvalumab after chemoradiation?

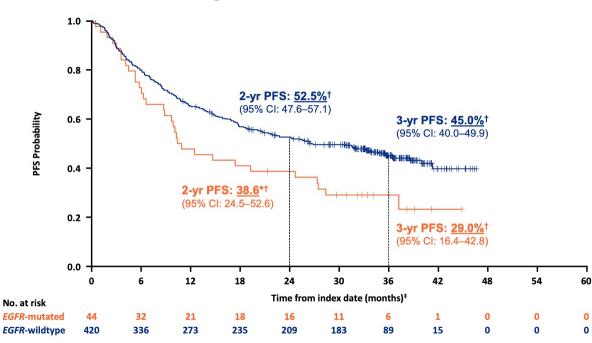


PACIFIC-R Study Design

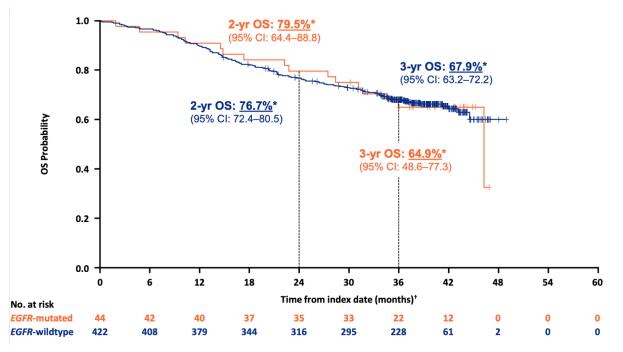
 PACIFIC-R is an ongoing, international, observational study conducted as a retrospective review of established medical records for patients from the PACIFIC EAP (NCT03798535)


AESI, adverse event of special interest; AJCC, American Joint Committee on Cancer; CRT, chemoradiotherapy; EAP, early access programme; IV, intravenously; NSCLC, non-small-cell lung cancer; OS, overall survival; PD-L1, programmed cell death-ligand 1; PFS, progression-free survival; Q2W, every 2 weeks

Study design figure adapted from Girard N et al., J Thorac Oncol 2023;18:181–93. *AJCC 7th or 8th edition. ¹Patients should have completed platinum-based chemotherapy concurrent or sequential to radiotherapy within the previous 12 weeks without evidence of progression. ¹Because of the real-world nature of PACIFIC-R, progression could be documented by either radiological evaluation (per Response Evaluation Criteria in Solid Tumors [RECIST] v1.1) or the investigator's clinical judgment (depending on loca practice). ¹Girard N et al., Ann Oncol 2021;32(suppl_5):S939–48; ²Girard N et al., J Thorac Oncol 2023;18:181–93; ³Girard N et al., IOTECH 2022;16:10015C


Clinical characteristics by EGFR mutation status

Characteristics*, n (%)		EGFR-mutated (n=44)	<i>EGFR</i> -wildtype (n=422)
Age	<70 years	26 (59.1)	307 (72.7)
	≥70 years	18 (40.9)	115 (27.3)
Sex	Male	23 (52.3)	248 (58.8)
	Female	21 (47.7)	174 (41.2)
Smoking status	Never	9 (20.5)	46 (10.9)
	Current	11 (25.0)	98 (23.2)
	Former	24 (54.5)	278 (65.9)
ECOG/WHO PS	0	12 (27.3)	156 (37.0)
	1	21 (47.7)	114 (27.0)
	≥2	0	7 (1.7)
	Missing	11 (25.0)	145 (34.4)
Disease histology	Squamous	4 (9.1)	35 (8.3)
	Non-squamous	40 (90.9)	381 (90.3)
	Unknown	0	6 (1.4)
Stage III diagnosis	Initial diagnosis	39 (88.6)	393 (93.1)
	Relapse from early stage	5 (11.4)	29 (6.9)
PD-L1 expression level [†]	TC ≥1%	29 (76.3)	269 (76.9)
	TC <1%	8 (21.1)	55 (15.7)
	Unknown	1 (2.6)	26 (7.4)
CRT type‡	Concurrent	34 (77.3)	340 (80.6)
	Sequential	8 (18.2)	55 (13.0)
Time from end of RT to durvalumab initiation§	≤42 days	17 (39.5)	148 (36.1)
	>42 days	26 (60.5)	262 (63.9)



Investigator Assessed PFS

	Median PFS ⁺		
	(95% CI), months		
EGFR-mutated	10.6 (8.7–27.3)		
EGFR-wildtype	26.4 (20.5–35.7)		

	Median OS* (95% CI), months	
EGFR-mutated	46.3 (46.3–NE)	
EGFR-wildtype	NR (NE-NE)	

Slide adapted from Solange Peters, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

7.

