

Master Lecture Series: Hormone Receptor+ BC

Virginia F. Borges, MD, MMSc

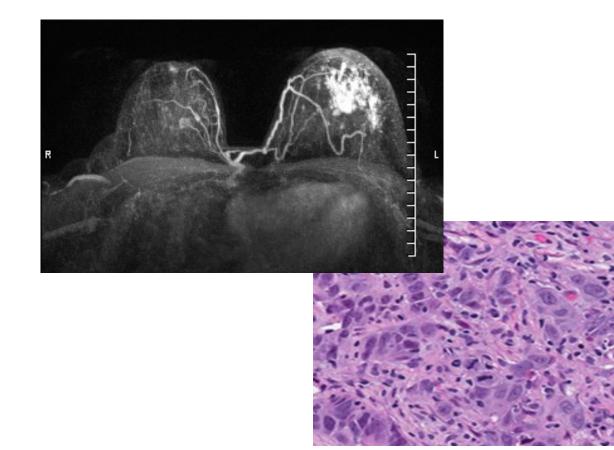
Professor of Medicine

University of Colorado Anschutz Medical Center

University of Colorado Cancer Center

Young Women's Breast Cancer Translational Program

Objectives

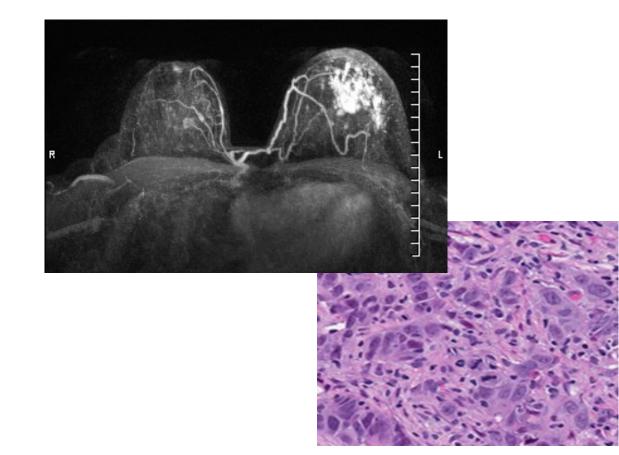

- Understand the current controversies for HR+, Her2- young women's breast cancer in the early stage
- Identify the current algorithm of treating HR+ MBC
- Review recent update on current standard of care and emerging novel therapies
- Identify how to incorporate the latest updates into your clinic

Friday afternoon in clinic....

35-year-old woman presents for consultation for her breast cancer

Breast Cancer History:

2 weeks ago, presented with L breast mass Stage II/prognostic stage I [T2N1M0] Grade 2, Ki-67 20% ER 60%, PR 20%, Her 2 IHC 0% No identified gene mutation


Friday afternoon in clinic....

35-year-old woman presents for consultation for her breast cancer

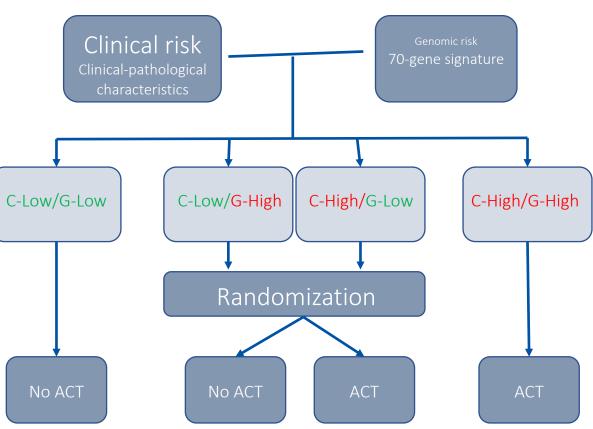
Breast Cancer History:

2 weeks ago, presented with L breast mass Stage II/prognostic stage I [T2N1M0] Grade 2, Ki-67 20% ER 60%, PR 20%, Her 2 IHC 0%

Surgery first? Genomic test? Neoadjuvant or adjuvant chemo? Other things to remember?

Fertility Issues

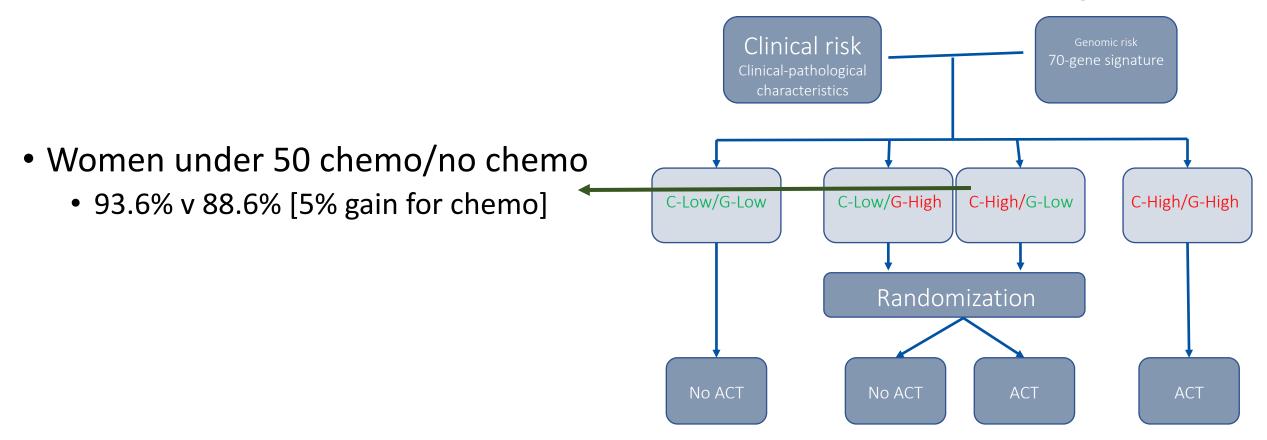
- If a women has never been pregnant, her fertility status is an unknown
 - Fertility declines after age 35, normally
- Modern chemotherapy regimens less frequently alter fertility than older ones
 - Delay of therapy for egg harvesting
 - Oocytes/ovarian tissue if NO Acceptable Sperm on hand.
- Post treatment pregnancy does NOT increase breast cancer recurrence risk [POSITIVE trial data, NEJM 2023]
- Right now, is a REALLY BAD TIME for pregnancy, so fertility must be controlled in a definitive manner.

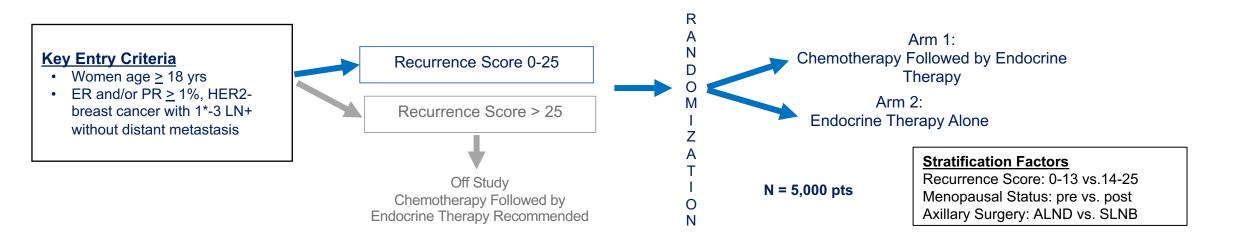


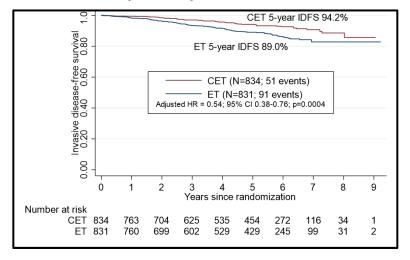
Inclusion criteria

- Women aged 18-70
- Operable invasive breast cancer
- Tumor size max 5 cm
- 0-3 positive lymph nodes
- No distant metastasis

