

Lung Cancer Immuno-Therapy 2023

Paul A. Bunn, Jr, MD, Distinguished Professor and Dudley Endowed Chair, Univ. of Colorado Cancer Center, Aurora, CO, USA

Consultant: AstraZeneca, Bayer, BMS, Daiichi-Sankyo, Eli Lilly, Merck, Roche, Ascentage, Cstone Verastem,

IO and CT/IO in stage 4 NSCLC & no Driver Alteration: TPS>49

- Approved single agents: pembrolizumab, atezolizumab, durvalumab, cemiplimab, (Chinese CPIs)
- Approved CT+IO (for highly symptomatic disease): Pembro, Nivo, Atezo/bev, Durva, cemiplimab, sug, tiz
- Ongoing Randomized trials: EVOKE -02 (Sacituzumab/Trop-2 ADC), AVANZAR (Dato-Dxd Trop-2 ADC)

KEYNOTE-024, 042 and 189 (TPS>49): 3-5-Year OS Update

Cemiplimab EMPOWER –Lung 1:(TPS>49): 5-Year OS Update

Same conclusion with multiple PD1 and PDL1 inhibitors

Late toxicities from pembrolizumab

What's New:Other agents combined with CPI IO +/-CT

- Other CPIs
- ADCs
- Angiogenesis inhibitors: bev, ram, lenvatinib, anolitinib
- Parp Inhibitors: olaparib, others

CITYSCAPE: Phase II ORR and PFS

1L Stage IV NSCLC

- EGFR/ALK wild-type
- Tumor PD-L1 TPS ≥ 1% by 22C3 IHC by local or central assay

N=135

<u>Updated</u> Investigator-Assessed PFS: PD-L1 TPS ≥ 50%

SEPTEMBER 9-12, 2023 | SINGAPORE

TIGIT targeted studies

- Anti-TIGIT monotherapy resulted in ORRs ranging from 0% to 5% across several trials in advanced solid tumors
- Combination therapies are however showing promise
 - E.g.ARC-7 Ph II study with anti-TIGIT mAb, domvanalimab + anti PD1 vs anti-PD-1 (~30% reduction in risk of progression)
 - Now Ph III STAR-121 evaluating Domvanalimab + anti-PDL1 with chemo in 1st line setting

	-	1	
The second second	Maladi.		d.L

TIGIT based con	nbina	tions			
NCT04672369	I	IBI939	Anti-TIGIT mAb	Pretreated	Recruiting
NCT04995523	11	AZD2936	Anti-PD-1/TIGIT bispecific mAb	Pretreated	Recruiting
NCT05102214	1/11	HLX301	Anti-PD-1/TIGIT bispecific mAb	Pretreated	Recruiting
NCT04761198	1/11	Etigilimab + Nivolumab	Anti-TIGIT mAb	Pretreated	Recruiting
NCT04738487 (KEYVIBE-003)		MK-7684A (Vibostolimab)/Pembrolizumab vs. Pembrolizumab	Anti-TIGIT mAb	First-Line	Recruiting
NCT04746924	ш	Ociperliamab/Tislelizumab vs. Pembrolizumab	Anti-TIGIT mAb	First-Line	Recruiting
NCT04736173 (ARC-10)	ш	Zimberelimab + Domvanalimab vs. Zimberelimab vs. Chemotherapy	Anti-TIGIT mAb	First-Line	Recruiting
NCT05502237 (STAR-121)	ш	Zimberelimab + Domvanalimab + Chemotherapy vs. Pembrolizumab + Chemotherapy	Anti-TIGIT mAb	First-Line	Recruiting

TROPION-Lung04 Study Design

Phase 1b, multicenter, open-label, dose escalation/confirmation and expansion study

· Primary endpoint: Safety and tolerability

Key secondary endpoints: ORR and disease control rate by investigator assessment per RECIST v1.1

Data cut-off: March 6 2023.

