New Targets and Targeted Therapy

UCDAVIS COMPREHENSIVE CANCER CENTER

Jonathan Riess, M.D. M.S. Associate Professor of Medicine Medical Director Thoracic Oncology University of California Davis School of Medicine UC Davis Comprehensive Cancer Center

A Comprehensive Cancer Center Designated by the National Cancer Institute

DISCLOSURES

Commercial Interest	Relationship(s)
Blueprint, Beigene, Daiichi Sankyo, EMD Serano, Janssen, Regeneron, Sanofi, Biodesix, Bayer, Turning Point, Bristol Myers Squibb, Jazz Pharmaceuticals, Novartis, Roche/Genentech, Boehringer Ingelheim, Merck, SeaGen	Consulting/Advisory Board
Merck, Novartis, AstraZeneca, Spectrum, Revolution Medicines, Arrivent, IO Biotech, Vitrac	Research Funding (To Institution)

New Targets and Targeted Therapies

• Overcoming EGFR-TKI Resistance

 Targeting Previously Undruggable Mutations (EGFR Exon 20 ins and KRAS)

 KRAS mutant NSCLC/Co-mutations that mediate resistance to systemic treatments (KEAP1/NFE2L2)

Progress in Targeted Therapy for NSCLC-Adenocarcinoma

Adapted by L Bazhenova from Tsao AS, et al. J Thorac Oncol. 2016;11:613-638.

FLAURA: Osimertinib vs comparator EGFR-TKI as first-line treatment for EGFRm advanced NSCLC: Final overall survival data

Ramalingam SS, et al. ESMO 2019. Abstract LBA5_PR.

Broad Mechanisms of Resistance to EGFR-TKI and Temporal Occurrence

6 month intervals

MET amp

BRAF

EGFR C797

Presented by S. Ramalingam WCLC 2022

0.0%

Genomics from Orchard: N-174 tissue samples/concurrent Plasma ctDNA

- 24% EGFR amplification MET (36%) Secondary + EGFR EGFR mutations EGFR (7%) 11% alteration (40%) MET MET AKT/PTEN/ amplificatio PIK3CA AKT/PTEN/ - EGFR alterations PIK3CA (11%) alterations (11%) Other fusions BRAF alteration RET fusion (<1%) (6%) ERBB2 alteration FGFR1/2/3 fusion (2%) (2%) ALK fusion (2%) Other alterations (<1%) BRAF V600E mutation (<1%) RAS mutation (<1%) ERBB2 amplification (2%) No alteration (34%) BRAF fusion + EGFR ERBB2 mutation (<1%) amplification (3%) BRAF fusion only (2%) 9%
- Pre-Existing Comutations Mediating Resistance (Impact for locally advanced/early stage treatment)
- Resistance to Immunotherapy

C797S-Active Compounds in Development: Preclinical Data

Compound	Del19	L858R	Del19/ T790 M	L858R/ T790M	Del19/ C797S	L858R/ C797S	Triple Mutant	Other	CNS?	Status
BLU-945	-	Х	Х	Х	-	Х	Х		-	Phase 1/2 (NCT04862780)
BLU-701	х	Х	-	-	Х	Х	х		х	Discontinued
BLU-525	Х	Х	-	-	Х	Х	х		х	Preclinical
BDTX-1535	Х	Х	-	-	Х	Х	х	Uncommon	х	Phase 1 (NCT05256290)
THE-349	Х	Х	Х	Х	Х	Х	Х		х	Preclinical
H002	х	Х	Х	Х	Х	Х	х		х	Phase 1/2 (NCT05552781)
BAY 2927088	Х	Х			Х	Х		Ex20ins		Phase 1 (NCT05099172)
JIN-A02	Х	Х	Х	Х	Х		Х		х	Phase 1/2 (NCT05394831)
BBT-176	Х	Х	Х		Х	Х	Х		Х	Phase 1/2 (NCT04820023)
	Predicted	l Not Act	ive		P	redicted A	Active		No ava	ilable data

