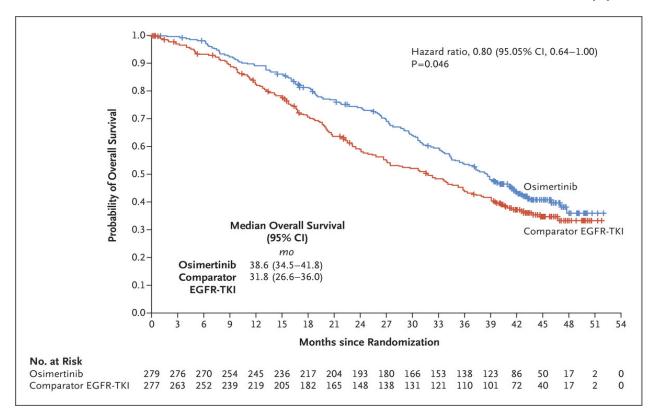


Therapies for advanced EGFR-mutated lung cancers


Collin Blakely MD, PhD

Associate Professor UCSF

Best of IASLC-WCLC 2023
San Francisco

September 30, 2023

FLAURA trial established Osimertinib as the standard 1st line therapy for metastatic EGFR-mutated NSCLC

Resistance inevitably occurs

Median PFS 18.9 months

Median OS 38.6 months

Decreased PFS benefit observed in patients with CNS metastases at baseline and in patients with EGFR p.L858R mutated tumors

- How can we improve PFS and OS for patients treated with 1st line osimertinib?
- Are there specific patient populations who would benefit from upfront combination therapy approaches?
- What are the best therapeutic options for treating osimertinib resistant EGFR-mutated lung cancers?

FLAURA2 Phase III study design

Safety run-in period (N=30) Published in ESMO Open, 20211

Patients with untreated locally advanced / metastatic EGFRm NSCLC

Key inclusion criteria:

- Aged ≥18 years (Japan: ≥20 years)
- · Pathologically confirmed non-squamous NSCLC
- Ex19del / L858R (local / central test)
- WHO PS 0 / 1
- · No prior systemic therapy for advanced **NSCLC**
- Stable CNS metastases were allowed*
- Brain scans at baseline (MRI / CT)

Stratification by:

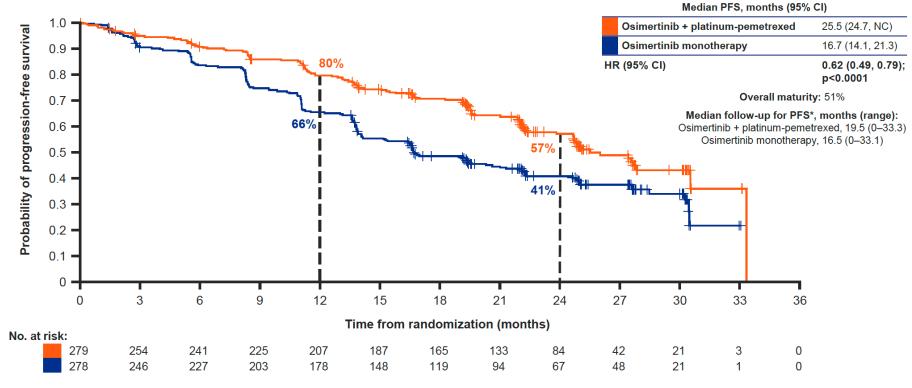
- Race (Chinese Asian / non-Chinese Asian / non-Asian)
- · EGFRm (local / central test)
- WHO PS (0 / 1)

Osimertinib 80 mg (QD) + pemetrexed 500 mg/m² + carboplatin AUC5 or cisplatin 75 mg/m² osimertinib 80 mg (QD) (Q3W for 4 cycles for + pemetrexed (Q3W)† platinum-based treatments) Randomization

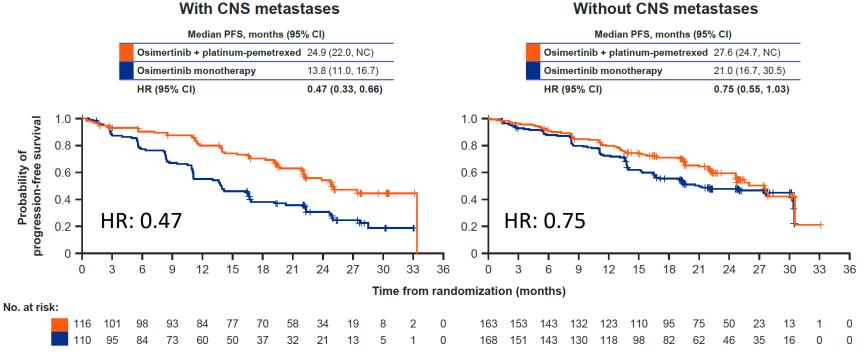
1:1 (N=557)