^a Patients in Cohort 1 and one patient in Cohort 2 had received ≥1 platinum-based chemotherapy regimen and anti-PD-1/PD-L1 therapy as per an earlier version of the clinical study protocol. Subsequent patients were treatment-naïve or had ≤1 prior line of systemic chemotherapy without concomitant immune checkpoint inhibitors. ^b Dose escalation was guided by a mTPI-2 design and conducted sequentially from Cohort 1 to 2 (Dato-DXd 4 mg/kg to 6 mg/kg) and Cohort 2 to 4 (doublet to triplet combination). ^c Cohort 3 was skipped as there were sufficient data available from the Dato-DXd development program to conclude that 4 mg/kg Dato-DXd in combination with immunotherapy and carboplatin has an acceptable safety profile. AUC, area under the curve; ECOG PS, Eastern Cooperative Oncology Group performance status; mTPI-2, modified toxicity probability interval-2; Q3W, once every 3 weeks; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

Dato-Dxd in 1L NSCLC

Dato-Dxd in 1L NSCLC: ONGOING AVANZAR Trial

Cohort O (doublet)

Coloret & (Interlated)

		Response in patients in the	1L setting.ª n (%)	N=14	N=13	
Cohort 2 (Doublet)	Dato-DXd 6 mg/kg + durvalumab 1120 mg, Q3W (n=3)	Objective response rate (co [95% Cl]	onfirmed)	7 (50.0) [23.0, 77.0]	10 (76.9) ^b [46.2, 95.0]	 In the 1L setting, ORRs were 50.0% for Cohort 2 and 76.9%^b for Cohort 4
(2000)00)		Best objective response	Complete response	0	0	 In the overall population (11/2) +) OBRs were 47.4%
Cohort 4 (Triplet)	Dato-DXd 6 mg/kg + durvalumab 1120 mg + 4 cycles carboplatin AUC 5, Q3W (n=6)		Partial response Stable disease Progressive disease	7 (50.0) 6 (42.9)	10 (76.9) ^b 2 (15.4)	for Cohort 2 (N=19) and 71.4% ^b for Cohort 4 (N=14) • Responses were numerically biober with the triplet versus
		Disease control rate [95% CI]	1091055140 0130030	13 (92.9) [66.1, 99.8]	12 (92.3) [64.0, 99.8]	doublet combination and were observed across all PD-L1 expression levels
		Data cut-off: March 6 2023. All subjects must have that at least one scan (8 m responses in Cohort 4 was confirmed after data o C1, confidence interval.	eeks of follow-up) to be included in the ORR interim at-off.	analysis set. The 2-sided 95% Cts are exact 0	Xopper-Pearson intervals. * As assessed by	investigator per RECIST v1.1. * One of the 10 partial
	No new safety signals were observed in Cohort 2 and Cohort 4 investigatin combination with durvalumab \pm carboplatin, throughout dose escalation an	g Dato-DXd in d dose expansion	The Phase	2 AV/ANIZAD +	rial in 11 is o	ngoing
Safety	The most frequent TEAEs of any grade were stomatitis, alopecia and naus Grade ≥3 TEAEs were more frequently observed with the triplet versus the which was mainly driven by more hematological events. There were four cas drug-related, three of which were Grade 1 or 2	ea. In general, doublet combination, ases of ILD adjudicated				ingoing SA

EVOKE-02: An Open-Label, Multicohort Phase 2 Study, 1st Line

Waterfall Plot of Response

Efficacy by Investigator Assessment

Efficacy by INV&	Cohort A (PD-L1 TPS ≥ 50%) SG + Pembro n = 29	Cohort B (PD-L1 TPS < 50%) SG + Pembro n = 32	Total SG + Pembro n = 61
ORR ^b (95% CI), %	69 (49-85)	44 (26-62)	56 (42-69)
PR, n (%) - confirmed and unconfirmed	20 (69)	14 (44)	34 (56)
Confirmed PR, n (%)	18 (62)	12 (38)	30 (49)
SD, n (%)	5 (17)	11 (34)	16 (26)
PD, n (%)	3 (10)	2 (6)	5 (8)
DCR≘ (95% CI), %	86 (68-96)	78 (60-91)	82 (70-91)
Median DORse (95% CI), months	NR (5.6-NR)	NR (3.5-NR)	NR (7.9-NR)
DOR rate at 6 monthsds (95% CI), %	88 (39-98)	88 (39-98)	87 (58-97)

KEYNOTE 189: ORR:

