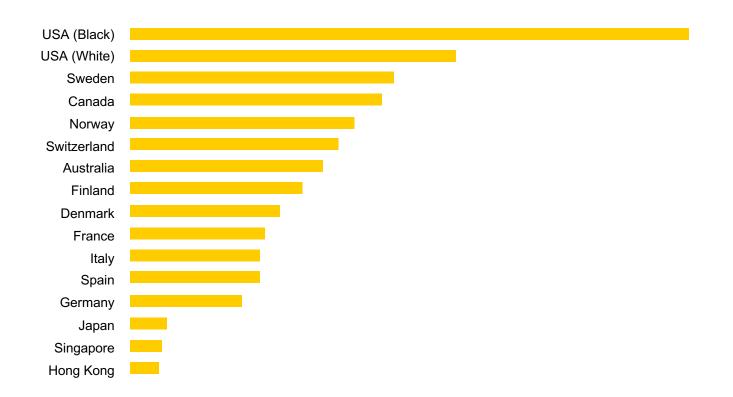
Targeted Therapy in Prostate Cancer

Arif Hussain

Professor of Medicine, Pathology, Biochemistry and Molecular Biology

University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD

> Master Lecture Series Arlington, VA August 5, 2023


Prostate Cancer (Epidemiology)

- Over approximately 900,000 cases world-wide
 - Over 250,000 deaths world-wide (28%)

- U.S. approximately 241,000 cases
 - Over 30,000 deaths (12%)

Epidemiology

- Worldwide incidence and mortality vary significantly
- Histologic prevalence is essentially similar
 - 30-50% of men over have PC at autopsy

Epidemiology

Worldwide incidence and mortality vary significantly

- Highest clinical incidence in African Americans
- High clinical incidence Western countries
- Low clinical incidence in Far East

Histologic prevalence similar worldwide

• 30%-50% men have prostate cancer at autopsy

Initiation of disease common

Promotion to clinical disease varies

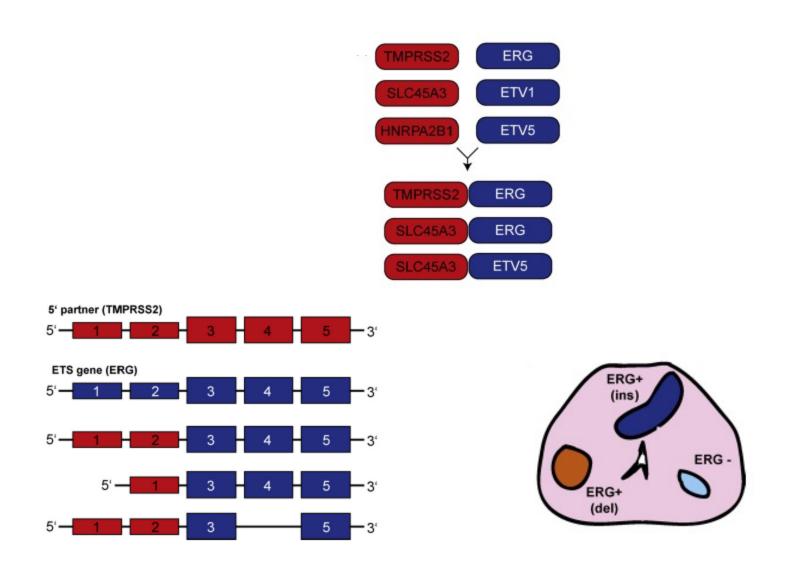
Characteristics of PC

- Chromosomal deletions (LOH) universal feature of human cancer
- Unlike other solid tumors (e.g., RCC, CRC, breast cancer) PC shows inconsistent chromosomal deletions

- There is extensive genetic heterogeneity

 Hereditary PC (HPC) linkage analysis has shown several susceptibility loci

- There is extensive genetic heterogeneity in HPC


Characteristics of PC

Marked morphologic/ histologic heterogeneity

- Multifocal
- > 1 histologic grade
- Often admixed with benign pathology

• Non-palpable PC in RP specimens

- Up to 45% of high-grade tumor (grade 4, 5) < 1cm3
- aggressive disease can occur early in small tumor

ETS gene fusions in prostate cancer

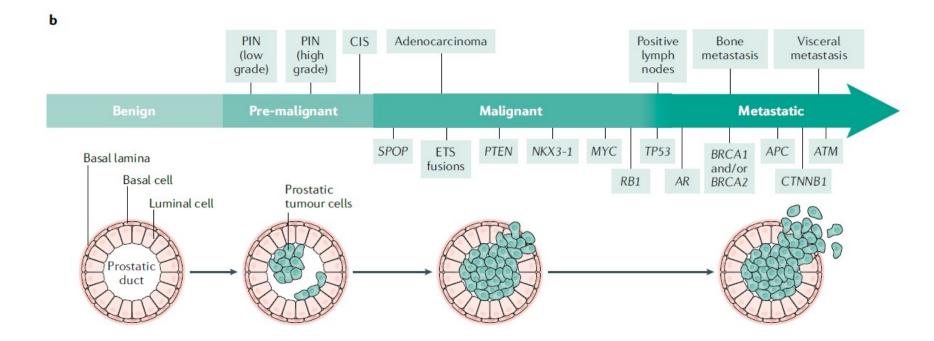
Oncogenesis/TSG

- Oncogenes
 - Expression level

Ras, myc, sis, fos, EGFR, c- erbB2: found in varying frequencies Bcl2: in two-thirds of CRPC

- Increased gene copy number

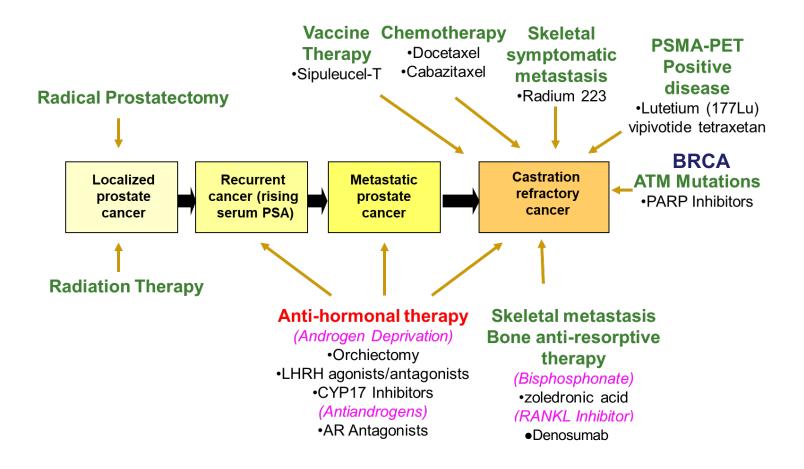
C-myc: 11%, cyclin D1: 5%


- Tumor Suppressor Genes
 - p53

Most consistently mutated (advanced disease)