Shum et al, AACR 2022; Tavera-Mendoza et al ENA 2022 #177; Lucas et al. ENA 2022. Abstract #64; Zhang et eal. ENA 2022 #236; Siegel et al. ENA 2022 #17; Lim et al ESMO 2021; Yun et al ESMO 2022 #999P Slide courtesy of Julia Rotow, MD

BLU-945: Preliminary Efficacy Data Monotherapy Cohorts, Top Dose Levels

200mg BLU-945 BID 250mg BLU-945 BID 300mg BLU-945 BID

Adapted from: Mar, B. Presented to EGFR Exon 20 Research Consortium

Amivantamab + Lazertinib

EGFR/MET Bispecific +3rd Gen EGFR TKI CHRYSALIS-2

Shu et al. ASCO 2022. #9006.; Bauml et al ASCO 2021 #9006

INSIGHT2: Tepotinib and Osimertinib

INSIGHT 2: Osimertinib + Tepotinib for MET-amplified EGFRm NSCLC

ORR 45.8%-56.5% osimertinib + tepotinib ORR 8.3% tepotinib monotherapy

EGFR + MET TKI Combinations

Osimertinib + Savolitinib for MET+ s/p Osimertinib

Sequist et al, Lancet Oncology, 2020; Ahn et al, IASLC 2022 EP08.01-140; McCoach et al J Precision Oncol. 2021.

Telisotuzumab vedotin + Osimertinib MET-ADC + EGFR TKI

MET-overexpression: IHC 3+ in at 25% of tumor cells

Goldman et al. ASCO 2022. #9013

Other Bypass Tracts That Are Potentially Actionable

Z. Piotrowska et al. Cancer Discovery 2022

Osimertinib + RET TKI in Acquired Resistance Mediated by RET Fusion

Pralsetinib

-100

Best Response (n=10)			
Objective Response n (%)	5 (50%)		
Partial Response*	5 (50%)		
Stable Disease	3 (30%)		
Progressive Disease	2 (20%)		
Disease Control Rate n (%)	8 (80%)		
Median Depth of Response (%)	-43%		
*One partial response unconfirmed			

One patient with clinical progression without radiographic evaluation not shown

Patritumab deruxtecan in EGFRmutated NSCLC with PD on Prior EGFR-TKI

Number

at risk 57

Months

P. Janne et al. Cancer Discovery 2022.

EGFR mutations are heterogeneous

N771_P772insH, 3, 1% D770_N771>GSVDN, 4, 2% N771_P772>GYP, 5, 2% V774_C775>AHVC, 6, 2% H773_U774dupHV, 6, 2% D770_N771>GYN, 6, 2% H773dupH, 8, 3% D770_N771insG, 10, 4% D763_Y764insFQEA, 15, 6% N771_H773dupNPH, 20, 8%

Meador, L. Sequist, Z. Piotrowska. Cancer Discov. 2021, 2021 Sep;11(9):2145-2157. Y. Elamin et al Cancer Cell 2022 40: 754-67. JW Riess et al JTO 2018. 13:10. P1560-1568,

Amivantamab: EGFR-MET Bispecific Antibody

- Fully human EGFR-MET bispecific antibody with immune cell-directing activity¹⁻²
- Targets activating and resistance EGFR mutations and MET mutations and amplifications³⁻⁴
- Demonstrated monotherapy activity in patients with diverse EGFRm disease including EGFR Exon19del, L858R, T790M, C797S, Exon20ins, and MET amplification³⁻⁴

¹Vijayaraghavan *Mol Cancer Ther* 19(10):2044. ²Yun *Cancer Discov* 10(8):1194. ³Haura *JCO* 37(15_suppl):9009. ⁴Park *JCO* 38(15_suppl):9512 EGFR, epidermal growth factor receptor; EGFRm, EGFR-mutant; MET, mesenchymal-epithelial transition; NSCLC, non-small cell lung cancer