Maintenance

Osimertinib 80 mg (QD)

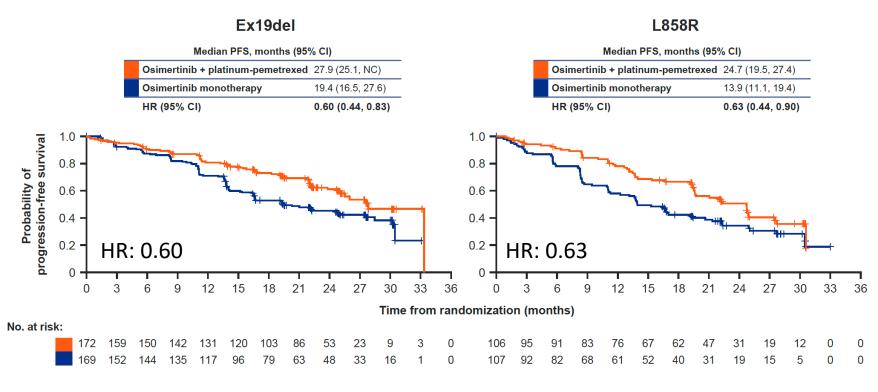

Follow-up:

RECIST 1.1 assessment at 6 and 12 weeks, then every 12 weeks until RECIST 1.1 defined radiological disease progression or other withdrawal criteria were met

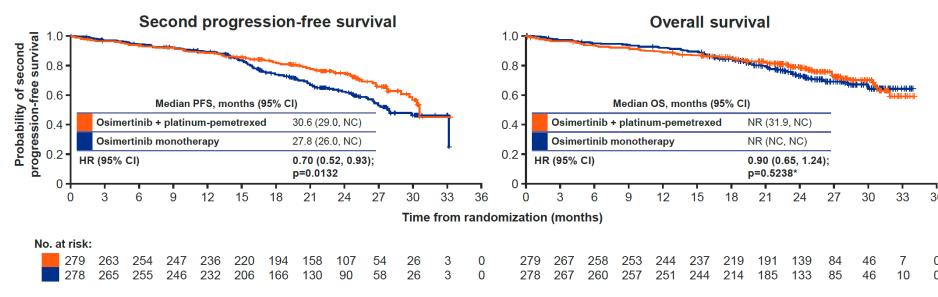

- Primary endpoint: PFS by investigator assessment per RECIST 1.1^{‡§}
 - Sensitivity analysis: PFS by BICR assessment per RECIST 1.1
- Secondary endpoints: OS, ORR, DoR, DCR, HRQoL, safety (AEs by CTCAE v5) and PFS2[‡]

Progression-free survival per investigator

• Median PFS was improved by ~8.8 months with osimertinib plus platinum-pemetrexed vs osimertinib monotherapy

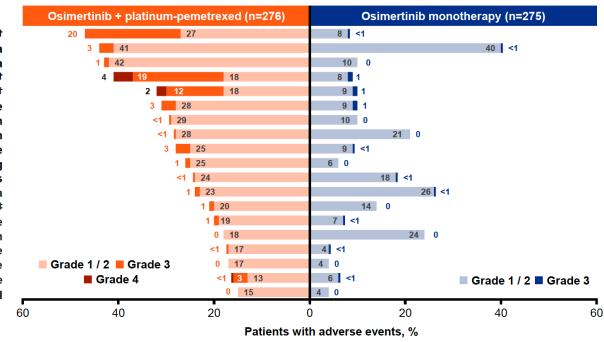

PFS per investigator in patients with / without CNS metastases at baseline*

PL.03.13 Jänne et al.