MINDACT trial design

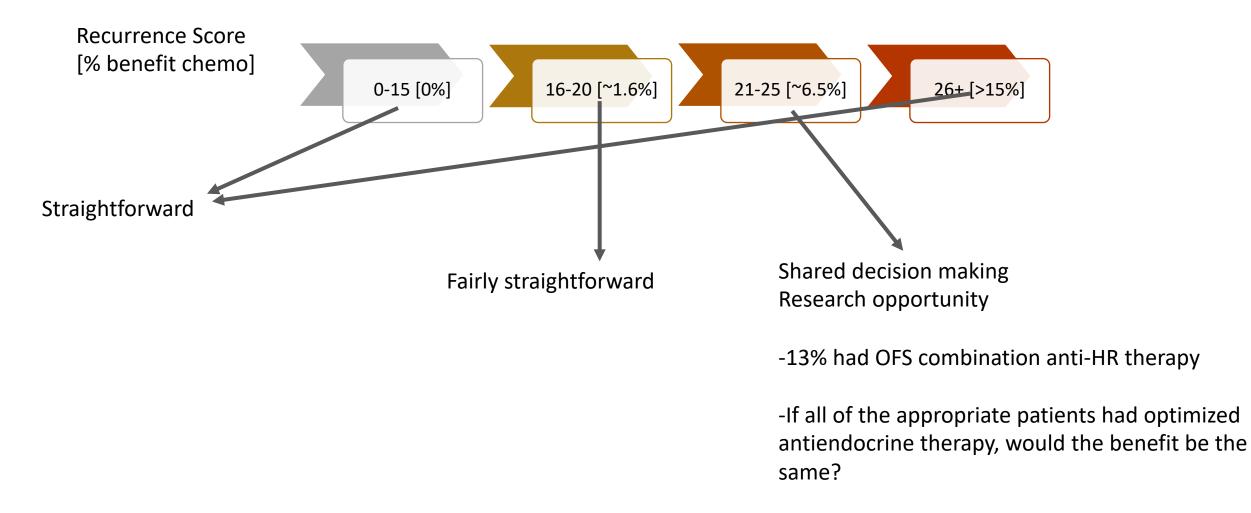

Cardoso (2016) NEJM;375:717-729. ; Piccart (2021) Lancet Oncol. 2021; 22:476-488


MINDACT trial design


Cardoso (2016) NEJM;375:717-729. ; Piccart (2021) Lancet Oncol. 2021; 22:476–488

Josephine Lopes Cardozo j.lopes.cardozo@nki.nl

RxPONDER: A Clinical Trial <u>Rx</u> for <u>Po</u>sitive <u>Node</u>, <u>Endocrine</u> <u>R</u>esponsive Breast Cancer



IDFS premenopausal women

- Premenopausal women with RS 0-25 had benefit from the addition of chemotherapy to endocrine therapy
- 46% decrease in IDFS events; benefit was observed across premenopausal subgroups
- 53% decrease in deaths, leading to a 5-year OS absolute improvement of 1.3%
- 1 node v 2-3 nodes equal benefit at ~5% benefit

Chemotherapy Benefits for Node Negative Premenopausal Women: TailorRX Results Overview

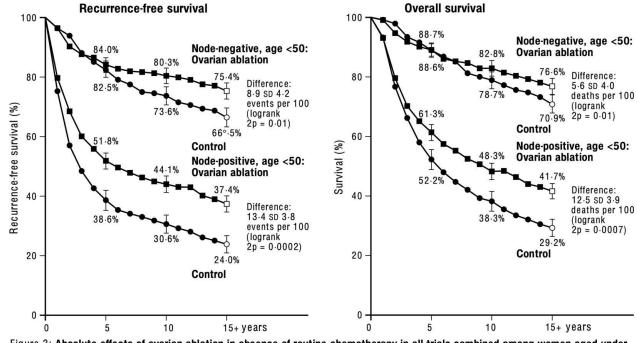
J Sporano, et al. N Engl J Med 2018;379:111-21. DOI: 10.1056/NEJMoa1804710

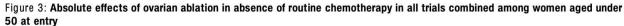
Considerations of Adjuvant Chemo for HR+ Cancer

Chemotherapy offers benefit for node positive patients

Further refinement of who truly needs chemo is warranted

Where do we go next to better define the mechanisms of metastasis and improve therapy?

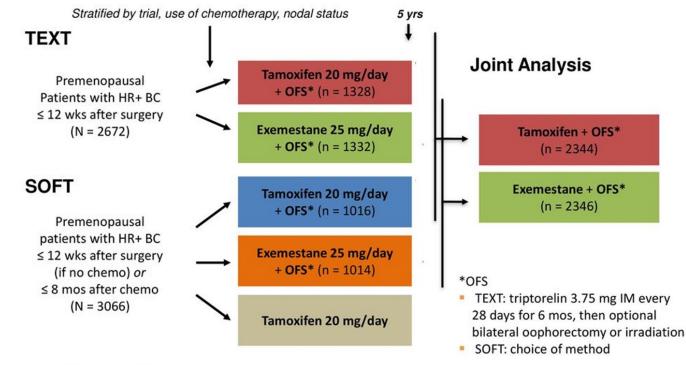



Articles

Ovarian ablation in early breast cancer: overview of the randomised trials

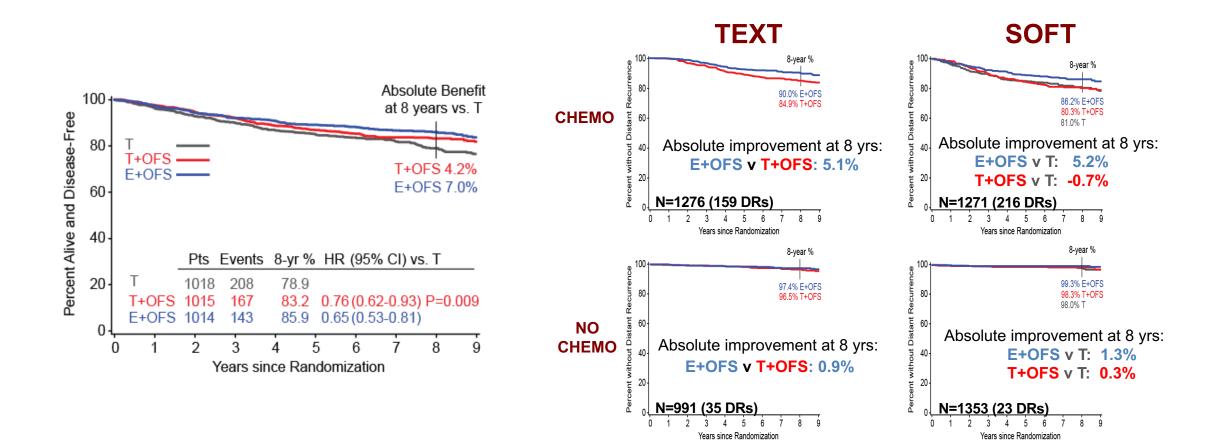
Early Breast Cancer Trialists' Collaborative Group*

- Early review of trials randomizing ovarian ablation/suppression vs none (N=2012)
- ~13% absolute benefit for DFS