Sabari, et al; WCLC20

Amivantamab Efficacy in EGFR Exon ins20

Amivantamab: Efficacy by BICR

BICR-assessed Response	Efficacy Population (n=81)
Overall response rate	40% (95% CI, 29–51)
Median duration of response	11.1 months (95% CI, 6.9–NR)
Best response, n (%)	
Complete response	3 (4)
Partial response	29 (36)
Stable disease	39 (48)
Progressive disease	8 (10)
Not evaluable	1 (1)
Clinical benefit rate ^a	74% (95% CI, 63–83)

Median follow-up: 9.7 months (range, 1.1-29.3)

mPFS: 8.3 mo (95% Cl, 6.5-10.9) mOS: 22.8 mo (95% Cl, 14.6-NR)

Amivantamab: Responses Over Time

Best ORR by Insertion Region of Exon 20 (detected by ctDNA)

25 distinct Exon20ins variants identified by NGS of ctDNA (Guardant360®) from 63 evaluable patient samples

K. Park et al JCO 2021

Mobocertinib in EGFR Exon20in NSCLC

No. at risk 114 103 85 61 21 15 13 8 2 0

ORR=28% mPFS: 7.3 mo (95% Cl, 5.5-9.2) mDoR: 17.5 months (95% Cl, 7.4-20.3) mOS: 24.0 mo (95% Cl, 14.6-28.8)

C. Zhou et al. Jama Onc 2021.

Sunvozertinib Activity by Location of EGFR Exon 20 Ins Subtypes

Mutation Subtype

	Mobocertinib _{1,a} (N=114)	Amivantamab² (N=81)	CLN-081 (TAS6417) 6 (N=42) ^c	Sunvozertinib (DZD9008) (N=97) WUKONG6
Investigator assessed				
ORR, %	35%	36%	38%	46.4%
Disease control rate, %	78%	73%	96%	
Duration of response, mos	11.2 mo	-	-	
IRC assessed (95% CI)				
ORR, %	28% (20-37%)	40% (29-51%)	-	60.8% (50.4-70.6%)
Disease control rate,	78%	74%	-	87.6%
Duration of response, months	17.5 mo	11.1 mo	10 mo	64.4% responding at median fup of 5.6 mo.
PFS, months	7.3 mo	8.3 mo	10 mo	-
Brain Mets, ORR (N=)	-	-	33% (N=3)	44% (N=25) From pooled WUKONG studies

EGFR Exon 20 ins TKI with Putative CNS Penetration

Blu-451 Oric-114 Furmonertinib

Zhou C. et al. *JAMA Oncol.* 2021 Oct 14;e214761. [Epub ahead of print]. Park K, et al. *J Clin Oncol.* 2021;39:3391-3404. 3. Nagasaka M, et al. Presented at: WCLC;2021. Abstract P50.04. 4. Piotrowska Z, et al. Presented at: ASCO;2020. Abstract 9513. 5. Zwierenga F, et al. Presented at: ESMO;2021. Abstract 1214P. 6. Piotrowska Z, et al. Presented at: ASCO; 2021. Abstract 9077. 7. Janne P, et al. Presented at: WCLC;2021. Abstract OA15.02.

EGFR Exon 20 Ins NSCLC: Future Strategies

First-Line

Sequencing

Sunvozertinib in Tx Naïve ORR=73.1% (19/26)