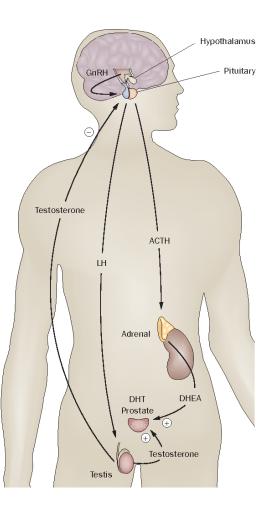
Heterogeneity of p53 mutations within different tumors in same gland

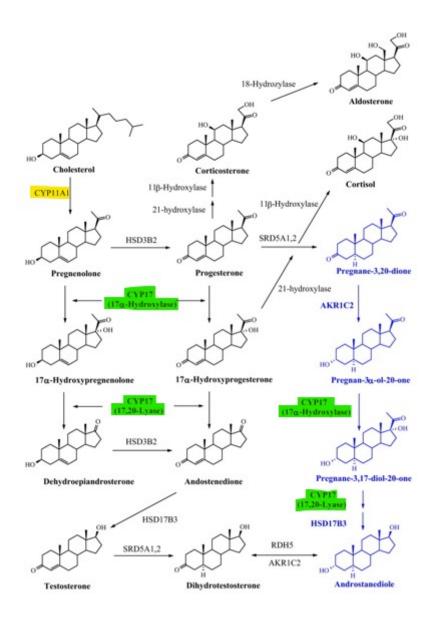
- Others: PTEN, Rb, p16, p27, E-cadherin
- Aggressive Variant Prostate Cancer (AVPC): PTEN, p53, Rb

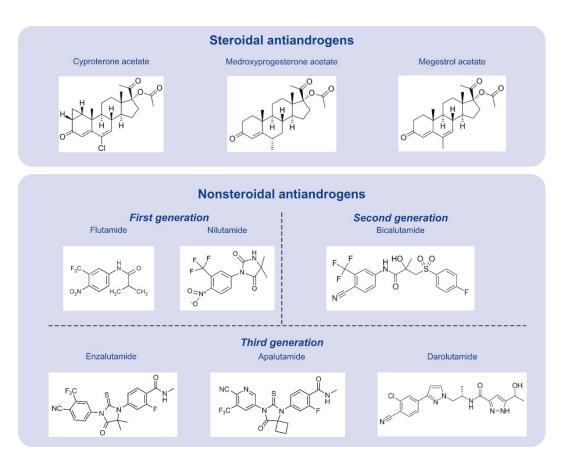

Pathogenesis: histologic transformation

Clinically Localized

~75%

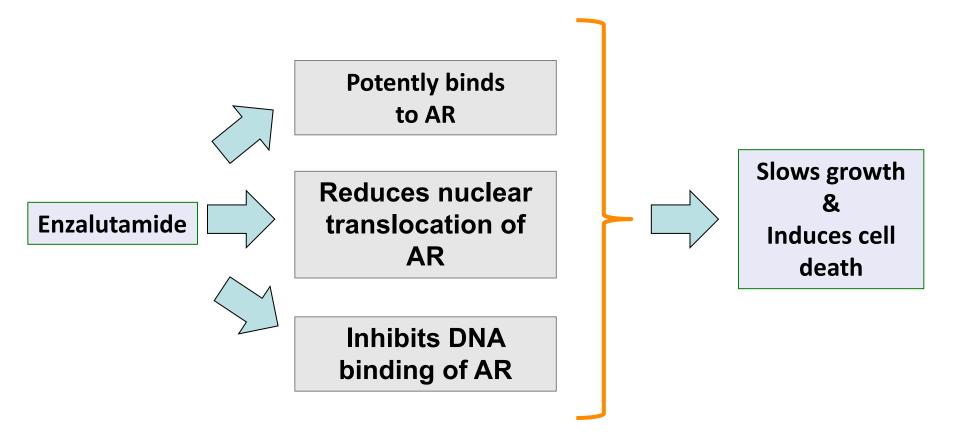

- LAPC ~10 15%
- Metastatic <5 10%



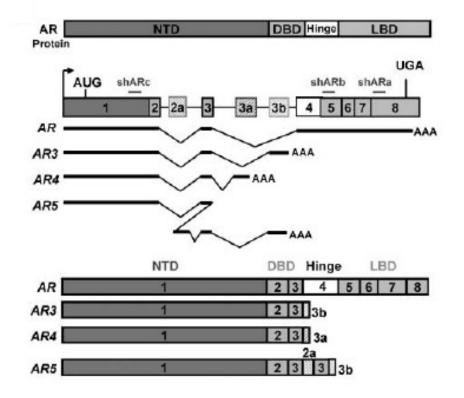

Prostate cancer progression and treatment

Role of Androgen/AR in Prostate Cancer

- Androgens under normal conditions cause differentiation
- In Prostate Cancer why are androgens proliferative?
 - TMPRSS2-ETS translocation as one possible explanation
- Role of Androgen Deprivation Therapy ('hormone therapy') in Prostate Cancer
 - 80% of patients respond initially, PSA decreases
- ADT invariably fails: PSA increases in spite of castrate levels of testosterone
 - Castrate Resistant Prostate Cancer (CRPC)
 - Gain of Function in AR



Chemical structure of steroidal and nonsteroidal antiandrogens


Enzalutamide: AR Antagonist

Tran C, et al. Science. 2009;324:787-790.

Gain of Function of Androgen Receptor

- Changes in coactivator/corepressor expression
- Ligand independent activation of AF (e.g. other growth factors/signaling pathways)
- Increase AR expression
- AR mutations that broaden specificity of ligand
- AR isoforms that may be ligand-independent
- Intra-tumoral synthesis of androgens
 - Exploit alternate pathway: DHEA→ AD→ 5α AD → DHT that bypasses Testosterone synthesis
 - Gain of stability mutation in **3** β HSD, which converts **DHEA** \longrightarrow **AD** (Sharifi, Cell 2013)
- In CRPC glucocorticoid receptor (GR) may substitute for AR in some patients (Sawyers, Cell 2013)

AR variants

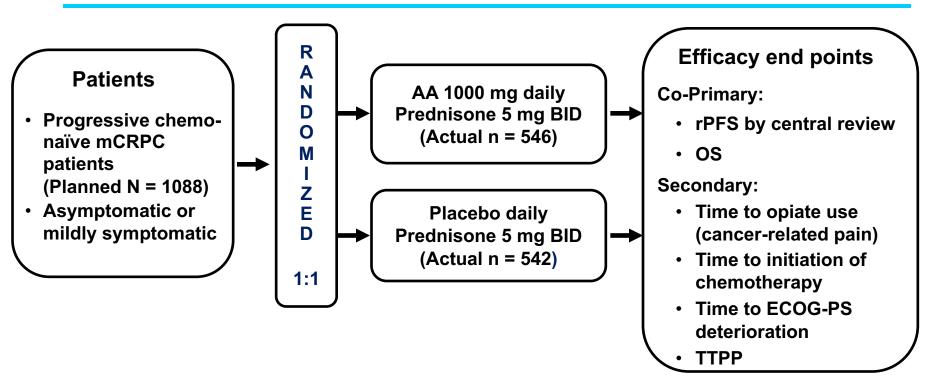
Guo et. al. Cancer Res 2009; 69: (6). March 15, 2009