PFS per investigator by EGFR mutation type at baseline*

PFS2 and interim analysis of OS

- PFS2 and OS were immature at this interim analysis (34% and 27% data maturity, respectively)
- At DCO, 57 / 123 patients (46%) in the osimertinib plus platinum-pemetrexed arm and 91 / 151 patients (60%) in the osimertinib monotherapy arm received any subsequent anti-cancer treatment[†]
 - In both arms, cytotoxic chemotherapy was the most common subsequent anti-cancer treatment (33% and 54% in the combination and monotherapy arms, respectively)[†]



Common adverse events (≥15% of patients)*

Any treatment related AE ≥ grade 3: 53%

Any AE leading to treatment discontinuation: 48%


Anemia† Diarrhea Nausea Neutropenia† Thrombocytopenia† **Decreased appetite** Constipation Rash **Fatigue** Vomiting **Stomatitis Paronychia** COVID-19‡ **ALT** increase Dry skin **AST** increase **Blood creatinine increase WBC** count decrease Edema peripheral

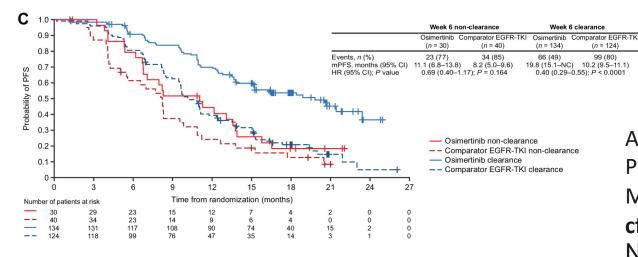
Any treatment related AE ≥ grade 3: 11%

Any AE leading to treatment discontinuation: 6%

• Of most common AEs (occurring in ≥15% of patients in either arm), all Grade 4 AEs in the osimertinib plus platinum-pemetrexed arm were hematological toxicities, known to be associated with chemotherapy; there were no common Grade 4 AEs in the monotherapy arm

Summary

- 1. The addition of platinum + pemetrexed to 1st line osimertinib improves PFS from 16.7 to 25.5 months, but also significantly increases toxicity.
- 2. While data are immature, OS is not improved by the addition of platinum + pemetrexed to 1st line osimertinib.
- 3. Improvement in PFS is most pronounced in patients with CNS metastases or L858R mutations.

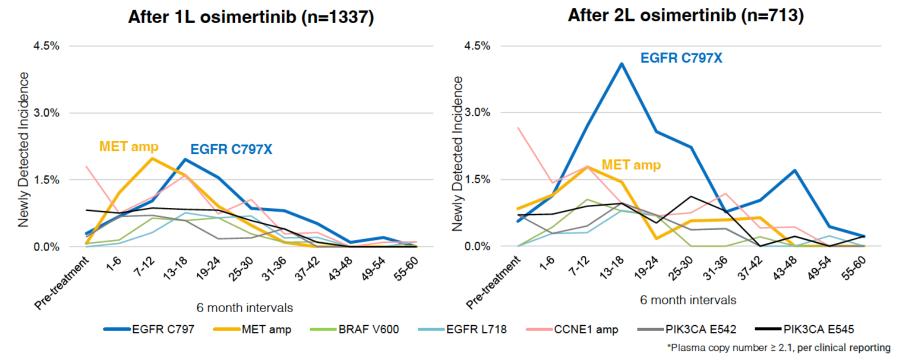


Conclusions

- 1. Osimertinib + platinum/pemetrexed should not be the new standard of care 1st line therapy for all advanced EGFRmt lung cancer patients.
- Osimertinib + platinum/pemetrexed <u>should be</u> considered as first line therapy for patients with <u>CNS metastases</u> or with <u>EGFR L858R</u> mutations.
- 3. Other high-risk features (absence of ctDNA clearance, TP53 or RBM10 mutations) should be studied and considered for combination treatment.

Lack of ctDNA clearance correlates with decreased PFS

Clin Cancer Res. 2023;29(17):3340-3351. doi:10.1158/1078-0432.CCR-22-3146


Open at UCSF

A Phase 2 Randomized Study of Osimertinib Versus Osimertinib Plus Chemotherapy for Patients With Metastatic EGFR-Mutant Lung Cancers That Have **Detectable EGFR-Mutant cfDNA in Plasma After Initiation of Osimertinib**: NCT: NCT04410796 (PI: Helena Yu)

MET amp is most common acquired resistance mechanism in 1st year of 1L osimertinib, while EGFR C797X is most common after the 1st year

6-month Incidence of Common Acquired Resistance Mutations after osimertinib

INSIGHT 2: an Open-label, Two-arm Phase II Study¹

- *MET*amp is a common driver of secondary resistance in patients with *EGFR*m NSCLC following treatment with 1L osimertinib,^{2,3} that may be responsive to MET inhibition
- TBx FISH is the gold standard for *MET* amp detection, with rates of $\sim 50\%$ compared with $\sim 15\%$ by LBx NGS testing^{4,5}