Adverse events of special interest

	EGFR-mutated (n=44)					
	All patients Required Required immuno- corticosteroids suppressants endocrine Tx	Required	Required immuno-	Required	Durvalumab dose action	
		endocrine Tx	Temporary stop	Permanent stop		
Any AESI, n (%)	25 (56.8)	16 (36.4)	2 (4.5)	5 (11.4)	6 (13.6)	9 (20.5)
Pneumonitis	9 (20.5)	8 (18.2)	2 (4.5)	0	4 (9.1)	5 (11.4)
Endocrinopathies	7 (15.9)	0	0	5 (11.4)	0	2 (4.5)
Rash/dermatitis	4 (9.1)	4 (9.1)	0	0	1 (2.3)	0
GI disorders [†]	2 (4.5)	1 (2.3)	0	0	0	1 (2.3)
ILD	2 (4.5)	1 (2.3)	0	0	0	2 (4.5)
Other	5 (11.4)	3 (6.8)	0	0	2 (4.5)	0

Pneumonitis was also the most common AESI (15.2%) and AESI leading to discontinuation of durvalumab (8.1%) among patients with EGFR-wildtype NSCLC (n=422)

PACIFIC-R Conclusions

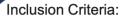
- Among real world patients with unresectable stage III NSCLC treated with consolidative durvalumab after chemoradiation, those with known EGFR-mutated NSCLC had lower PFS than those with known EGFR-wildtype NSCLC
- There were no differences detected in OS
- These data should be interpreted cautiously given the small number of patients and the PACIFIC-R study's retrospective nature

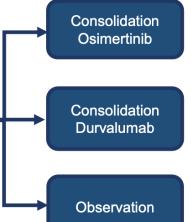
What is the optimal treatment for patients with unresectable Stage III *EGFR*-mutated NSCLC after platinum-based chemoradiation?

Abstracts from WCLC 2023 – Consolidative Therapy

Abstract 1: Peters et al. Real-World Outcomes with Durvalumab after Chemoradiotherapy in Unresectable Stage III *EGFR*-Mutated NSCLC (PACIFIC-R).

Abstract 2: Nassar et al. Consolidation EGFR-Tyrosine Kinase Inhibitor vs. Durvalumab vs. Observation in Unresectable *EGFR*-Mutant Stage III NSCLC.


Abstract 3: Smeenk et al. Tremelimumab plus Durvalumab Prior to Chemoradiotherapy in Unresectable Locally Advanced NSCLC, the Induction Trial



Study Design and Patient Characteristics

Multi-institutional retrospective analysis including 24 institutions

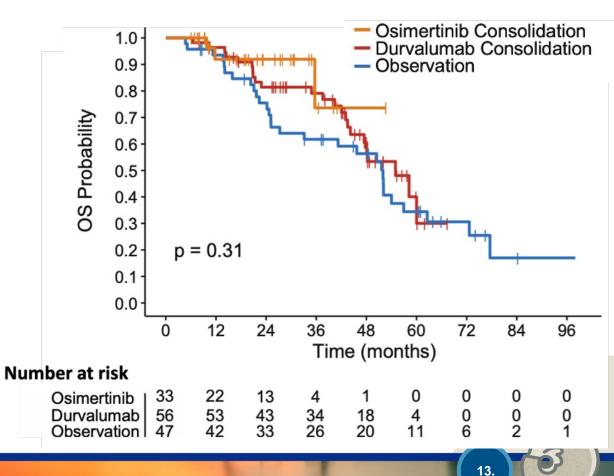
- (1) ≥ age 18 treated years 2015 or later
- (2) Stage III, locally advanced, unresectable NSCLC with *EGFR*-sensitizing mutation
- (3) Received ≥2 cycles of platinum-based concurrent chemoradiation
- (4) No disease progression at time of initiation of consolidation treatments