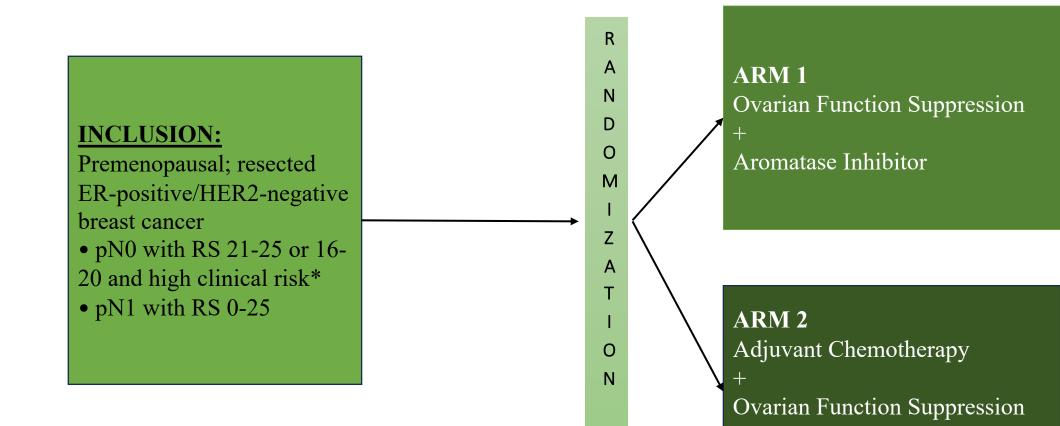


EBCTCG, Lancet 1996

Optimized antiendocrine therapy


- Hormone blocking therapy is the best treatment for HR+ BC
- Combination therapy has shown improved outcomes, especially for very young women, node + disease and 'high-risk'

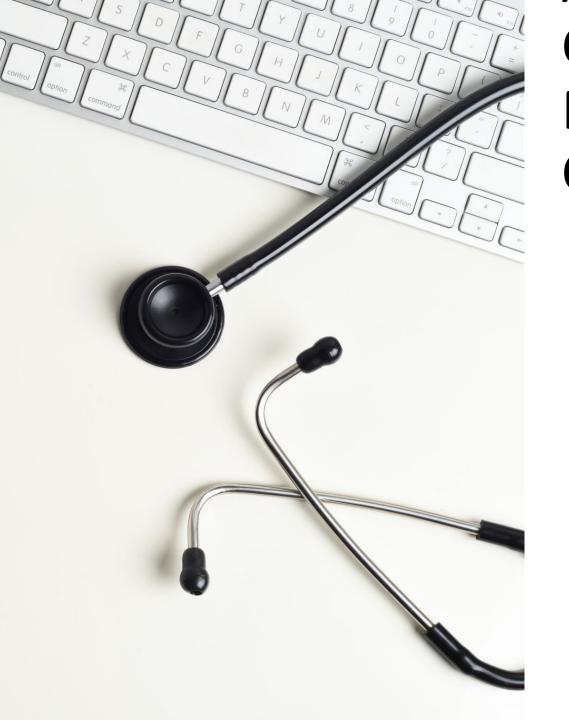
TEXT and SOFT Trials: Comparison of Tamoxifen or Exemestane With OFS



Pagani O, et al. ASCO 2014. Abstract LBA1.

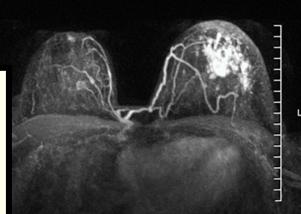
SOFT and TEXT data: 8-Year Update: T+AI Significantly Improves DFS

NRG-BR009: OFSET trial



STRATIFICATION

- Nodal/RS Status (pN0 RS 16-25 vs pN1 RS 0-15 and pN1 RS 16-25)
- Intent) to receive CDK4/6 inhibitor (yes; no)
- Age (18-39; 40 and older)


NRG Chair: Eleftherios Mamounas, MD, MPH

Aromatase Inhibitor

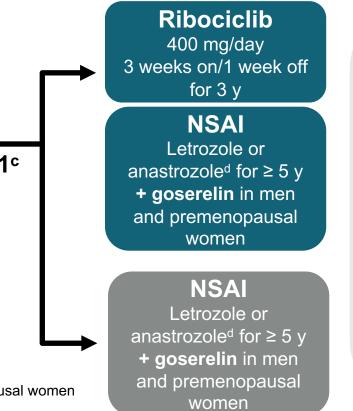
Considerations for High-Risk HR+ Early Breast Cancer

Oncotype was 22 Neoadjuvant chemo with AC-T Surgery with RD OFS and AI for endocrine therapy Other things to remember?

Bisphosphonates

CDK 4/6 inhibitors

PARP inhibition if +BRCA carrier


Ribociclib and endocrine therapy as adjuvant treatment in patients with HR+/HER2- early breast cancer: primary results from the Phase III NATALEE trial

Dennis Slamon,¹ Daniil Stroyakovskiy,² Denise A. Yardley,³ Chiun-Sheng Huang,⁴ Peter A. Fasching,⁵ John Crown,⁶ Aditya Bardia,⁷ Stephen Chia,⁸ Seock-Ah Im,⁹ Miguel Martin,¹⁰ Sherene Loi,¹¹ Binghe Xu,¹² Sara Hurvitz,¹³ Carlos Barrios,¹⁴ Michael Untch,¹⁵ Rebecca Moroose,¹⁶ Frances Visco,¹⁷ Rodrigo Fresco,¹⁸ Tetiana Taran,¹⁹ Gabriel N. Hortobagyi²⁰

¹David Geffen School of Medicine at UCLA, Los Angeles, CA; ²Moscow City Oncology Hospital No. 62 of Moscow Healthcare Department, Moscow Oblast, Russia; ³Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN; ⁴National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan; ⁵University Hospital Erlangen Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; ⁶St. Vincent's University Hospital, Dublin, Ireland; ⁷Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA; ⁸British Columbia Cancer Agency, Vancouver, BC, Canada; ⁹Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; ¹⁰Instituto de Investigación Sanitaria Gregorio Marañon, Centro de Investigación Biomédica en Red de Cáncer, Grupo Español de Investigación en Cáncer de Mama, Universidad Complutense, Madrid, Spain; ¹¹Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ¹²Department of Medical Oncology Cancer Hospital, Chinese Academy of Medical Sciences (CAMS), and Peking Union Medical College (PUMC), Beijing, China; ¹³University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA; ¹⁴Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil; ¹⁵Interdisciplinary Breast Cancer Center, Helios Klinikum Berlin-Buch, Berlin, Germany; ¹⁶Orlando Health Cancer Institute, Orlando, FL; ¹⁷National Breast Cancer Coalition, Washington DC; ¹⁸TRIO - Translational Research in Oncology, Montevideo, Uruguay; ¹⁹Novartis Pharma AG, Basel, Switzerland; ²⁰Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX

NATALEE study design^{1,2}

 Adult patients with HR+/HER2- EBC **Ribociclib** Prior ET allowed up to 12 mo 400 mg/day Anatomical stage IIA^a • N0 with: for 3 y • Grade 2 and evidence of high risk: NSAI • Ki-67 ≥ 20% Oncotype DX Breast Recurrence Score ≥ 26 or Letrozole or R 1:1° · High risk via genomic risk profiling Grade 3 + goserelin in men • N1 and premenopausal Anatomical stage IIB^a women N0 or N1 Anatomical stage III NSAL • N0, N1, N2, or N3 Letrozole or $N = 5101^{b}$ **Randomization stratification** Anatomical stage: || vs ||| Menopausal status: men and premenopausal women vs postmenopausal women women Receipt of prior (neo)adjuvant chemotherapy: yes vs no Geographic location: North America/Western Europe/Oceania vs rest of world