Key inclusion criteria

- Locally advanced/metastatic EGFRm NSCLC
- · Acquired resistance to 1L osimertinib
- **METamp** by:
- TBx FISH (GCN ≥5 and/or MET:CEP7 ≥2) and/or
 - **LBx NGS** (≥2.3 Archer®)
- ECOG PS of 0 or 1

Tepotinib 500 mg QD + Osimertinib 80 mg QD

Tepotinib monotherapy 500 mg QD*

Endpoints

Primary endpoint

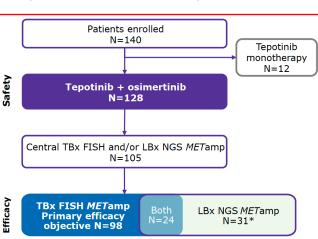
 Objective response by IRC in patients with TBx FISH METamp

Selected secondary endpoints

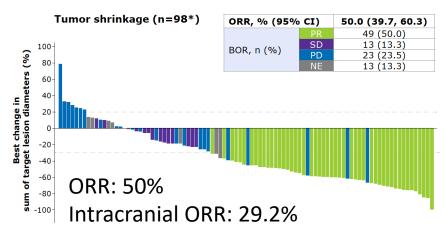
- Objective response in patients with LBx NGS METamp
- DOR
- PFS

- OS
- HRQoLSafety
- Biomarkers

Selected tertiary endpoints


- RANO-BM
- The trial aims for an ORR in the range of ~50% with a lower limit of the corresponding exact 2-sided 95% CI (according to Clopper-Pearson) to exceed an ORR of 35%
- Subgroup analysis of Asian patients[†] was preplanned
- Data cut-off: March 28, 2023
- Efficacy population has ≥9 months follow-up

OA21.05, Kim et al.


INSIGHT 2 Primary Analysis: Objective Response by IRC

 Of 481 patients prescreened, METamp detected by TBx FISH in 35.1% and by LBx NGS in 10.8%

Tepotinib + osimertinib (N=128)		
Any grade n (%)	Grade ≥3 n (%)	
113 (88.3)	44 (34.4)	
63 (49.2)	1 (0.8)	
52 (40.6)	6 (4.7)	
29 (22.7)	1 (0.8)	
27 (21.1)	3 (2.3)	
26 (20.3)	5 (3.9)	
23 (18.0)	1 (0.8)	
16 (12.5)	0	
15 (11.7)	2 (1.6)	
15 (11.7)	1 (0.8)	
15 (11.7)	0	
14 (10.9)	3 (2.3)	
14 (10.9)	2 (1.6)	
14 (10.9)	0 (0.0)	
	(N= Any grade n (%) 113 (88.3) 63 (49.2) 52 (40.6) 29 (22.7) 27 (21.1) 26 (20.3) 23 (18.0) 16 (12.5) 15 (11.7) 15 (11.7) 15 (11.7) 14 (10.9) 14 (10.9)	

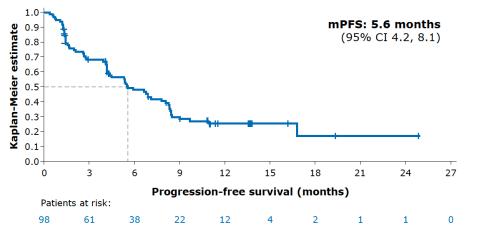
 The INSIGHT 2 primary analysis showed an ORR of 50% in patients with EGFRm NSCLC who have progressed on 1L osimertinib and had METamp (central TBx FISH)

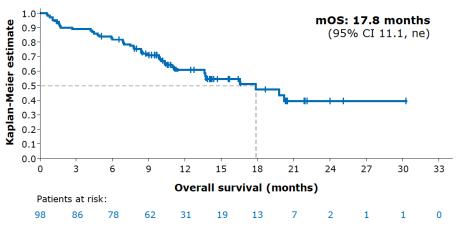
Patients in the monotherapy arm (n=12) showed an ORR of 8.3% (95% CI 0.2, 38.5), which has been reported previously¹

*Four patients were excluded due to baseline/post-baseline measurement not being available.

Only patients with a response were included in Kaplan-Meier analyses.