Co-primary endpoints: Disease-free survival (DFS) and overall survival (OS)[#]

Secondary endpoints: Consolidation treatment-related adverse events (trAE), central nervous system disease-free survival (CNS DFS)


[#]multivariable including nodal status (N stage), stage III A/B/C AJCC 8th, and age

	Total (N=136)	Osimertinib (N=33)	Durvalumab (N=56)	Observation (N=47)	P-value
Age – Median (IQR)	66 [57, 72]	65 [60, 72]	67 [56, 71]	64 [57, 72]	0.8
Sex – Female	88 (64.7%)	22 (66.7%)	34 (60.7%)	32 (68.1%)	0.7
Race					0.2
White	88 (64.7%)	22 (66.7%)	33 (58.9%)	33 (70.2%)	
Asian	36 (26.5%)	9 (27.3%)	20 (35.7%)	7 (14.9%)	
Black	6 (4.4%)	1 (3.0%)	2 (3.6%)	3 (6.4%)	
Smoking					0.06
Former/Current	55 (40.4%)	10 (30%)	32 (1.8%)	27 (57.4%)	
Never	81 (59.6%)	23 (69.7%)	38 (67.9%)	20 (42.6%)	
PD-L1 TPS*					0.4
<1%	35 (37.2%)	10 (40%)	15 (31.3%)	10 (47.6%)	
≥1%	59 (62.8%)	15 (60%)	33 (68.8%)	11 (52.4%)	
Stage					0.31
IIIA	52 (38.2%)	11 (33.3%)	20 (35.7%)	21 (44.7%)	
IIIB	68 (50.0%)	15 (45.5%)	30 (53.6%)	23 (48.9%)	6
IIIC	16 (11.8%)	7 (21.2%)	6 (10.7%)	3 (6.4%)	2)