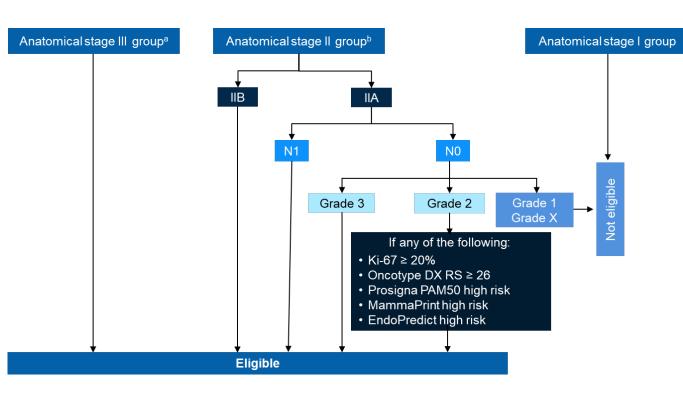
Primary End Point

iDFS using STEEP criteria

Secondary End Points

- Recurrence-free survival
- Distant disease-free survival
- OS
- PROs
- Safety and tolerability
- PK

Exploratory End Points


- Locoregional recurrence-free survival
- Gene expression and alterations in tumor ctDNA/ctRNA samples

^a Enrollment of patients with stage II disease was capped at 40%. ^b 5101 patients were randomized from 10 Jan 2019 to 20 April 2021. ^c Open-label design. ^d Per investigator choice.

CT, chemotherapy; ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PAM50, prediction analysis of microarray 50; PK, pharmacokinetics; PRO, patient reported outcome; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials.

^{1.} ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03701334. Accessed April 6 2023. 2. Slamon DJ, et al. J Clin Oncol. 2019;37(15 suppl) [abstract TPS597].

NATALEE: eligible patients

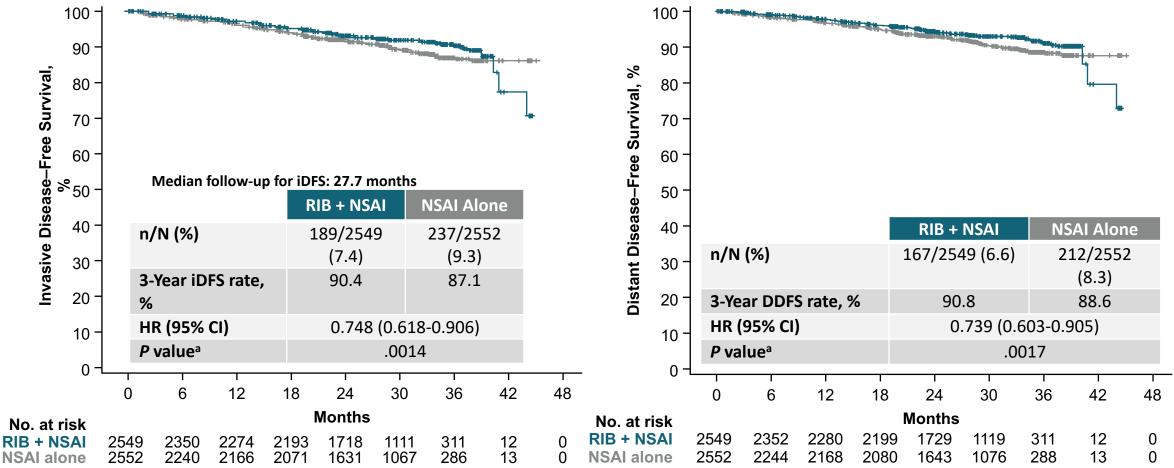
AJCC anatomical staging ¹	TN (M0)	NATALEE ^{2,3}
Stage IA	T1N0	×
Stage IB	T0N1mi	×
	T1N1mi	×
Stage IIA	T0N1	\checkmark
	T1N1	\checkmark
	T2N0	G3, or G2 with Ki-67 ≥ 20% or high genomic risk ^c
Stage IIB	T2N1	\checkmark
	T3N0	\checkmark
Stage IIIA	T0N2	\checkmark
	T1N2	\checkmark
	T2N2	\checkmark
	T3N1	\checkmark
	T3N2	\checkmark
Stage IIIB	T4N0	\checkmark
	T4N1	\checkmark
	T4N2	\checkmark
Stage IIIC	Any TN3	\checkmark

AJCC, American Joint Committee on Cancer; G, grade; M, metastasis; N0, no nodal involvement;; N1mi, nodal micrometastases; N1, 1-3 axillary lymph nodes; N2, 4-9 axillary lymph nodes; N3, \geq 10 axillary lymph nodes; RS, Recurrence Score; T, tumor; T0, no evidence of primary tumor; T1, tumor is 2cm or less; T2, Tumor is more than 2cm but less than 5cm; T3, tumor of any size growing into the chest wall or skin, includes inflammatory breast cancer.

^a Including stage IIIA (N1/N2), IIIB (N0/N1/N2), or IIIC (N3). ^bCapped at 40% (≈ 2000 patients). Simplified inclusion criteria are used in the illustration. ^c High risk as determined by Oncotype DX, Prosigna PAM50, MammaPrint, or EndoPredict EPclin Risk Score.

1. Amin MB, Edge SB, Greene FL, et al, eds. AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer; 2017:587-636. 2. Slamon DJ, et al. J Clin Oncol. 2019;37(suppl 15) [abstract TPS597]. 3. Data on file. NATALEE CLEE011012301C (TRIO033). Clinical study protocol. V4.0. Novartis Pharmaceuticals Corp; August 27, 2020.

Baseline characteristics

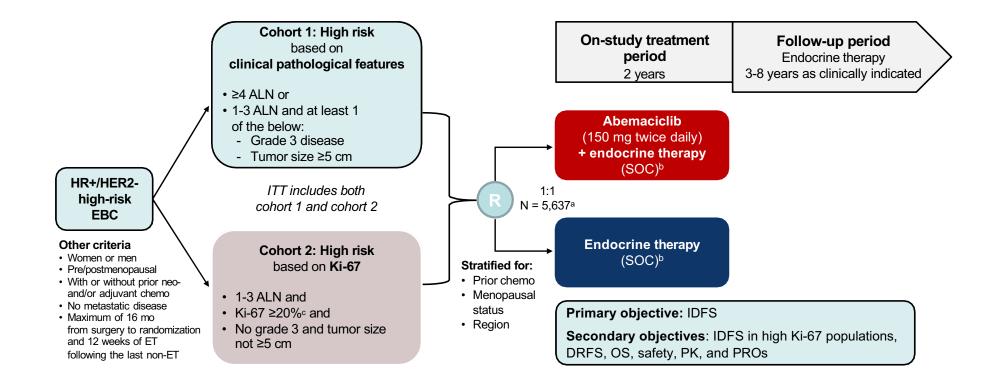

Deveneter	RIB + NSAI	NSAI Alone	All Patients
Parameter	n = 2549	n = 2552	N = 5101
Age, median (min-max), years	52 (24-90)	52 (24-89)	52 (24-90)
Menopausal status, n (%)			
Men ^a and premenopausal women	1126 (44)	1132 (44)	2258 (44)
Postmenopausal women	1423 (56)	1420 (56)	2843 (56)
Anatomical stage, ^{b,c} n (%)			
Stage IIA	479 (19)	521 (20)	1000 (20)
Stage IIB	532 (21)	513 (20)	1045 (20)
Stage III	1528 (60)	1512 (59)	3040 (60)
Nodal status at diagnosis, n (%)			
NX	272 (11)	264 (10)	536 (11)
N0	694 (27)	737 (29)	1431 (28)
N1	1050 (41)	1049 (41)	2099 (41)
N2/N3	483 (19)	467 (18)	950 (19)
Prior ET, n (%) ^d			
Yes	1824 (72)	1801 (71)	3625 (71)
Prior (neo)adjuvant CT, n (%)			
Yes	2249 (88)	2245 (88)	4494 (88)
ECOG PS, n (%)	× ,	· · /	
0	2106 (83)	2132 (84)	4238 (83)
1	440 (17)	418 (16)	858 (17)