62.1% (TPS≥50%), 50% (TPS 1-49%), 48.3% all comers

- SG + Pembro demonstrated encouraging antitumor activity in patients with 1L mNSCLC across PD-L
 - ORR was 69% and DCR was 86% in Cohort A
 - ORR was 44% and DCR was 78% in Cohort B
 - Median DOR was not reached, and DOR rate at 6 months was 88% in both cohorts

The safety profile of SG + Pembro was manageable and consistent with the known safety of each a

- The most common any-grade TEAEs were diarrhea, anemia, and asthenia
- TEAEs leading to treatment discontinuation were low (18%)

IO and CT/IO in stage 4 NSCLC No Driver Alteration: TPS1-49

- Approved CT + IO: pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, Tislelizumab, Sintilimab;Sugemalimab,toripalimab,camrelizumab
- Approved CT + IO combos: nivo+ipi, durva+tremi
- Approved IO combos: Nivo+Ipi; durva+tremi
- Investigational IO/IO combos anti-Tigit,
- Investigational:Duration of Therapy?

IO and CT/IO in stage 4 NSCLC & no Driver Alteration: TPS 0-49

FDA Pooled Analysis of Trials in TPS 1-49: ?Role of IO alone vs IO+CT

Trials supporting FDA approval of first-line Chemo-IO and IO-only regimens

Trial*	Active treatment
Immunotherapy-only (PD-L1 ≥1%)	
KEYNOTE-042	Pembrolizumab
CHECKMATE-227	Nivolumab plus Ipilimumab
Chemo-immunotherapy	
KEYNOTE-189	Pembrolizumab plus Platinum-doublet chemo
KEYNOTE-407	Pembrolizumab plus Platinum-doublet chemo
KEYNOTE-021 (cohort G)	Pembrolizumab plus Platinum-doublet chemo
IMPOWER-150**	Atezolizumab plus Bevacizumab plus Platinum-doublet chemo
IMPOWER-130	Atezolizumab plus Platinum-doublet chemo
CA2099LA	Nivolumab plus Ipilimumab plus Platinum-doublet chemo
*Control arms: Platinum-doublet chemotherapy	

Presented By: Oladimeji Akinboro; June 4, 2021 #ASCO21 | Content of this presentation is the property of the author, licensed by ASCO Permission required for reuse

FDA

FDA Pooled Analysis

Trials supporting FDA approval of first-line Chemo-IO and IO-only regimens

Trial*	Active treatment
Immunotherapy-only (PD-L1 ≥1%)	
KEYNOTE-042	Pembrolizumab
CHECKMATE-227	Nivolumab plus Ipilimumab
Chemo-immunotherapy	
KEYNOTE-189	Pembrolizumab plus Platinum-doublet chemo
KEYNOTE-407	Pembrolizumab plus Platinum-doublet chemo
KEYNOTE-021 (cohort G)	Pembrolizumab plus Platinum-doublet chemo
IMPOWER-150**	Atezolizumab plus Bevacizumab plus Platinum-doublet chemo
IMPOWER-130	Atezolizumab plus Platinum-doublet chemo
CA2099LA	Nivolumab plus Ipilimumab plus Platinum-doublet chemo
*Control arms: Platinum-doublet chemotherapy **Control arm in IMPOWER-150: Bevacizumab p	lus Platinum-doublet chemotherapy

Presented By: <u>Oladimeji</u> Akinboro; June 4, 2021

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO Permission required for reuse. 2021 ASCO ANNUAL MEETING