*Tumor proportion score

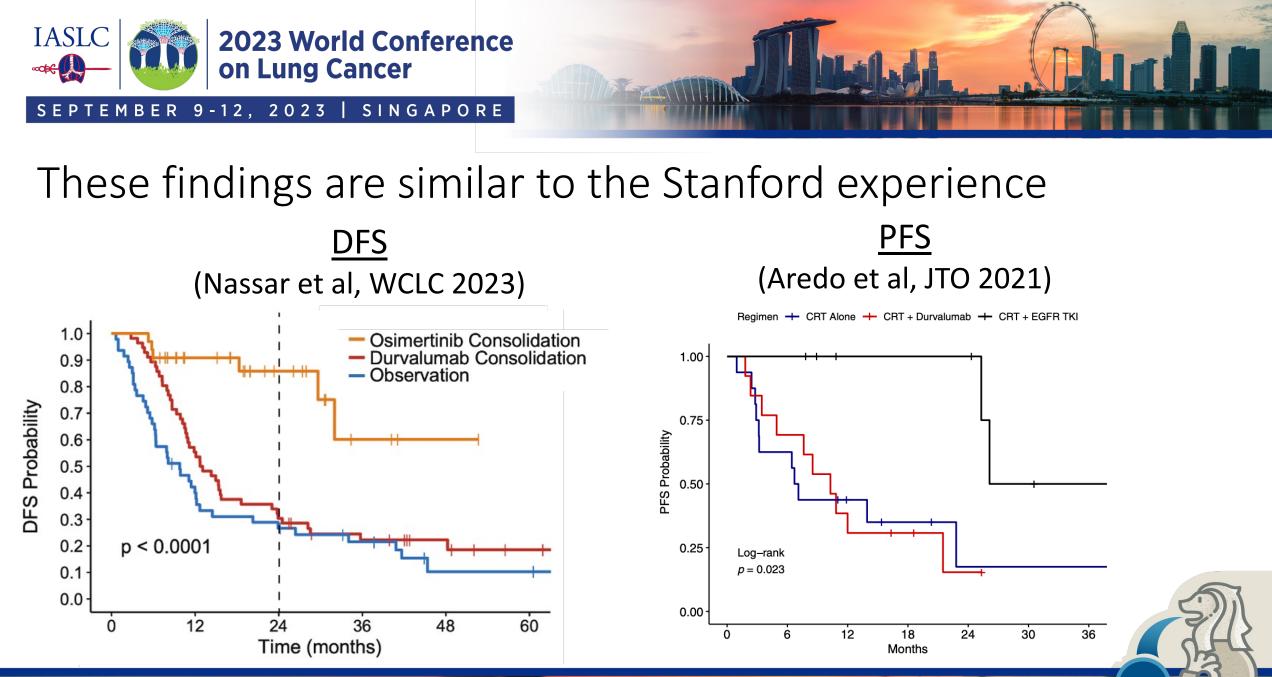
Disease Free Survival

Overall Survival

Treatment-related adverse events (trAE)

	Osimertinib (N=33)		Durvalum	ab (N=56)
	Any grade	Grade ≥3	Any grade	Grade ≥3
Any trAE [#]	16 (48%)	2 (6.1%)	27 (48%)	10 (18%)
Rash	1 (3.0%)	0 (0%)	1 (1.8%)	0 (0%)
Pneumonitis^	5 (15%)	1 (3.0%)	14 (25%)	7 (13%)
Diarrhea	1 (3.0%)	0 (0%)	2 (3.6%)	1 (1.8%)
Endocrine	0 (0%)	0 (0%)	5 (8.9%)	0 (0%)
AST/ALT elevation	1 (3.0%)	0 (0%)	2 (3.6%)	1 (1.8%)
Other	11 (33%)	1 (3.0%)	3 (5.4%)	1 (1.8%)*
trAE leading to discontinuation	4 (12%)		15 (27%)	
Steroid use	7 (21%)		20 (3	86%)

*grade 3 myocarditis


^ Does not include radiation pneumonitis

[#]Consolidation treatment-related adverse events

14 out of 37 (38%) patients who received EGFR tyrosine kinase inhibitors (TKIs) after durvalumab developed trAE on EGFR TKI, including

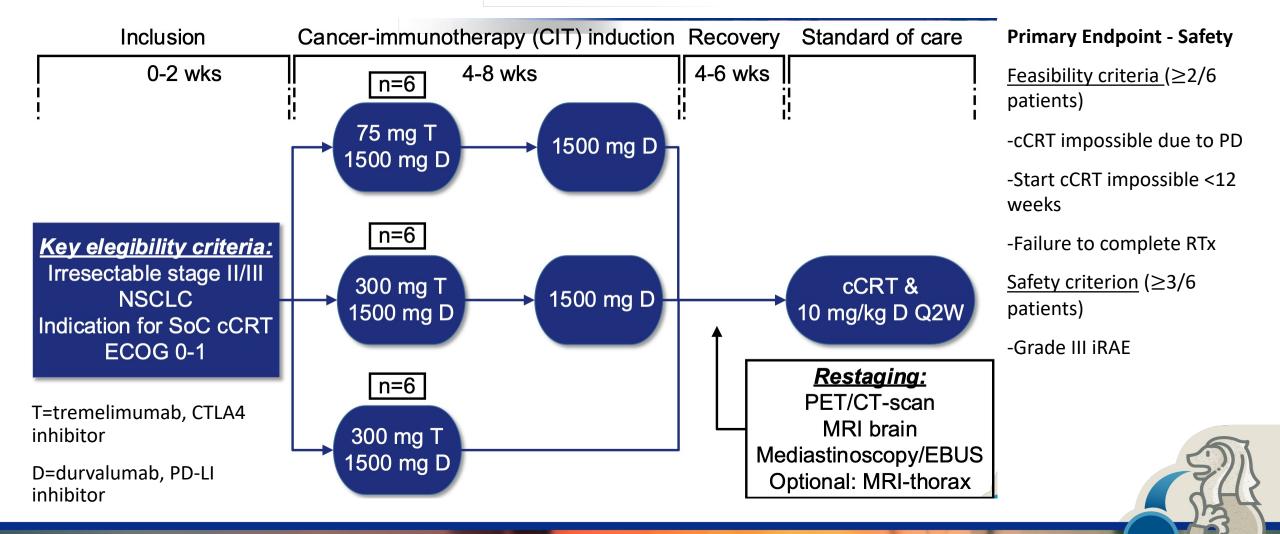
- 5 patients with pneumonitis (2 ≥grade 3)
- 5 patients with colitis $(1 \ge \text{grade 3})$