Metastatic Castration Sensitive Prostate Cancer

- First line therapy is hormone ablation
 - > 80% patients respond
 - Duration of response is \sim 18-24 months with GAS
 - Duration of response *increase by* ~ 12 *additional* months with GAS + AR axis targeting agents to GAS

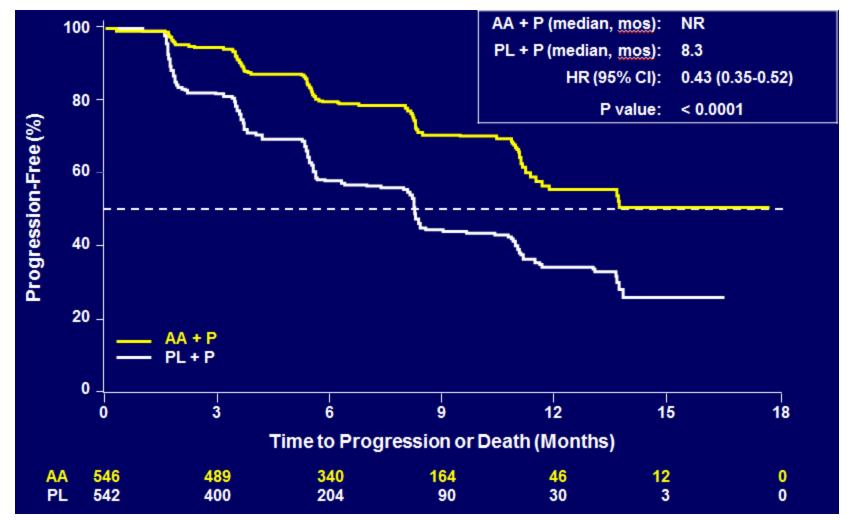
• Types of hormone treatments (next generation)

- Androgen Axis Targeting
 - Androgen biosynthesis inhibitors
 - Abiraterone
 - Non- Steroidal
 - Enzalutamide
 - Apalutamide
 - Darolutamide


Hormonal Therapies in Metastatic Castration Sensitive Prostate Cancer (CSPC)

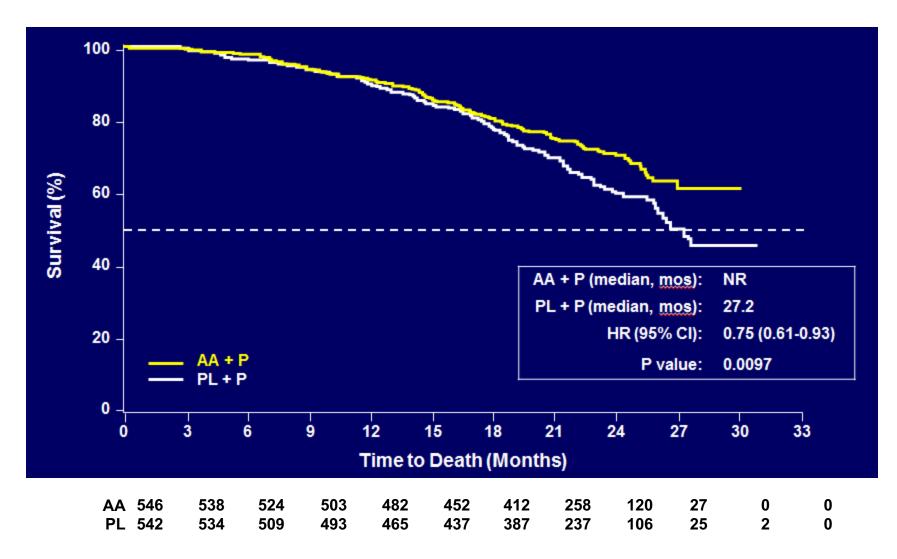
- Gonadal androgen suppression (GAS): surgical/medical castration
- Combined androgen suppression (GAS + AR axis targeted agents = 'hormonal intensification')
- Androgen deprivation therapy (GAS) + docetaxel chemotherapy
- Combined androgen suppression (ADT + AR axis targeting) + docetaxel
 - PEACE-1 Trial (ADT + Abiraterone + Docetaxel)
 - ARASENS Trial (ADT + Darolutamide + Docetaxel)

Hormonal Therapies in Metastatic Castration Resistant Prostate Cancer (CRPC)


- Patients then develop progressive disease despite castrate levels of serum testosterone, i.e. Castration Resistant Prostate Cancer (CRPC)
- In CRPC there is re-expression of Androgen Regulated Genes (ARG), i.e. there is recruitment of AR-dependent signaling
 - PSA starts rising despite 'castrate' levels of serum testosterone
- Therefore, in CRPC there is rationale to:
 - Further decrease androgen biosynthesis
 - Disrupt AR function

Abiraterone in Metastatic CRPC (pre-docetaxel) COU-302 Trial

- Phase 3 multicenter, randomized, double-blind, placebo-controlled study conducted at 151 sites in 12 countries; USA, Europe, Australia, Canada
- Stratification by ECOG performance status 0 vs 1


Statistically Significant Improvement in rPFS Primary End Point

Data cutoff 12/20/2010. NR, not reached; PL, placebo.

Ryan CJ et al. Oral presentation ASCO, Chicago, 2 June 2012

Strong Trend in OS Primary End Point

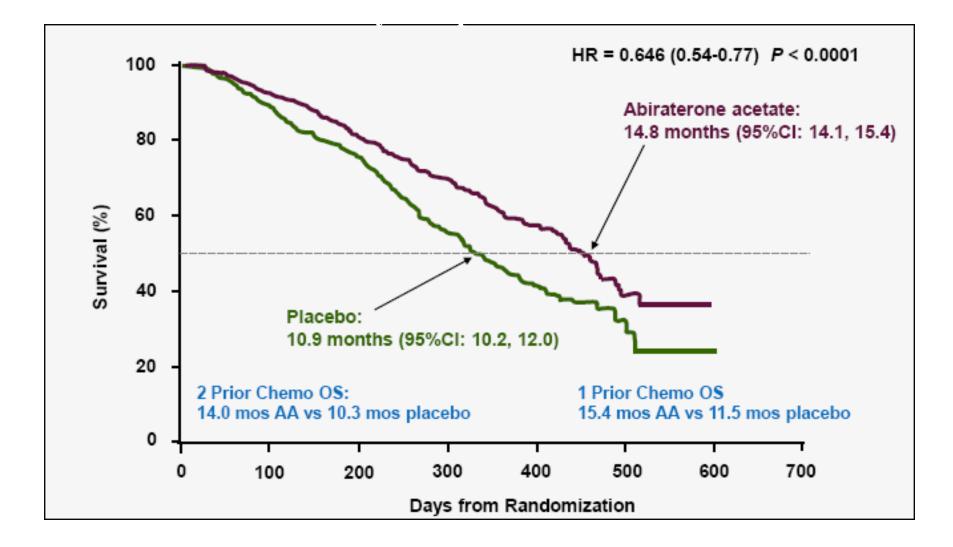
Data cutoff 12/20/2011.