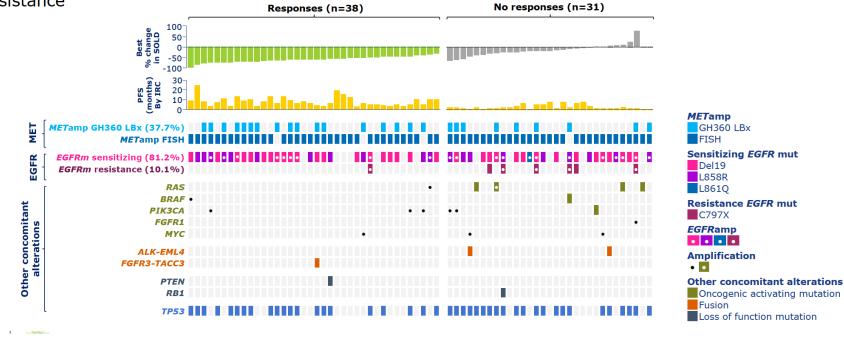
Abbreviations defined on last slide.


1. Mazieres J, et al. Ann Oncol. 2022;33:S808-S869.


OA21.05, Kim et al.

INSIGHT 2 Secondary Objectives: PFS, OS, and LBx NGS Efficacy

 PFS and OS were clinically meaningful in patients with EGFRm NSCLC who have progressed on 1L osimertinib and had METamp (central TBx FISH)


In patients with LBx NGS METamp (n=31)

- ORR: 54.8% (95% CI 36.0, 72.7)
- mDOR: 5.7 months (95% CI 2.9, 15.4)
- mPFS: 5.5 months (95% CI 2.7, 7.2)
- mOS: 13.7 months (95% CI 9.6, ne)

Baseline Biomarker Profiles

- Baseline biomarker profiles by NGS Guardant360® LBx were available for 69 patients
- Better outcomes were reported in patients without other concomitant biomarkers for osimertinib resistance

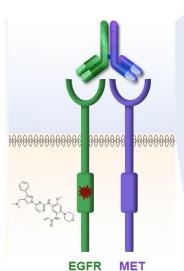
Summary

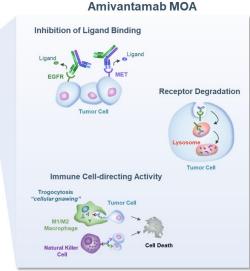
- 1. 50% ORR and PFS of 5.6 months with Tepotinib + Osimertinib in patients with MET AMP (FISH) resistance.
- 2. Toxicity profile appears to be manageable.
- 3. Patients with MET AMP detected by liquid biopsy respond similarly, but rate of detection is much lower.
- 4. Detection of other concurrent resistance mechanism correlates with decreased response.

Conclusions

- 1. Tepotinib + Osimertinib is a reasonable option in patients with MET AMP as only detectable resistance alteration.
- 2. FISH is better than LBx at detecting MET AMP and should be considered in all patients with available tissue at Osimertinib resistance.

CHRYSALIS-2: Amivantamab, Lazertinib + Platinum Chemotherapy in Post-TKI Advanced EGFR mutated NSCLC

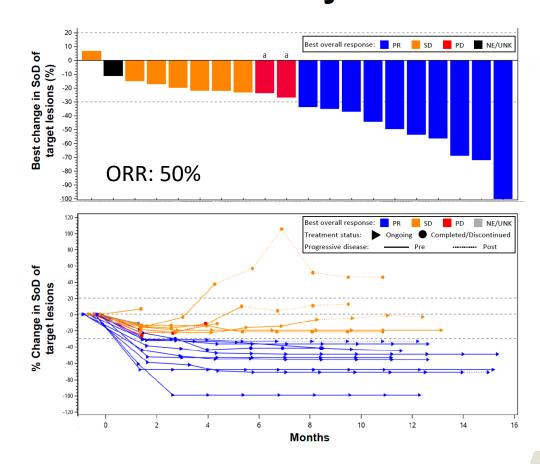

CHRYSALIS-2 (NCT04077463)


Eligibility
EGFR-mutated,
advanced NSCLC
post-TKI (max of
3 prior lines)