PAPILLON

EGFR Exon 20 TKI + EGFR moAB

4. Riess JW et al, ASCO 2022

Osimertinib Efficacy in Atypical EGFR Description Representative Drug Mutations

Classical-like ■ P-loop ■ αC-helix ■ Hydrophobic core ■ Hinge	Description	mutations	selectivity
	Distal to drug- binding pocket Modest to no impact on drug binding	L858R Ex19dels S720P L8610/R S811F K754E T725M L833F/V A763insFQEA A763insFQEA	Selective Intermediate Resistant 3rd gen 2nd gen 1st gen Ex20ins-active
T790M-like	At least one mutation in hydrophobic core Increased affinity for ATP compared to classical-like mutations Two subgroups: T790M-like-3S T790M-like-3R	T790M-3S Classical/T790M G719X/T790M L747_K745del insATSPE S768/T790M T790M-3R Ex19de/T790M/L718X Classical/T790M/L718X Classical/T790M/C797S	T790M-3S 3rd gen PKCi ALKi 2nd gen 1st gen T790M-3R PKCi ALKi 3rd gen 2nd gen 1st gen
Exon 20 loop insertion	C-terminal loop of αC-helix Indirect and substantial impact on drug binding (P-loop and αC-helix Two subgroups: Ex20ins-near loop Ex20ins- far loop	Ex20ins-NL S768dupSVD A767dupASV D770insNPG D770insNPG D770del insGY Ex20ins-FL H773insNPH H773dupH V774insAV V774insPR	Ex20ins-NL Ex20ins-active 2nd gen 1st gen Ex20ins-FL Ex20ins-active 2nd gen 1st gen 3rd gen
P-loop αC-helix compressing	Proximal to drug- binding pocket Direct or indirect impact on drug binding via moderate displacement of P-loop and/or α C-helix	Primary G719X S768I L747P/S V769L E709_1710 delinsD Acquired C797S L792H G724S L792H G724S L718X T854I	2nd gen 1st gen Ex20ins-active 3rd gen

• Structure-Function relationship and classification predicts TKI activity in EGFR mutant NSCLC.

 Role of EGFR moAb and bispecifics by mutation needs to be more fully explored.

Robichaux et al. Nature 2021.

KRAS mutations in cancer – Focus on NSCLC

Figures from Moore AR et al. Nat Rev Drug Discov 19, 533–552 (2020).

KRAS G12C Inhibitors Bind, Inactive GDP bound RAS and Trap It In Inactive State

From P. Lito et al. Science 2016

KRAS G12C inhibitors have activity in KRAS G12C NSCLC

N=124 pts at 960 mg po qd Median 2 prior lines of therapy 81% received both platinum and anti-PD-(L)1 ORR 37.1% (95% CI 28.6-46.2) // DCR 80.6% (95% CI 72.6-87.2) mDOR 11.1 mo (95% CI 6.9-NE); mPFS 6.8 mo (95% CI 5.1-8.2) mOS 12.5 mo (95% CI 10.0-NE)*

*median f/u 15.3 months F Skoulidis et al. N Engl J Med 2021;384:2371-2381.

N=112 pts at 600 mg po bid 98% received both chemo and anti-PD-(L)1 ORR 43% // DCR 80% // mPFS 6.5 months (95% CI 4.7-8.4) mOS 12.6 months (95% CI 9.2-19.2)

Spira A. ASCO 2022

CodeBreaK 200 Phase 3 Study Design

Primary Endpoint: PFS by BICR

Secondary Endpoints: Efficacy (OS[†], ORR, DOR, TTR, DCR), safety/tolerability, PRO

ITT population analysis included all randomised patients

Per regulatory guidance, protocol was amended to reduce planned enrolment from 650 to ~330 patients, and crossover from docetaxel to sotorasib was permitted.

Enrollment period: June 4, 2020 to April 26, 2021; protocol amendment: February 15, 2021; data cutoff: August 2, 2022.

Primary Endpoint: PFS by BICR

CodeBreaK 200 met its primary endpoint with sotorasib demonstrating superior PFS over docetaxel (HR 0.66, *P* = 0.002); 12-month PFS rate was 24.8% for sotorasib and 10.1% for docetaxe

ORR 28.1% vs. 13.2% mOS 10.6 (soto) vs. 11.3 months (doce). No difference in OS. 34% crossover in docetaxel arm

M. Johnson et al ESMO 2022

Acquired resistance to KRAS G12C inhibitors

- On-target resistance (in green)
 - KRAS G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C*
 - High level KRAS G12C amplification
- Bypass resistance (in orange)
 - *MET* amplification
 - Activating mutations in NRAS, BRAF, MAP2K1, RET
 - Oncogenic fusions ALK, RET, BRAF, RAF1, FGFR3
 - LOF NF1, PTEN
- Histologic transformation
 - 2/9 NSCLC adenoca→ squamous

*in switch II pocket

Awad M et al. N Engl J Med. 2021 Jun 24;384(25):2382-2393. Zhao et al Nature. 2021 Nov;599(7886):679-683.