Pre-specified significance level by O'Brien-Fleming Boundary = 0.0008.

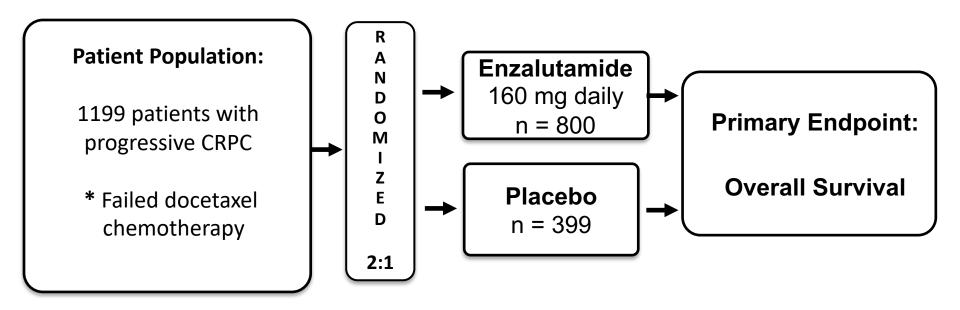
Abiraterone in mCRPC (post docetaxel): COU 301 Trial

- N = 1195 pts; 2:1 randomization; all pts previously received docetaxel
- AA 1000 mg/day + Pred 10 mg/day vs. Placebo + Pred 10 mg/day
 - Median follow up 13 months

OS: 14.8 months vs. 10.9 months (HR 0.65)


PFS: 5.6 months vs. 3.6 months

PSA response: 29% vs. 6 %


- Secondary analysis

- 90% pts had bone metastasis, 44% had significant pain
- Statistically significant improvement in pain, time to first SRE

Abiraterone in Metastatic CRPC (post docetaxel) COU-301 Trial

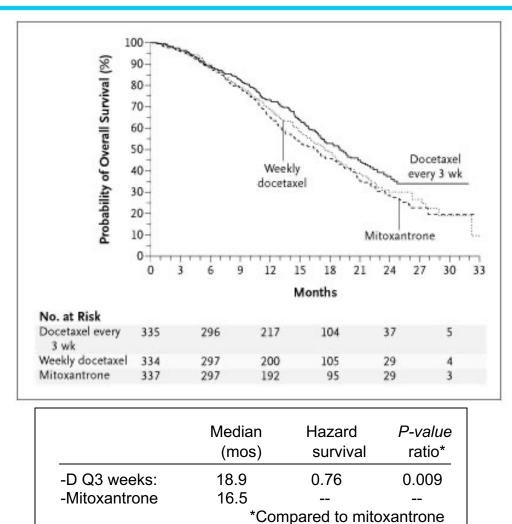

AFFIRM: A Phase III Trial of Enzalutamide vs. Placebo in Post-Chemotherapy Treated mCRPC

* Glucocorticoids were not required but allowed Co- Principal Investigators: H. Scher & J. De Bono

Clinicaltrials.gov identifier: NCT00974311

Enzalutamide Prolongs Survival by a Median of 4.8 Months

Hormonal Therapies in Metastatic Prostate Cancer


- Metastatic Castration *Resistant* Prostate Cancer
 - ADT + Abiraterone: COU-301 (post docetaxel), COU-302 (pre-docetaxel)
 - ADT + Enzalutamide: AFFIRM (post docetaxel), PREVAIL (pre-docetaxel)
- Metastatic Castration Sensitive Prostate Cancer
 - ADT + Abiraterone: LATTITUDE, STAMPEDE
 - ADT + Enzalutamide: ENZAMET, ARCHES
 - ADT + Apalutamide: TITAN

Chemotherapy

- Low dose po Cytoxan
- 5 FU
- Doxorubicin
- Doxorubicin + 5FU
- Doxorubicin + Stilphostrol
- Doxorubicin + Ketoconazole
- Vinblastine
- Vinorelbine

- Estramustine (EMP)
- EMP+Vinblastine
- EMP + Etoposide
- EMP+Taxanes
- Epothilones
- Satraplatin
- Mitoxantrone
- Docetaxel
- Cabazitaxel

TAX 327: Overall Survival (mCRPC)

NOTE: In the weekly mitoxantrone control..

(docetaxel) injection concentrate arm, no overall survival advantage was demonstrated compared to the

Phase III Trials of Docetaxel Combinations

Doc/Pred vs Doc/ Combined With:	Status	Results
DN-101	Terminated early	Negative
GVAX	Terminated early	Negative
Bevacizumab	Completed	Negative
VEGF-Trap	Completed	Negative
Atrasentan	Completed	Negative
ZD4054	Completed	Negative
Dasatinib	Completed	Negative
Lenalidomide	Completed	Negative
Custersin (OGX-011)	Completed	Negative

To date, no combination improves on docetaxel and pred

Cabazitaxel (TROPIC Phase III Trial; mCPRC)

- N = 775 pts; *all received prior docetaxel*
- Cabazitaxel/Prednisone vs. Mitoxantrone/Prednisone
- Overall Survival favored cabazitaxel

Median survival	:	15.1 months vs. 12.7 months (HR 0.70)
PFS	:	2.8 months vs. 1.4 months (HR 0.74)
PSA response	:	39% vs. 18%

Survival benefit greater for pts receiving more prior docetaxel (HR 0.51 for doc >900m/m2 vs. 0.96 for doc < 225 mg/m2)

Proselica Trial (n=1200, mCRPC post Docetaxel)

Cabazitaxel 20mg/m2 vs. Cabazitaxel 25mg/m2

- median OS: 13.4 mo vs. 14.5 mo
- Grade 3/4 infections: 10% vs. 20%
- Neutropenic fevers: 2% vs. 10%

Firstana Trial (n=1168, chemotherapy-naive, 1:1:1)

Cabazitaxel 20mg/m2 vs. Cabazitaxel 25mg/m2 vs. Docetaxel 75mg/m2

- median OS: 24.5 mo vs. 25.2 mo vs. 24.3 mo
- Grade 3/4 toxicity: 41% vs. 60% vs. 46%

Chemo-hormone Therapy in Metastatic Castration Sensitive Prostate Cancer

- ADT + Chemotherapy (Docetaxel) "Doublets"
 - CHAARTED
 - STAMPEDE
 - GETUG-AFU15