Patient disposition

Median follow-up of 34.0 months (minimum, 21 months)^a

Parameter, n %	RIB + NSAI n = 2549	NSAI alone n = 2552
Patients treated Patients with treatment ongoing ^b	2526 (99) 1984 (78)	2442 (96) 1826 (72)
Patients who discontinued NSAI	542 (21)	617 (24)
Primary reason for treatment discontinuation (NSAI) ^c Adverse Event Patient/Physician decision Disease relapse Other ^d Lost to follow-up Death ^e	118 (5) 256 (10) 142 (6) 13 (0.5) 8 (0.3) 5 (0.2)	105 (4) 296 (12) 186 (7) 15 (0.6) 12 (0.5) 3 (0.1)
Patients who completed ribociclib treatment ≥2 years (including ongoing) Completed 3 years RIB Primary reason for early discontinuation of RIB ^f	1449 (57) 515 (20)	-
Adverse Event	477 (19)	-

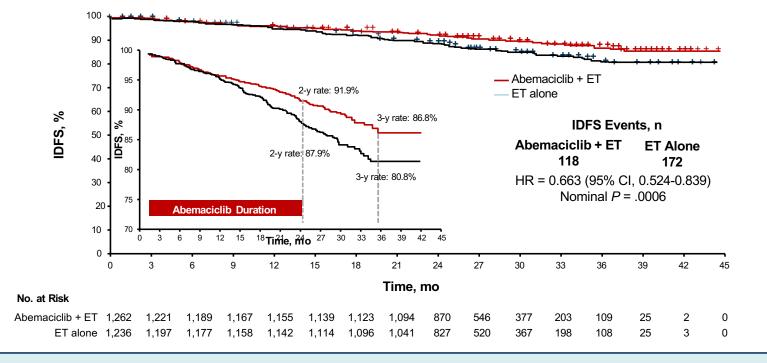
Ribociclib achieved significant iDFS benefit


Absolute iDFS benefit with RIB + NSAI at 3 years was 3.3%

Absolute distant disease–free survival benefit with RIB + NSAI at 3 years was 2.2%

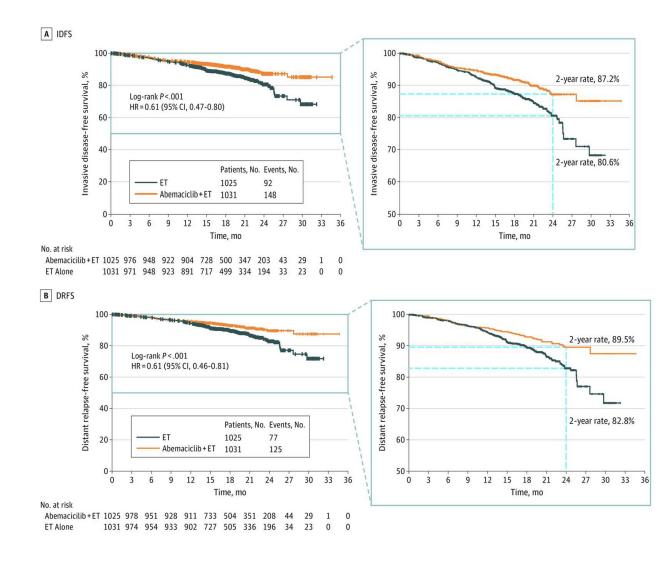
Ongoing patients will remain on treatment and follow-up will continue as prespecified

Slamon et.al. ASCO 2023


monarchE Study Design

^a Recruitment from July 2017 to August 2019. ^b Endocrine therapy of physician's choice (eg, aromatase inhibitors, tamoxifen, LHRH agonist). ^c Ki-67 expression centrally assessed in all patients from both cohorts with suitable untreated breast tissue using Ki-67 immunohistochemistry.

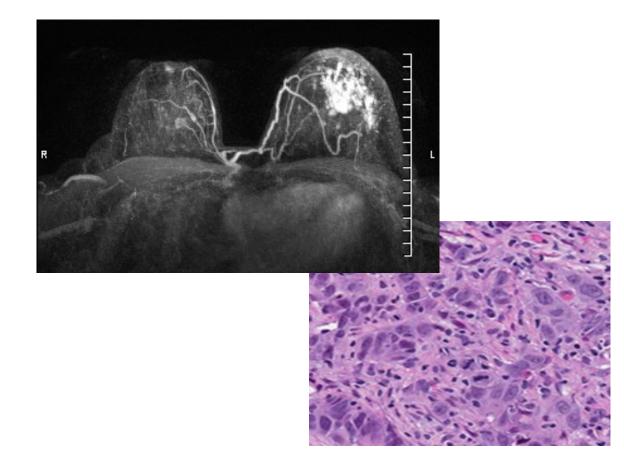
O'Shaughnessy J et al. 2021 ESMO. Abstract VP8-2021; Harbeck N et al. Ann Oncol. 2021; 32(12):1571-1581.


monarchE: IDFS in ITT Ki-67 High (≥ 20%) Population

33.7% reduction in the risk of developing an IDFS event The absolute difference in IDFS rates between arms was 6.0% at 3 years

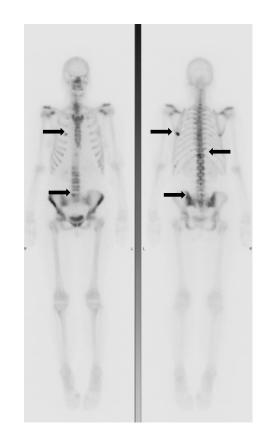
O'Shaughnessy J et al. 2021 ESMO. Abstract VP8-2021; Harbeck N et al. Ann Oncol. 2021; 32(12):1571-1581.

monarchE IDFS and DDFS following neoadjuvant chemotherapy



Friday afternoon in clinic....