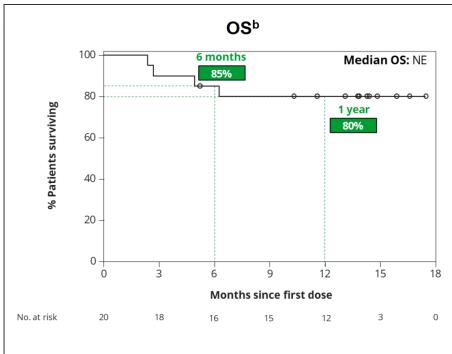
Dosing (21-day cycle)		
Lazertinib	240 mg daily	
Amivantamab	1400/1750 ^b mg on C1 D1/D2, C1D8, C1D15, C2D1; 1750/2100 ^b mg C3+ Q3W	
Chamatharany	Carboplatin (AUC5; stopped after 4 cycles)	
Chemotherapy	Pemetrexed (500 mg/m²) until disease progression	

Endpoints

- Adverse events (primary)
 Duration of response
- Objective response rate
 Clinical benefit rate^c
- Progression-free survival
- Overall survival


MA13.06, Lee et al.


Safety Profile

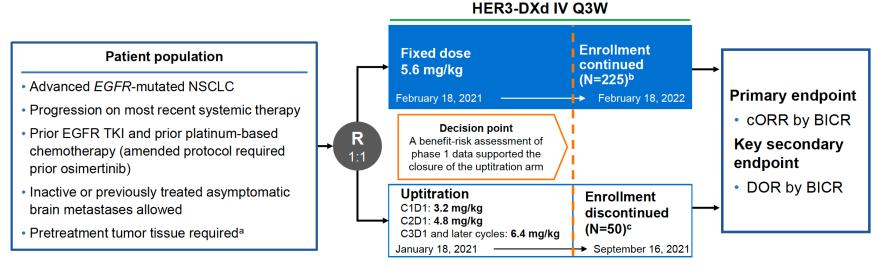

AEs (≥20%) by preferred term, n (%)	Totala	Grade ≥3
Associated with EGFR inhibition		
Rash	15 (75)	1 (5)
Paronychia	12 (60)	0
Stomatitis	12 (60)	0
Dermatitis acneiform	8 (40)	2 (10)
Diarrhea	6 (30)	1 (5)
Associated with MET inhibition		
Hypoalbuminemia	8 (40)	2 (10)
Other		
Neutropenia	18 (90)	14 (70)
IRR	13 (65)	0
Fatigue	10 (50)	5 (25)
Nausea	10 (50)	0
COVID-19	8 (40)	0
Thrombocytopenia	8 (40)	5 (25)
Constipation	7 (35)	0
Decreased appetite	7 (35)	1 (5)
Leukopenia	7 (35)	4 (20)
Alanine aminotransferase increased	6 (30)	0
Anemia	6 (30)	2 (10)
Pulmonary embolism	6 (30)	1 (5)
Aspartate aminotransferase increased	5 (25)	0
Back pain	5 (25)	0
Epistaxis	5 (25)	0
Hemorrhoids	5 (25)	0
Peripheral sensory neuropathy	5 (25)	0

ORR and **Durability**

PFS and OS

Summary

- 1. Phase II trial (n = 20) shows 50% ORR and mPFS or 14 months with amivantamab + lazertinib + carbo/pemetrexed after progression on EGFR TKI.
- 2. Grade 3 neutropenia and thrombocytopenia are common.
- 3. Awaiting results of larger randomized MARIPOSA-2 Trial.


Conclusions

- Activity of amivantamab + lazertinib + carbo/pemetrexed at TKI resistance appears promising, but trial is too small to make recommendations.
- 2. Wait for MARIPOSA-2 results before considering this as a treatment option.
- 3. Toxicity is a significant concern (rash, cytopenias).
- 4. Need biomarker testing to determine who is most likely to benefit.

Patritumab Deruxtecan HERTHENA-Lung01

HERTHENA-Lung01 Study Design¹

Primary data cutoff, 21 Nov 2022d

Snapshot data cutoff, 18 May 2023 (additional 6 months follow-up)

Data are presented for the 5.6-mg/kg fixed-dose arm

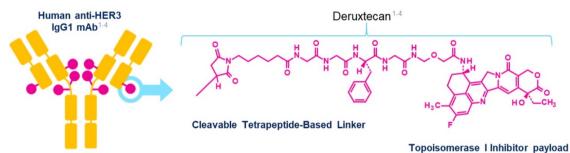
- Efficacy from snapshot data cutoff—median study follow-up, 18.9 (range, 14.9-27.5) months
- Safety from primary data cutoff—median treatment duration, 5.5 (range, 0.7-18.2) months

BICR, blinded independent central review; C, cycle; cORR, confirmed objective response rate (complete or partial response confirmed ≥4 weeks after initial response [RECIST version 1.1]); D, day; DOR, duration of response; HER, human epidermal growth factor receptor; IV, intravenous; Q3W, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; TKI, tyrosine kinase inhibitor.

a Inclusion not based on detection of HER3 expression. b 226 patients were enrolled; 225 received ≥1 dose. 51 patients were enrolled; 50 received ≥1 dose. Data cutoff for the primary analysis occurred when all enrolled patients had either ≥9 months of follow-up or had discontinued from the study earlier.