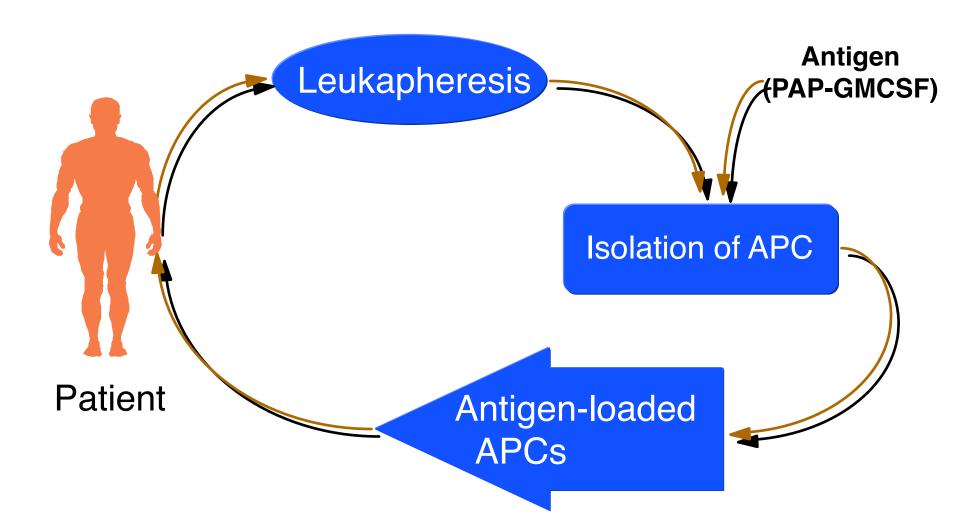
- ADT + AR Targeting + Chemotherapy (Docetaxel) "Triplets"
 - PEACE-1: ADT + Abiraterone +/- Chemotherapy
 - ARASENS: ADT + Chemotherapy +/- Darolutamide

Immune Therapy in Prostate Cancer

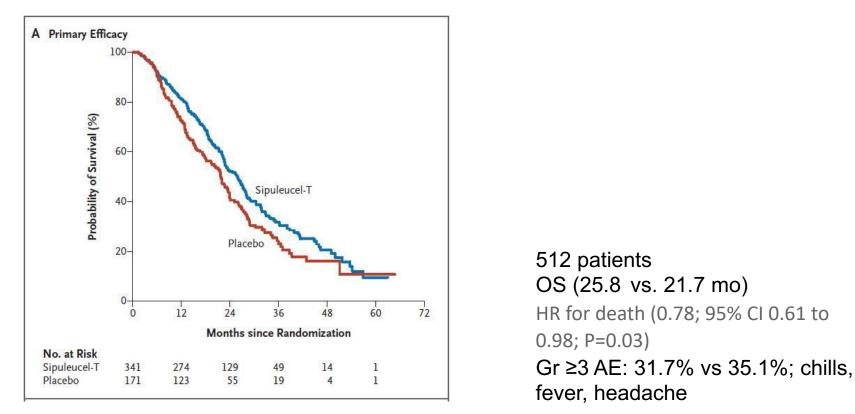
Vaccines: Generate anti-tumor response to specific tumor antigens

Sipuleucel-T (PAP-GSF fusion protein used to prime autologous dendritic cells ex vivo and then reinfuse in pts to stimulate T cells)

Prostvac (PSA-triad of costimulatory molecules in viral vector given s.c. to prime dendritic cells in vivo which then stimuateT cells)


Immune Checkpoint Inhibitors: Non-specific stimulation of T cells

PD-1 (activated T and B cells)

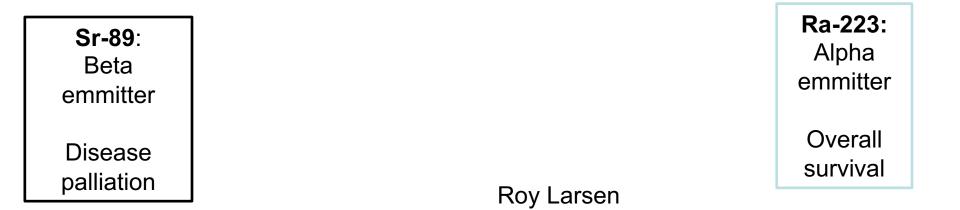

PD-L1 (expressed on tumor cells)

CTLA-4 (activated T cells)

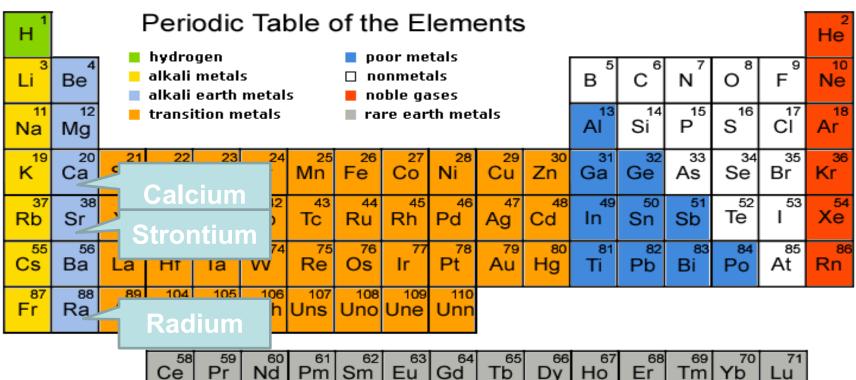
Sipuleucel-T

m1CRPC: SipuleuceI-T: \leftrightarrow PFS, \uparrow OS

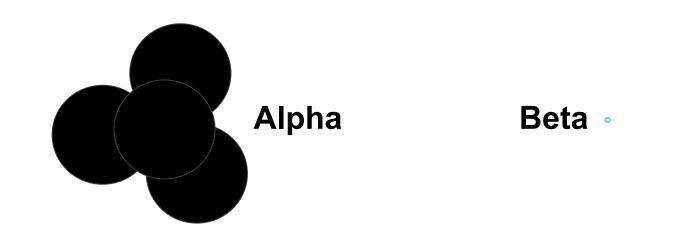
- IMPACT 2010
- Phase 3 randomized
- $PSA \ge 5$, no visceral mets but bone mets OK, ±chemo
- IV infusions, q2weekly x 3
- Sipuleucel-T vs placebo


Kantoff PW, et al. NEJM 2010

Conclusions

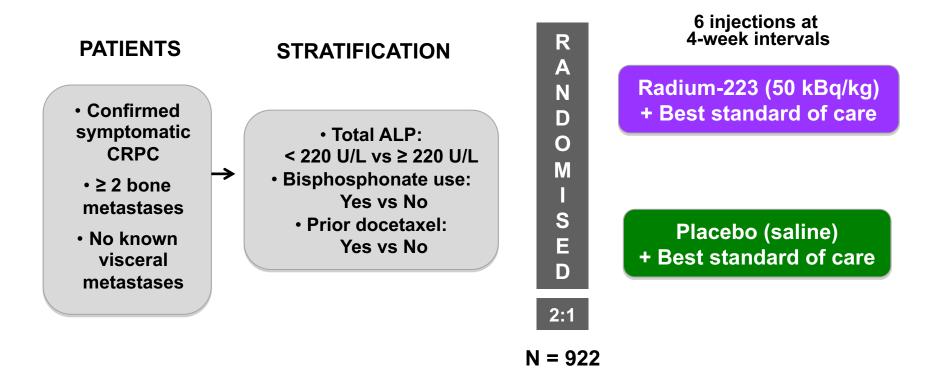

- Immunotherapy may slow the growth rate of tumors and improve OS (but may not impact short term PFS)
- Immunotherapy may have delayed effect and for a longer period of time (in part may be due to antigen spreading)
- Earlier use of immunotherapy with less tumor burden is likely to be better