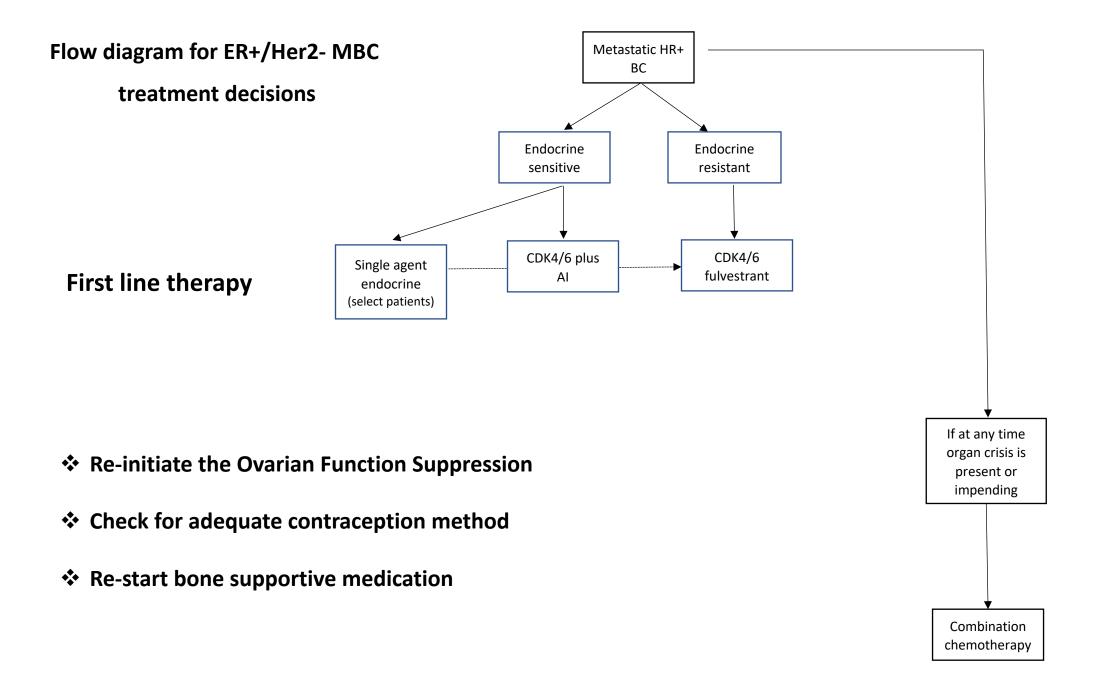
38-year-old woman presents for consultation for her metastatic breast cancer


Breast Cancer History:

5 years ago, presented with L breast mass, BRCA2+ Stage III [T3N1M0] Grade 2, Ki-67 19% ER 60%, PR 40%, Her 2 IHC 0% AC-T neoadjuvant chemo Bilateral mastectomies with reconstruction ypT1c,ypN1 (1 node) residual disease PMCWXRT Ovarian function suppression tamoxifen x 3 years tubal removal for BRCA risk reduction, still has ovaries zolendronic acid q 6 months x 3 doses

Friday afternoon in clinic....

38-year-old woman presents for consultation for her metastatic breast cancer


She had noted a couple of weeks ago reporting vague back pain that did not go away with conservative measures after 6 weeks.

> Labs were obtained and normal other than alk phos 1.5x ULN and CA27-29 of 65

Completion staging shows: bone only metastatic recurrence as seen by technetium-99m scintigraphic bone scan. CT CAP with single liver lesion.

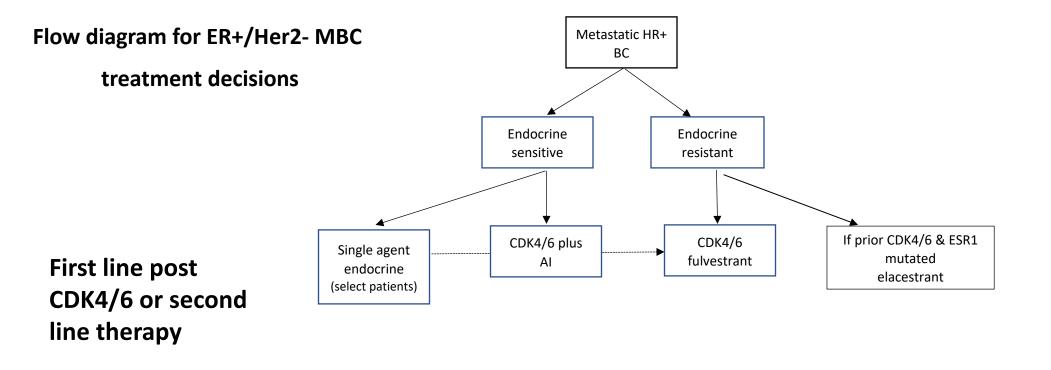
Biopsy of liver lesion confirmed ER+ PR- Her2 0 by IHC and ESR1 WT, PIK3Ca mutated exon 9 by genomic analysis

What should her first line systemic therapy be?

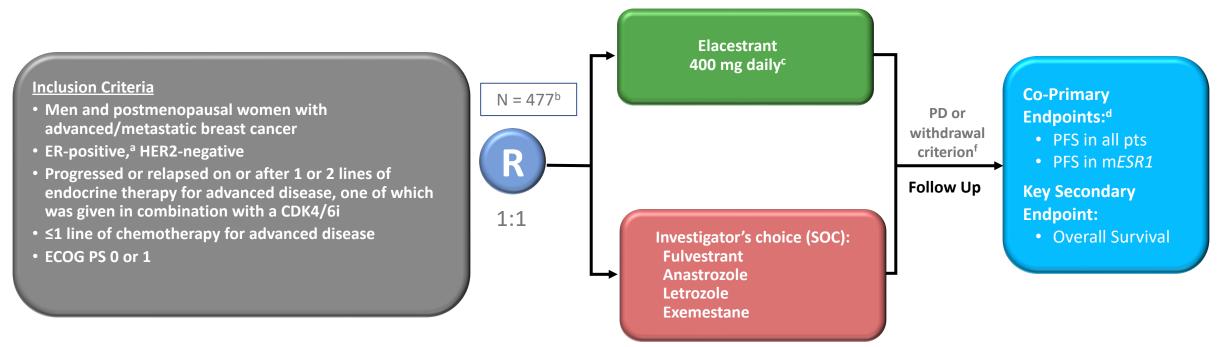
CDK 4/6 inhibitor	Study name	ET partner ¹	Menopausal Status ²	Disease Status ³	PFS⁴ Exp v control (HR)	OS ⁵
palbociclib	Paloma-1 ³⁴	letrozole	Pre/post	Al sens	20.2 v 10.2 (0.48)	No
	Paloma-2 ³⁵				27.6 v 14.5 (0.56)	NR
	Paloma-3 ³⁸	fulvestrant		Al resis	9.5 v 4.6 (0.46)	NS
ribociclib	Monaleesa-241	letrozole	Post	AI sens	25.3 v 16 (0.56)	yes
	Monaleesa-343	fulvestrant		AI mixed	20.5 v 12.8 (0.59)	yes
	Monaleesa-744	Tam/NSAI	Pre	AI sens	23.8 v 13.3 (0.55)	yes
abemaciclib	Monarch-1 ⁴⁹	None (phase II)	Pre/post	Al resis	6.0 (single arm)	N/A
	Monarch-2 ⁴⁶	fulvestrant		Al resis	16.4 v 9.3 (0.55)	yes
	Monarch-347	NSAI		Al sens	28.1 v 14.7 (0.54)	NR

A subsequent Friday afternoon in clinic....