FDA

FDA Pooled Analysis of Trials in TPS 1-49: ?Role of CT

Exploratory PFS: NSCLC PDL1 1-49%

FDA

IO vs CT/IO in stage 4 NSCLC & no Driver Alteration: TPS 1-49

FDA

OS in PDL1 1-49%: Subgroup analyses

PFS in PDL1 1-49%: Subgroup analyses

FDA

		Hazard	l Ratio	
Subgroup	Ν		Median PFS (95% Cl)	Median PFS (95% CI) Chemo-IO
Overall	1168	ŀ∎ł	4.2 (4.0, 4.9)	7.7 (7.1, 8.4)
Age <65 years 65-74 years >=75 years	580 443 132	┝╋┤ ┝╋┤ ┝─╋─┤	4.0 (3.1, 4.5) 4.5 (4.1, 6.1) 4.9 (2.9, 7.3)	7.1 (6.9, 8.2) 9.5 (8.2, 11.3) 6.4 (5.5, 8.3)
ECOG 0 1+	415 751	┝╼┥ ┝╼┤	5.8 (4.6, 6.9) 4.0 (3.0, 4.2)	9.6 (8.2, 10.9) 7.0 (6.2, 8.1)
Smoking Status Current/former smokers Never smokers	1005 160	⊦ ∎+ ∎	4.2 (4.0, 5.2) 4.1 (2.9, 5.8)	7.6 (7.1, 8.5) 8.1 (6.9, 10.9)
<cl< td=""><td>hemo-IC</td><td>0.25 0.50 1.0 2 D BetterI</td><td>0 0 O-only Better></td><td></td></cl<>	hemo-IC	0.25 0.50 1.0 2 D BetterI	0 0 O-only Better>	

Conclusion: IO equivalent in elderly patients

Is there an elderly subgroup of patients that would be appropriate for monotherapy?

FDA

OS in PDL1 1-49%: Subgroup ar	alyses
-------------------------------	--------

PFS in PDL1 1-49%: Subgroup analyses

FDA

		Hazard	Ratio	
Subaroup	N		Median PFS (95% CI)	Median PFS (95% CI)
3 P			IO-only	Chemo-IO
Overall	1168	⊦ ∎-1	4.2 (4.0, 4.9)	7.7 (7.1, 8.4)
<65 years	580	┝╼═╾┥	40(3145)	71(6982)
65-74 years	443	┝╼┲╼┥	4.5 (4.1, 6.1)	9.5 (8.2, 11.3)
>=75 years	132		4.9 (2.9, 7.3)	6.4 (5.5, 8.3)
ECOG 0 1+	415 751	⊦ ∎- ⊦∎-	5.8 (4.6, 6.9) 4.0 (3.0, 4.2)	9.6 (8.2, 10.9) 7.0 (6.2, 8.1)
Smoking Status Current/former smokers Never smokers	1005 160	⊦∎⊣ ├──∎──┤	4.2 (4.0, 5.2) 4.1 (2.9, 5.8)	7.6 (7.1, 8.5) 8.1 (6.9, 10.9)
<c< td=""><td>hemo-IO</td><td>0.25 0.50 1.0 2.0 BetterIC</td><td>) D-only Better></td><td></td></c<>	hemo-IO	0.25 0.50 1.0 2.0 BetterIC) D-only Better>	

Presented By: Oladimeji Akinboro; June 4, 2021

Presented By: Oladimeji Akinboro; June 4, 2021 #ASCO21 | Content of this presentation is the property of the author, licensed by ASCO Permission required for reuse.

IO + LAG-3 Trials, Lung Cancer

Investigational Agents	Tumor types	<u>Status</u>
IP321 (Soluble LAG-3 fusion protein) + Pembro	IO-naïve or refractory NSCLC	Enrolling
LAG525 (Anti-LAG-3) +/- Spartalizumab (Anti-PD-1)	Multiple Tumor types, Including NSCLC	Active, not recruiting
vm021 (Anti-PD-1) + Sym022 Anti-LAG-3) or Sym023 (Anti- TIM-3)	Multiple tumor types, Including SCLC	Enrolling
REGN3767 (Anti-LAG-3) +/- Cemiplimab	Multiple tumor types	Enrolling
XmAb22841 (Bispecific Ab LAG-3/CTLA-4) + Pembrolizumab	Multiple tumor types, Including NSCLC and SCLC	Enrolling
RO7247669 (PD-1/LAG-3 bispecific Ab)	Multiple tumor types, including NSCLC	Enrolling

IO + Anti-OX40 Trials

Study Agent	Tumor Type	Enrollment
MOXR0916 + Atezolizumab	Multiple	Completed ASCO 2016* Further development terminated
ABBV-927 (OX40 agonist) +CD 40 agonist +/- anti-PD1	Multiple Including NSCLC	Ongoing
PF-04518600 (OX40 agonist) +/- 4-1BB (CD137) agonist	Multiple	Recruitment completed
INHBRX-106 (Hexavalent OX40 agonist) +/- Pembrolizumab	Multiple Including NSCLC	Ongoing
SL-279252 (PD1-Fc-OX40L =Fc domain linked fusion protein)	Multiple Including NSCLC	Ongoing
ATOR-1015 CTLA-4 x OX40 bispecific Ab)	Multiple	Ongoing
HS-130 (OX40L fusion protein) + Viagenpumatucel-L	Multiple	Ongoing
		Postgraduate Institute for Medicine