Nassar et al., Conclusions

- In this retrospective, multi-center analysis of 136 patients, there was a superior DFS with consolidation osimertinib compared to durvalumab or observation alone following chemoradiation for locally advanced EGFRmutant NSCLC
- Lack of difference in overall survival could be explained by subsequent therapies and/or limited follow-up time
- No unanticipated safety signals: pneumonitis and grade ≥3 trAE greater with durvalumab vs osimeritinib

Abstracts from WCLC 2023 – Consolidative Therapy

Abstract 1: Peters et al. Real-World Outcomes with Durvalumab after Chemoradiotherapy in Unresectable Stage III *EGFR*-Mutated NSCLC (PACIFIC-R).


Abstract 2: Nassar et al. Consolidation EGFR-Tyrosine Kinase Inhibitor vs. Durvalumab vs. Observation in Unresectable *EGFR*-Mutant Stage III NSCLC.

Abstract 3: Smeenk et al. Tremelimumab plus Durvalumab Prior to Chemoradiotherapy in Unresectable Locally Advanced NSCLC, the Induction Trial

18.

Results: Safety

	75T+1500D & 1500D [†]	300T+1500D & 1500D	300T+1500D [†]	
<u>Feasibility</u>				
cCRT impossible due to PD	0/5	1/6	0/4	
Start cCRT impossible <12 weeks	0/5	0/6	0/4	
Failure to complete RTx	0/5	0/6	1/4‡	
Safety				
Grade III ICI-related AE	1/5	2/6	3/4	
Hepatitis	1	0	0	
Colitis	0	2	2	
Pulmonary abscess	0	0	1	
Significant grade II ICI-related AE	0/5	2/6	0/4	

[†]One withdrawal of consent during CIT-induction

[‡]Due to pulmonary abscess

18 SAEs in 10 patients

4 patients received infliximab due to AE

Results: Efficacy

Response evaluation according to RECIST 1.1

	CR	PR	SD	PD	NA [†]
Post CIT-induction	0	8	5	2	2
Post cCRT	1	6	1	0	9
Best response	3	7	3	2	2

[†]Two unavailable due to withdrawal of consent

Restaging post-CIT:

9/12 with multilevel N2/N3 downstaged to N0/1 or single level N2

Post-cCRT:

2 patients trimodality, 1 with pCR

11/13 received Durvalumab post-CCRT

Conclusion

Induction with high dose tremelimumab and durvalumab prior to cCRT was associated with unacceptable toxicity

Induction with dual checkpoint inhibition showed relevant clinical activity indicated by the high numbers of pathological nodal downstaging

Takeaways from WCLC 2023, systemic therapy in locally advanced NSCLC

Abstract 1: Peters et al. Real-World Outcomes with Durvalumab after Chemoradiotherapy in Unresectable Stage III *EGFR*-Mutated NSCLC (PACIFIC-R).

Abstract 2: Nassar et al. Consolidation EGFR-Tyrosine Kinase Inhibitor vs. Durvalumab vs. Observation in Unresectable *EGFR*-Mutant Stage III NSCLC.

The role of durvalumab consolidation in patients with unresectable Stage III *EGFR*-mutated NSCLC is extremely limited. More data to come with the ongoing LAURA study.

Abstract 3: Smeenk et al. Tremelimumab plus Durvalumab Prior to Chemoradiotherapy in Unresectable Locally Advanced NSCLC, the Induction Trial

Dual immunotherapy prior to concurrent chemoradiation for locally advanced NSCLC is associated with unacceptable toxicity