38-year-old woman presents for follow up for her metastatic breast cancer


HPI:

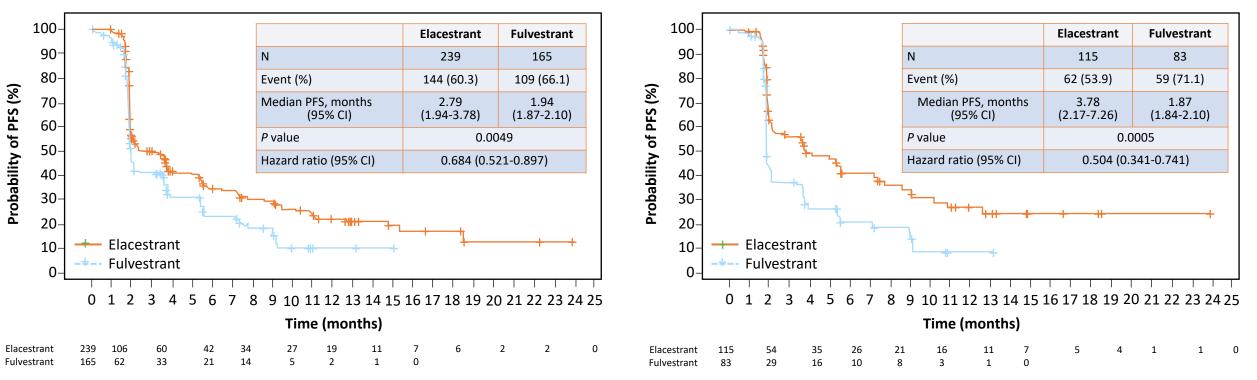
She's noted more fatigue LFTs are newly elevated CA27-29 has risen to 105 She completes staging scans prior to seeing you


Completion staging shows: bones look stable as seen by technetium-99m scintigraphic bone scan BUT disease progression with multiple new liver lesions as seen on contrast enhanced abdominal CT scan

What should her second line therapy be?

For postmenopausal females or adult males with ER-positive, HER2-negative, *ESR1*-mutated disease after progression on one or two prior lines of endocrine therapy, including one line containing a CDK4/6 inhibitor.

Elacestrant, an oral selective estrogen receptor degrader (SERD), vs investigator's choice of endocrine monotherapy for ER+/HER2- advanced/metastatic breast cancer (mBC) following progression on prior endocrine and CDK4/6 inhibitor therapy: Results of EMERALD phase 3 trial


Stratification Factors:

- ESR1-mutation status^e
- Prior treatment with fulvestrant
- Presence of visceral metastases

PFS: Elacestrant vs Fulvestrant (All Patients and mESR1 Group)

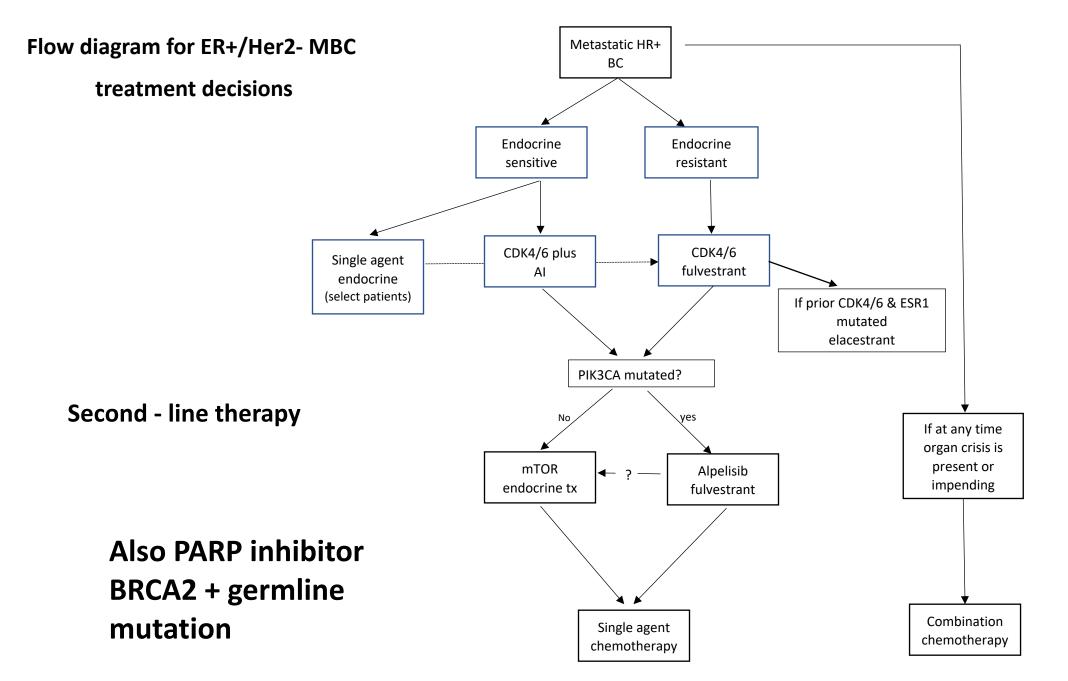
Patients With Tumors Harboring *mESR1*

All Patients

Elacestrant demonstrated a significant improvement versus Fulvestrant as SOC in patients with ER+/HER2advanced/metastatic breast cancer and *mESR1* following CDK4/6i therapy

Baseline Demographic and Disease

Characteristics


		lacestrant	SC	DC
Parameter	All (N=239)	<i>mESR1</i> (N=115)	All (N=238)	<i>mESR1</i> (N=113)
Median age, years (range)	63.0 (24-89)	64.0 (28-89)	63.5 (32-83)	63.0 (32-83)
Gender, n % Female Male	233 (97.5) 6 (2.5)	115 (100) 0	237 (99.6) 1 (0.4)	113 (100) 0
ECOG PS, n (%) 0 1 >1	143 (59.8) 96 (40.2) 0	67 (58.3) 48 (41.7) 0	135 (56.7) 102 (42.9) 1 (0.4)	62 (54.9) 51 (45.1) 0
Visceral metastasis*, n (%)	163 (68.2)	81 (70.4)	168 (70.6)	83 (73.5)
Bone-only disease, n (%)	38 (15.9)	14 (12.2)	29 (12.2)	14 (12.4)
Prior adjuvant therapy, n (%)	158 (66.1)	62 (53.9)	141 (59.2)	65 (57.5)
Number of prior lines of endocrine therapy,** n (%) 1 2	129 (54.0) 110 (46.0)	73 (63.5) 42 (36.5)	141 (59.2) 97 (40.8)	69 (61.1) 44 (38.9)
Number of prior lines of chemotherapy,** n (%) 0 1	191 (79.9) 48 (20.1)	89 (77.4) 26 (22.6)	180 (75.6) 58 (24.4)	81 (71.7) 32 (28.3)

*Includes lung, liver, brain, pleural, and peritoneal involvement **In the advanced/metastatic setting

EMERALD Study Conclusions

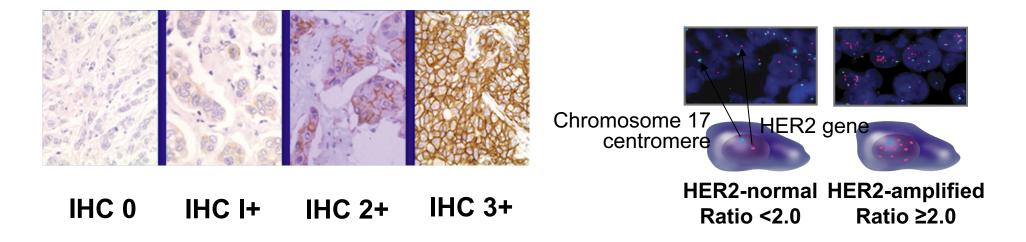
- Elacestrant is the first oral SERD that demonstrated a statistically significant and clinically meaningful improvement in PFS vs SOC endocrine therapy in a randomized global phase 3 study in men and postmenopausal women with ER+/HER2- mBC in the 2nd/3rd-line post-CDK4/6i setting:
 - 30% reduction in the risk of progression or death with elacestrant vs SOC in all patients (HR=0.697 [95% CI: 0.552 – 0.880]; P=0.0018)
 - 45% reduction in the risk of progression or death with elacestrant vs SOC in patients with *mESR1* (HR=0.546 [95% CI: 0.387 – 0.768]; *P*=0.0005)

• Elacestrant was well tolerated with a predictable and manageable safety profile consistent with other endocrine therapies.