Radioisotopes: 50 years of progress

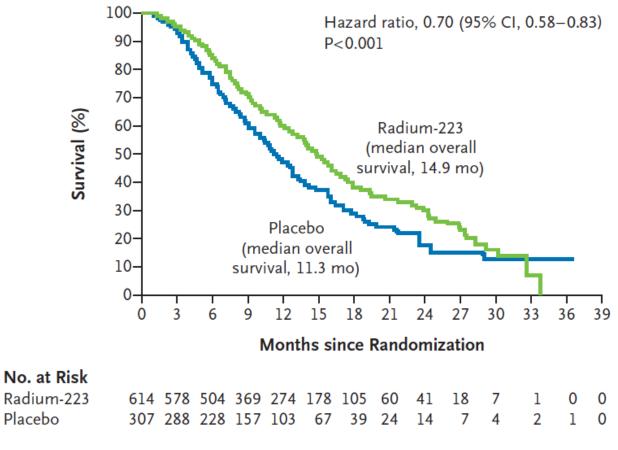


Radium and Strontium act as Calcium Mimetic Agents

Ce	Pr	Na					-					
90 Th		92 U	94 Pu	Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

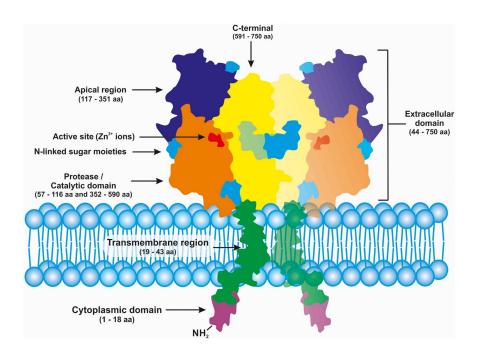

α (Ra decay) and β (Sr decay) Particles

	α	β
Relative mass	7300	1
Range in tissue	0.1mm	5mm
Hits to kill a cell	1–10	100–1000


ALSYMPCA (ALpharadin in SYMptomatic Prostate CAncer) Phase III Study Design

TREATMENT

ALSYMPCA Overall Survival



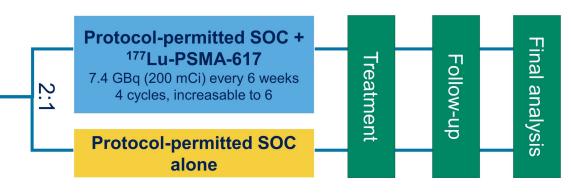
Parker et al. NEJM (2013)

Prostate-specific membrane antigen (PSMA): molecular target for imaging and therapy in prostate cancer

- Transmembrane carboxypeptidase
- Highly expressed in prostate cancer including metastatic lesions
- Relatively restricted normal expression
 - E.g. salivary and lacrimal glands
- Excellent target for PET imaging

From Evans JC et al. Br J Pharmacol 2016;173:3041–3079

Presented By: Michael J. Morris

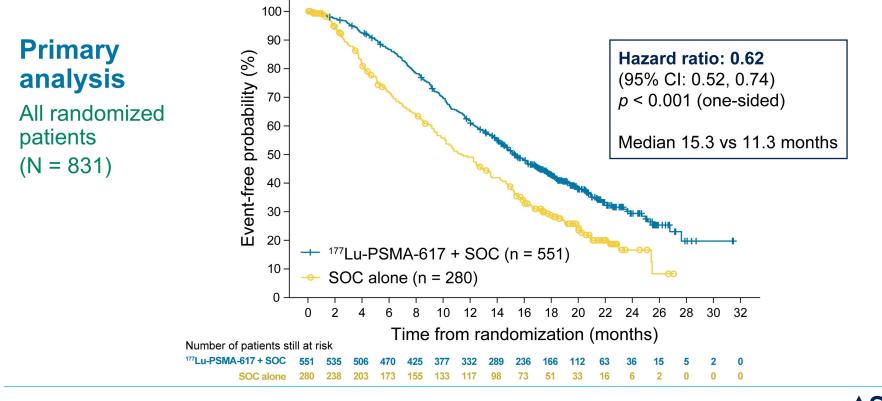

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Open-label study of protocol-permitted standard of care ± ¹⁷⁷Lu-PSMA-617 in adults with PSMA-positive mCRPC

Eligible patients

- Previous treatment with both
 - ≥ 1 androgen receptor pathway inhibitor
 - 1 or 2 taxane regimens
- Protocol-permitted standard of care (SOC) planned before randomization
 - Excluding chemotherapy immunotherapy, radium-223, investigational drugs
- ECOG performance status 0–2
- Life expectancy > 6 months
- PSMA-positive mCRPC on PET/CT with ⁶⁸Ga-PSMA-11

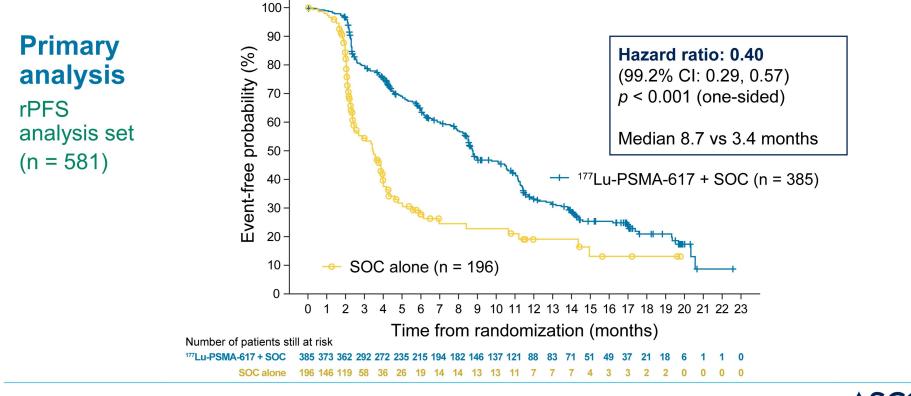
- Randomization stratified by
 - ECOG status (0–1 or 2)
 - LDH (high or low)
 - Liver metastases (yes or no)
 - Androgen receptor pathway inhibitors in SOC (yes or no)