1. Yu HA. et al., Future Oncol. 2023:19:1319-1339.

OA05.03, Yu et at.


Patritumab Deruxtecan U31402-A-U102

Patritumab Deruxtecan (HER3-DXd)—Targeting HER3 May Address Multiple EGFR TKI Resistance Mechanisms

- HER3-DXd is an ADC with 3 components:¹⁻⁶
 - · A fully human anti-HER3 IgG1 mAb (patritumab), covalently linked to:
 - · A topoisomerase I inhibitor payload, an exatecan derivative, via
 - · A tetrapeptide-based cleavable linker
- HER3-DXd is in clinical evaluation for NSCLC, metastatic breast cancer, and colorectal cancer

HER3 is expressed in 83% of NSCLC tumors

HER3 alterations are not known to be a mechanism of resistance to EGFR TKI in EGFRm NSCLC

(DXd)

Presented By: Pasi A. Jänne

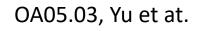
#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

^a HER3 overexpression is associated with metastatic progression and decreased relapse-free survival in patients with NSCLC.

^{1.} Hashimoto Y, et al. Clin Cancer Res. 2019;25:7151-7161. 2. Nakada T, et al. Chem Pharm Bull (Tokyo). 2019;67(3):173-185. 3. Ogitani Y, et al. Clin Cancer Res. 2016;22(20):5097-5108. 4. Koganemaru S, et al. Mol Cancer Ther. 2019;18:2043-2050. 5. Haratani K, et al. J Clin Invest. 2020;130(1):374-388. 6. Ogitani Y, et al. Cancer Sci. 2016;107(7):1039-1046. 7. Scharpenseel H et al. Sci Rep 2019;9(1):7406.

Overall Response

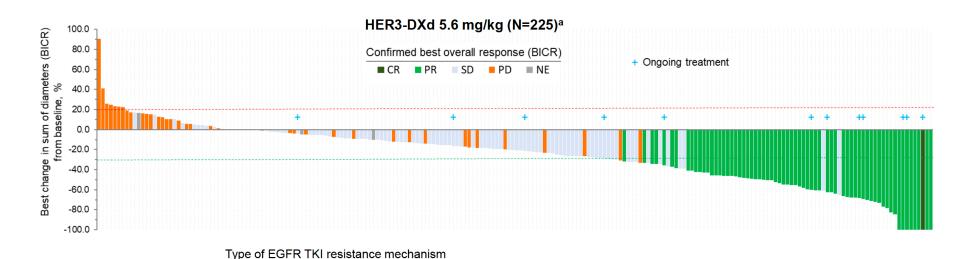
Confirmed responses and survival		Prior EGFR TKI (any) and PBC (N=225)	Subset with prior 3G EGFR TKI and PBC (n=209)
cORR (95% CI), %		29.8 (23.9-36.2)	29.2 (23.1-35.9)
Best overall response	CR	1 (0.4)	1 (0.5)
	PR	66 (29.3)	60 (28.7)
	SDa	99 (44.0)	91 (43.5)
(BICR), n (%)	PD	43 (19.1)	41 (19.6)
	NEb	16 (7.1)	16 (7.7)
DCR (95% CI), %		73.8 (67.5-79.4)	72.7 (66.2-78.6)
DOR, median (95% CI), mo		6.4 (4.9-7.8)	6.4 (5.2-7.8)
PFS, median (95% CI), mo		5.5 (5.1-5.9)	5.5 (5.1-6.4)
OS, median (95% CI), mo		11.9 (11.2-13.1)	11.9 (10.9-13.1)


Intracranial Response

Intracranial response by CNS BICR per CNS RECIST	Patients with brain metastasis at baseline and no prior radiotherapy (N=30) ^a
Confirmed ORR (95% CI), %	33.3 (17.3-52.8)
CR, n (%)	9 (30.0) ^b
PR, n (%)	1 (3.3)
SD, n (%) ^c	13 (43.3)
PD, n (%)	4 (13.3)
NE, n (%)	3 (10.0)
DCR (95% CI), %	76.7 (57.7-90.1)
DOR, median (95% CI), mo	8.4 (5.8-9.2)

Snapshot data cutoff, 18 May 2023. Median study follow-up, 18.9 (range, 14.9-27.5) months.