The New York Times

How Scientists Shot Down Cancer's 'Death Star'

No drug could touch a quivering protein implicated in a variety of tumors. Then one chemist saw an opening.

Antitumor Activity of Divarasib in Patients with KRAS G12C Non–Small-Cell Lung Cancer (NSCLC).

Biomarkers of Response and Resistance to Divarasib

Antitumor Activity of Divarasib in Patients with KRAS G12C Non–Small-Cell Lung Cancer (NSCLC).

Biomarkers of Response and Resistance to Divarasib

RAS(ON) Inhibitors

- Less susceptible to adaptive resistance compared to GDP bound RAS
- RMC-6291 KRAS G12C (ON) inhibitor
- RMC-9805 KRAS G12D (ON) inhibitor
- RMC-6236-Pan RAS(ON)

Denotes CDX model; all others are PDX. Responses assigned according to mRECIST (modified from Gao et al Nat Med. 2015).

Kelsey S. AACR-NCI-EORTC 2021. Hofmann MH, et al. Cancer Discov. 2022 Apr 1;12(4):924-937.

Spectrum of KRAS mutations and Co-Mutations in NSCLC

^{*}KRAS (n = 102) listed above represents number of patients with KRAS mutations but without cooccurring mutations in TP53, STK11, KEAP1 or NFE2L2

Arbour et al CCR 2018

Differential Efficacy in Co-Occuring Mutations in KRAS G12C NSCLC

Adagrasib (MRTX849) **ORR in Patients Harboring KRAS**^{G12C} Co-mutations 80 Mutation 70 WT 60 Response Rate, % 64% 50 9/14 48% 48% 40 45% 14/29 11/23 38% 23/51 36% 30 33% 5/14 9/24 10/30 20 10 0 KEAP1 **TP53 KRAS**G12C STK11 (all patients)

Sotorasib (AMG510)

Li et al WCLC 2020

Upregulated Nrf2 is a Druggable Target in Squamous NSCLC and KRAS mutant NSCLC

- Nrf2 (encoded by NFE2L2) is a transcription factor that binds to antioxidant response elements (AREs)
- Keap1, the product of *KEAP1*, sequesters Nrf2 to the cytoplasm (negative regulator)
- Worse outcomes to systemic treatments in retrospective studies (Frank et al CCR 2018).
- NFE2L2 and KEAP1 are mutated in 30% of SQCLCs (NFE2L2>KEAP1). ~20-25% of KRAS mutant NSCLC (KEAP1>NFE2L2)
 - Transforming, oncogenic
 - NFE2L2 mutations disrupt KEAP1 binding and upregulate mTOR through RagD

Adaptive Glutamine Metabolism by GSK3 Signaling Axis Circumvents MLN0128 Inhibition of Glycolysis in Squamous NSCLC

Basal metabolism – high uptake of glucose and glutamine to sustain SCC growth

Overcoming resistance – GSK signaling axis with adaptive GLN metabolism

Actionable in vivo with dual mTOR and GLS inhibition

From the Shackelford lab. Momcilovic et al. Cancer Cell 2018.

A Phase 1 Trial of MLN0128 (Sapanisertib) and CB-839 in Advanced NSCLC (NCI 10327)

co-PIs: JW Riess, Paul Paik

AUGUST 6-9, 2022 | VIENNA, AUSTRIA

Pre-treatment On Treatment KRAS G13C/KEAP1 Adenosquamous NSCLC

Pre-Treatment On Treatment NFE2L2 mutant Squamous NSCLC

Conclusions

- Effective targeted therapeutics against 8+ mutations comprising over a third of lung adenocarcinoma.
- Next generation agents in development as well as targeted therapy of bypass tracts and ADCs
- Still targets with unmet need KRAS G12D, PIK3CA and others.