- CT/MRI/bone scans
 - Every 8 weeks (treatment)
 - Every 12 weeks (follow-up)
 - Blinded independent central review

Presented By: Michael J. Morris

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

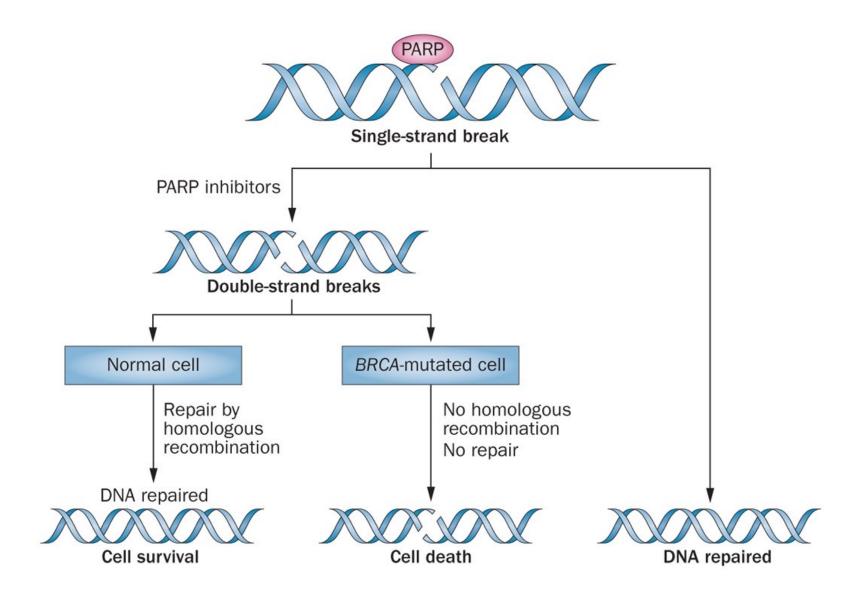
Primary endpoints: ¹⁷⁷Lu-PSMA-617 prolonged OS



Presented By: Michael J. Morris

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Primary endpoints: ¹⁷⁷Lu-PSMA-617 improved rPFS


Presented By: Michael J. Morris

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

DNA Damage Response (DDR) Pathways

- Normal cells repair SSB in DNA via BER (utilize PARP)
- Normal cells repair DSB in DNA via Homologous Recombination (HR)
 - BRCA1, BRCA2, ATM, others
- SSB repair pathways can compensate for DSB pathways (and vice versa)
 - If have *HR defects* (eg: BRCA1/2, ATM mutations) then cells up to 1000 x more sensitive to PARP inhibitors (bi-allelic loss)
- DDR defects in prostate cancer can treat with PARP inhibitors
 - up to 20% advanced CRPC
 - up to 5% germline mutations in BRCA
- There is cross-talk between AR signaling and DDR pathways, which could be exploited
- Cross-talk between PARP and cell cycle (eg: RB/E2F1)

PARP Inhibitors in Metastatic CRPC

• PROfound Trial: Olaparib

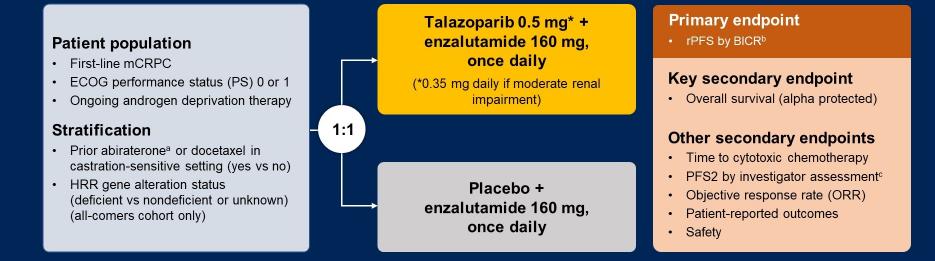
- Olaparib vs enzalutamide or abiraterone, 2:1 randomization
- BRCA1/2, ATM mutations
- Primary endpoint: rPFS
 - 7.4 months vs 3.6 months, HR 0.34 (0.25-0.47)
- Secondary endpoint: OS
 - 18.5 months vs 15.1 months
- Triton 2 Trial: Rucaparib
 - Phase 2 trial in mCRPC post next gen hormonal agent and one prior chemotherapy regimen
 - BRCA1/2 mutated
 - Primary endpoints: OFF, PSA response rates

TALAPRO-2: Phase 3 study of talazoparib plus enzalutamide versus placebo plus enzalutamide as first-line treatment for patients with metastatic castration-resistant prostate cancer harboring homologous recombination repair gene alterations (HRR-deficient population)

Karim Fizazi,¹ Arun A. Azad,² Nobuaki Matsubara,³ Joan Carles,⁴ Andre P. Fay,⁵ Ugo De Giorgi,⁶ Jae Young Joung,⁷ Peter C. C. Fong,⁸ Eric Voog,⁹ Robert J. Jones,¹⁰ Neal D. Shore,¹¹ Curtis Dunshee,¹² Stefanie Zschäbitz,¹³ Jan Oldenburg,¹⁴ Xun Lin,¹⁵ Cynthia G. Healy,¹⁶ Nicola Di Santo,¹⁷ Fabian Zohren,¹⁸ Neeraj Agarwal¹⁹

¹Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France; ²Peter MacCallum Cancer Centre, Melbourne, Australia; ³National Cancer Center Hospital East, Chiba, Japan; ⁴Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁵PUCRS School of Medicine, Porto Alegre, Brazil; ⁶IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy; ⁷National Cancer Center, Goyang, Republic of Korea; ⁸Auckland City Hospital and University of Auckland, Auckland, New Zealand; ⁹Clinique Victor Hugo Centre Jean Bernard, Le Mans, France; ¹⁰School of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK; ¹¹Carolina Urologic Research Center, Myrtle Beach, SC, USA; ¹²Arizona Urology Specialists, Tucson, AZ, USA; ¹³National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; ¹⁴Akershus University Hospital (Ahus), Lørenskog, Norway; ¹⁵Pfizer Inc., La Jolla, CA, USA; ¹⁶Pfizer Inc., Collegeville, PA, USA; ¹⁷Pfizer Inc., Durham, NC, USA; ¹⁸Pfizer Inc., New York, NY, USA; ¹⁹Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, UT, USA

ClinicalTrials.gov identifier: NCT03395197. This study was sponsored by Pfizer Inc. Astellas Pharma Inc. provided enzalutamide


#ASCO23

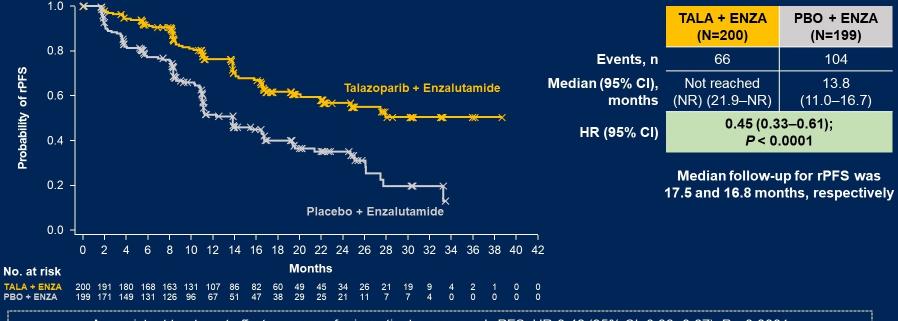
PRESENTED BY: Professor Karim Fizazi Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2: A Randomized, Double-blind, Placebo-Controlled Study

Samples <u>prospectively assessed</u> for HRR gene alterations (*BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, FANCA, RAD51C, NBN, MLH1, MRE11A, CDK12*) using FoundationOne[®]CDx and/or FoundationOne[®]Liquid CDx

BICR=blinded independent central review; rPFS=radiographic progression-free survival.