Snapshot data cutoff, 18 May 2023.


Median study follow-up, 18.9 (range, 14.9-27.5) months.

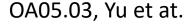
Patritumab Deruxtecan HERTHENA-Lung01

27.3 (17.7-38.6)

Tumor Reduction Across Diverse Mechanisms of EGFR TKI Resistance

EGFR-dependent, only (n=34)	EGFR-independent, only (n=81)	Both <i>EGFR</i> -dependent and - independent (n=32)	None identified (n=77)
(5.)	(11 01)	masperiaem (m 32)	(, , ,

27.2 (17.9-38.2)

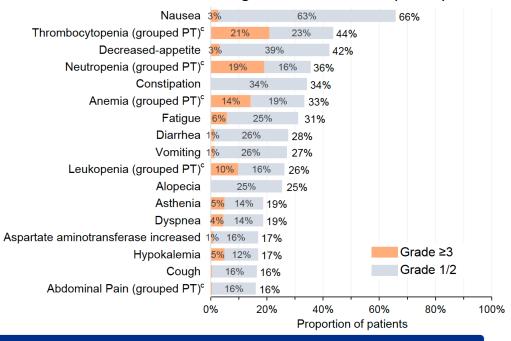

Snapshot data cutoff, 18 May 2023. Median study follow-up, 18.9 (range, 14.9-27.5) months.

32.4 (17.4-50.5)

Confirmed ORR (95% CI), %

BICR, blinded independent central review; CR, complete response; HER, human epidermal growth factor receptor; IHC, immunohistochemistry; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor. a 210 patients had evaluable target lesion measurements at both baseline and post baseline and post

37.5 (21.1-56.3)



The Safety Profile of HER3-DXd Was Manageable and Tolerable

	HER3-DXd 5.6 mg/kg
Safety summary	(N=225)
Any TEAE, n (%)	224 (99.6)
Associated with treatment discontinuation ^a	16 (7.1)
Associated with treatment dose reduction	48 (21.3)
Associated with treatment dose interruption	91 (40.4)
Grade ≥3 TEAE, n (%)	146 (64.9)
Treatment-related TEAE, n (%)	215 (95.6)
Associated with death ^b	4 (1.8)
Grade ≥3	102 (45.3)
Serious TEAE	34 (15.1)
Adjudicated interstitial lung disease, n (%) [All were adjudicated as treatment-related]	12 (5.3)
Grade 1	1 (0.4)
Grade 2	8 (3.6)
Grade 3	2 (0.9)
Grade 4	0
Grade 5	1 (0.4)

Primary data cutoff, 21 Nov 2022. Median treatment duration: 5.5 (range, 0.7-18.2) months.

Most Common TEAEs Occurring in ≥15% of Patients (N=225)

Any hematologic toxicities typically occurred early in treatment, were transient, and were not associated with clinical sequelae

Summary

- 1. HER3-DXd demonstrated 29% ORR and 5.5 month PFS as 3rd line⁺ therapy in EGFRmt NSCLC.
- 2. Chemo-related toxicities are common, ILD 5.3%.
- 3. Appears to be active regardless of TKI resistance mechanism.

Conclusions

- 1. HER3-DXd is a promising 3rd line option for EGFR-mutated NSCLC.
- 2. Biomarker testing not likely needed.
- 3. Combination therapies (TKI or IO) should be studied.

Proposed Treatment Paradigm for Advanced EGFR-mutated (Exon 19 del or L858R) NSCLC

1st line

Exon 19 del, no CNS mets

Osimertinib

CNS mets or L858R

Consider Osimertinib + carboplatin/pemetrexed

2nd line

MET AMP (FISH or NGS)

Consider Osimertinib + tepotinib (or other MET TKI)

No MET AMP or multiple resistance mechanisms

Consider platinum doublet chemo +/- Bev(if not given in 1st line) or Lazertinib + amivantamab* +/- chemo

3rd line

Consider platinum doublet chemo +/- Bev (if not given in 1st/2nd line) or Lazertinib + amivantamab* +/- chemo (if not given in 2nd line)

Consider HER3-DXd* (if prior platinum doublet)