Second line pivotal trials

- SOLAR-1 PFS 11 months v 5.7 months alpelisib + fulvestrant v. ful
 Al resistant, 6% had had CDK4/6 inhibitor therapy
- OlympiAD olaparib v SOC chemo: 100 ER+ no PFS difference seen
- EMBRACA –talazoparib v SOC chemo -241 HR+ -improved PFS [HR 0.47] and prolonged QOL benefit , no OS difference

A few years later....

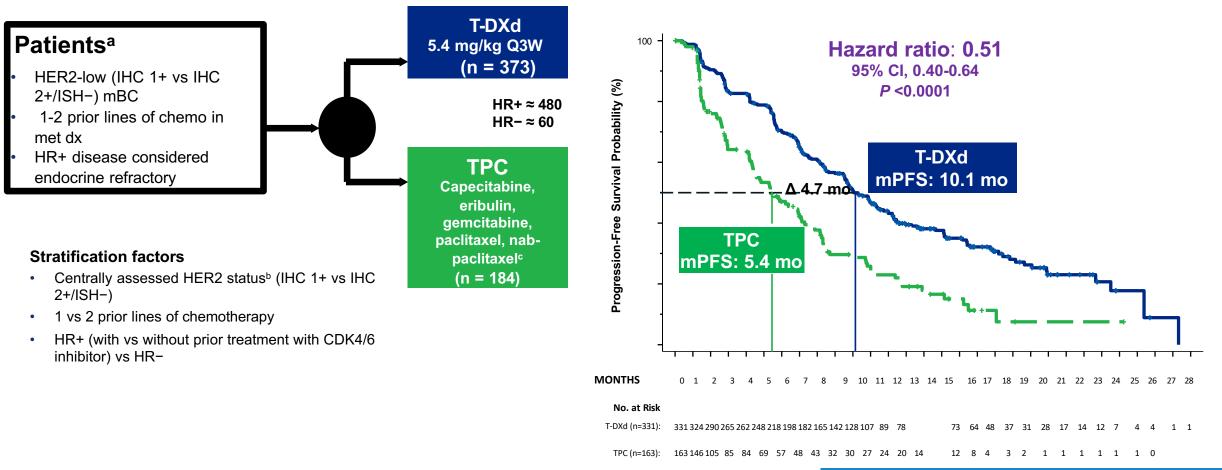

HR positive and Her 2 negative unresectable or stage IV (M1) disease

M1 in Visceral Crisis or Endocrine Refractory				
Setting Subtype/Biomarker Regimen				
First Line	No germline BRCA 1/2	Systemic chemotherapy		
Germline BRCA 1/2 PARPi (olaparib, talazoparib)				

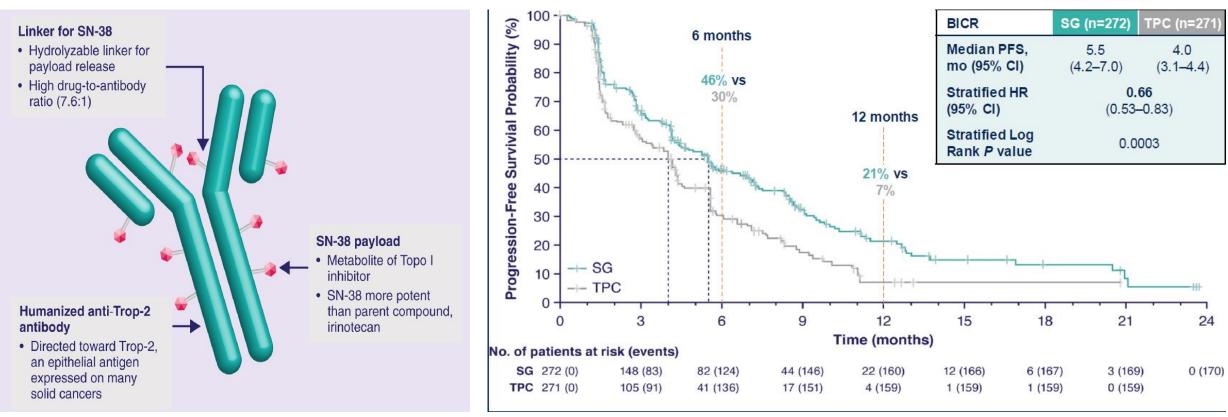
Systemic Chemotherapy for HR-Positive or -Negative and HER2-Negative ^{a,s,t,u}				
Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances		
 Anthracyclines Doxorubicin Liposomal doxorubicin Taxanes Paclitaxel 	 Cyclophosphamide Docetaxel Albumin-bound paclitaxel Epirubicin Ixabepilone 	 AC (doxorubicin/cyclophosphamide) EC (epirubicin/cyclophosphamide) CMF (cyclophosphamide/ methotrexate/fluorouracil) Docetaxel/capecitabine GT (gemcitabine/paclitaxel) 		
 Anti-metabolites Capecitabine Gemcitabine 		Gemcitabine/pacitaxel Gemcitabine/carboplatin Carboplatin + paclitaxel or albumin-bound paclitaxel		
 Microtubule inhibitors Vinorelbine Eribulin 				

HR positive and Her 2 negative unresectable or stage IV (M1) disease

M1 in Visceral Crisis or Endocrine Refractory				
Setting	Subtype/Biomarker Regimen			
First Line	No germline BRCA 1/2	Systemic chemotherapy		
	Germline BRCA 1/2	PARPi (olaparib, talazoparib)		
"Second Line"	Her 2 low	TDxD		
	Not Her 2 low	Sacituzumab-govitecan		



NCCN Breast Cancer Guidelines Version 4.2023 BINV-Q 1 of 14, accessed April 9 2023


DESTINY-Breast04: First Randomized Phase 3 Study of T-DXd for HER2-low mBC

An open-label, multicenter study (NCT03734029)

PFS Hormone receptor-positive

TROPiCS-02 phase 3 study of Sacituzumab-govitecan (SG) in patients (pts) with hormone receptor—positive/HER2-negative (HR+/HER2–) metastatic breast cancer (mBC)

ASCO 2023: Final overall survival (OS) analysis

Rugo HS et al. ASCO 2022.

OS SG versus TPC (median, 14.5 vs 11.2 mo; HR, 0.79 [95% CI, 0.65-0.95]; nominal P=0.01).

SG improved OS versus TPC in the HER2 IHC0 (median, 13.6 vs 10.8 mo; HR, 0.86 [95% CI, 0.63-1.13]) and HER2-low (median, 15.4 vs 11.5 mo, HR, 0.74 [95% CI, 0.57-0.97) groups.

ER+ Her2- Conclusions:

- Controversy remains over the true benefit of chemotherapy in premenopausal women with HR+/Her2- disease – watch for the OFSET trial!
- Importance of looking for the biomarkers = BRCA, ESR1, PIK3CA, Her 2 IHC results and status as low v true negative.
- Outstanding results with first line CDK4/6 inhibitor combinations in AI-sensitive disease
- Novel oral SERD elecestrant shows PFS advantage over fulvestrant or AI first line therapy.
- Ongoing trials will compare CDK4/6 options and other novel SERDS
- Second line or AI resistant disease therapy has options:
 - Fulvestrant plus CDK 4/6 inhibition if CDK4/6 naïve
 - Alpelisib if PIK3ca mutated
 - Talazaparib if BRCA+
 - Everolimus and exemestane

Thank you!

- Questions?
- Virginia.borges@cuanschutz.ed u