4-1BB (CD137) Combinations **Advanced NSCLC**

Anti-CD137 + Anti-PD-1			
Utomilumab + Avelumab (JAVELIN medley)	Ph I trial (Active multiple sites)		
Utomilumab + OX40 Agonist (PF0458600)	Ph I/II trial: completed (28 sites, NSCLC included)		
Anti-CD137 + SBRT			
Urelumab (cohort) + SBRT	Ph I trial (U Chicago, NSCLC cohort)		
Anti-CD137 intratumoral injection + Anti-PD-1			
IT Urelumab + Nivolumab	Ph I/II trial (U Navarra, solid tumors)		
Anti-CD137/PD-L1 Bi-specific			
INBRX-105	FIH trial in solid tumors (1/90 accrued)		

Tolcher et al, Clin Cancer Res 2017 Etxeberria et al, ESMO Open 2020

FEBRUARY 17 - 21, 2021 | WORLDWIDE VIRTUAL EVENT

IO and CT/IO in stage 4 NSCLC: TPS <1

- Approved CT + IO: pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, tos
- Approved IO combos: nivo+ipi, durva+tremi
- Approved CT+IO combos

Investigational IO/IO combos Investigational: Duration of Therapy?

OS in TPS <1 in Non Sq and Sq CA

Conclusion: CT+IO produces some long-term survivors but fewer than in patients with higher TPS

Do individual patients benefit selectively from distinct immunotherapies? Which patients need CTLA-4 blockade?

In patients with SQ NSCLC and PD-L1 < 1% the 6 year OS rate with ipi/nivo vs chemo was 18% vs 4%

Ramalingam SS....Peters S et al, WCLC 2023

Patients with KRAS^{MUT} NSCLC may also benefit from dual ICB

Johnson ML et al., ESMO, 2022

Paz-Ares L et al., ASCO, 2022

Patients with STK11^{MUT} and/or KEAP1^{MUT} nsNSCLC may benefit from dual ICB

Outcome of patients who discontinue IO and then later progress? Outcomes in Patients Who Completed 35 Cycles of Pembrolizumab^a

		Outcome	Patients who completed 35 cycles ^a n = 27
		ORR ^b (95% CI), %	92.6 (75.7–99.1)
	 BOR CR BOR PR BOR SD PD First course treatment First course follow-up Second-course pembrolizumab Subsequent anticancer therapy Subsequent radiation therapy 	Best overall response, n (%)	
		Complete response	3 (11.1)
		Partial response	22 (81.5)
		Stable disease ^c	2 (7.4)
▲		Median DOR (range), mo	55.1 (7.4 to 59.3+)
		3-year OS rate after completing 35 cycles, %	56.7
		Alive without subsequent therapy or PD, n (%)	12 (44.4)
Image: Non-State State S	Death		cc

^bResponse assessed per RECIST v1.1 per blinded independent central review

Conclusion: Retreatment can be highly effective

Includes SD and non-CR/non-PD.

aPa

Data cutoff dates: KN189 Global. March 8. 2022: KN189 Japan Extension. February 7. 2023: KN407 Global. February 23. 2022: KN407 China Extension. February 10. 2023.

CASPIAN 3-Year OS Update: Durvalumab + EP vs EP¹

Data cutoff: March 22, 2021. Size of circle is proportional to the number of events across both treatment groups. 1. Paz-Ares LG et al. ESMO 2021. Abstract LBA61.

IMpower 133: Chemo +/-

Atezolizumab

IMpower133 and IMbrella A: long-term OS

OS rate (95% CI), %	IMpower133 and IMbrella A Atezo + CP/ET (n=201)	IMpower133 only Placebo + CP/ET (n=202)
1-year	52% (45-59)	39% (32-46)
2-year	22% (16-28)	16% (11-21)
3-year	16% (11-21)	NE ^a
4-year	13% (8-18)	NEª
5-year	12% (7-17)	NE ^a

Clinical cutoff date: 16 March 2023. NE, not estimable. ^a OS rates were NE in the control arm as rollover to IMbrella A was not permitted.