*One patient in each treatment arm received prior orteronel. *Per RECIST version 1.1 (soft tissue disease) and Prostate Cancer Clinical Trials Working Group 3 (bone disease). *Time from randomization to the date of documented progression on the first subsequent antineoplastic therapy or death from any cause, whichever occurred first.


#ASCO23 PRESENTED BY: Professor Karim Fizazi

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2 HRR-Deficient Primary Endpoint: rPFS by BICR

Treatment with talazoparib plus enzalutamide resulted in a 55% reduced risk of progression or death

A consistent treatment effect was seen for investigator-assessed rPFS: HR 0.48 (95% CI, 0.33-0.67); P < 0.0001

Stratified hazard ratios (HRs) and 2-sided P values are reported throughout this presentation unless otherwise stated.

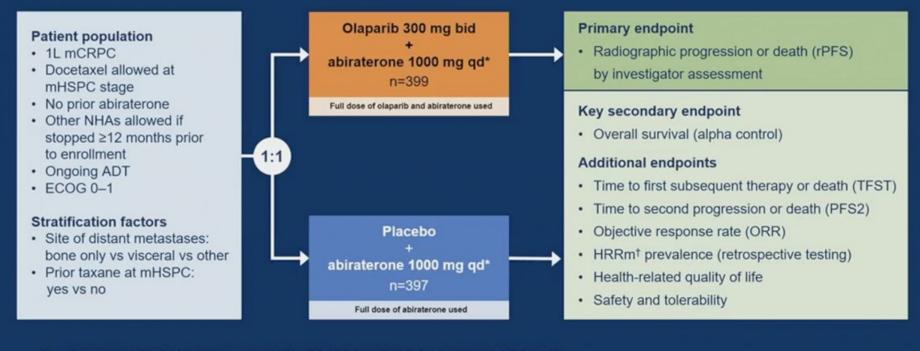
PRESENTED BY: Professor Karim Fizazi Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

TALAPRO-2 HRR-Deficient: Overall Survival (Interim Analysis)

Overall survival data are immature (24% maturity overall)

#ASCO23

PRESENTED BY: Professor Karim Fizazi Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org


Randomized Trials with PARP Inhibitors in mCRPC

 TALAPRO-2: Talazoparib + Enzalutamide - 1st line mCRPC (HRRm, non-HRRm)

• **PROpel:** Olaparib + Abiraterone - 1st line mCRPC (HRRm, non-HRRm)

 TRITON-3: Rucaparib vs Investigators Choice (Docetaxel or NHA) in HRRm after failure of one NHA

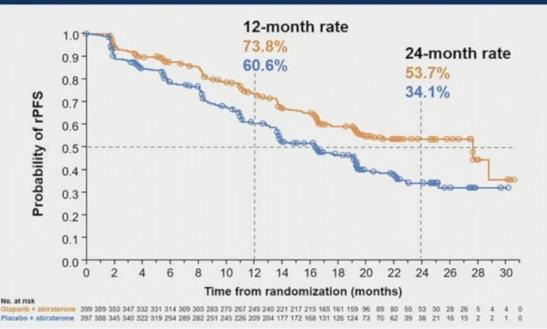
PROpel: a global randomized double-blind phase III trial

First patient randomized: Nov 2018; Last patient randomized: Mar 2020; DCO1: July 30, 2021, for interim analysis of rPFS and OS. Multiple testing procedure is used in this study: 1-sided alpha of 0.025 fully allocated to rPFS. If the rPFS result is statistically significant, OS to be tested in a hierarchical fashion with alpha passed on to OS. Please access the **Supplement** via the QR code at the end of this presentation for more details.

"In combination with prednisone or prednisolone 5 mg bid. ¹HRRm, homologous recombination repair mutation, including 14 genes panel.

ADT, androgen deprivation therapy; bid, twice daily; ECOG, Eastern Cooperative Oncology Group; mHSPC, metastatic hormone sensitive prostate cancer; qd, daily

ASCO Genitourinary Cancers Symposium



PRESENTED BY: Professor Fred Saad

PROpel: rPFS by blinded independent central review*

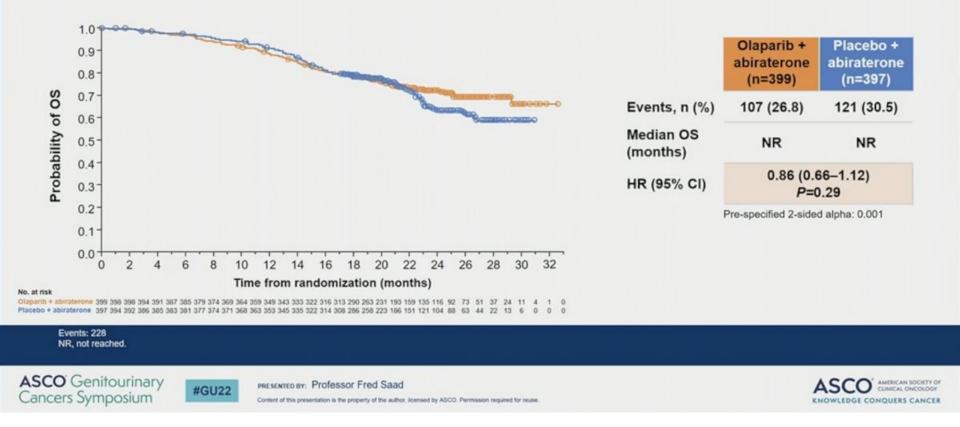
39% risk reduction of progression or death with olaparib + abiraterone Highly consistent with the primary analysis

	Olaparib + abiraterone (n=399)	Placebo + abiraterone (n=397)		
Events, n (%)	157 (39.3)	218 (54.9)		
Median rPFS months)	27.6	16.4		
HR (95% CI)	0.61 (0.49–0.74) <i>P</i> <0.0001 [†]			

Median rPFS improvement of 11.2 months favors olaparib + abiraterone[‡]

*Predefined sensitivity analysis. *Nominal. *In combination with prednisone or prednisolone

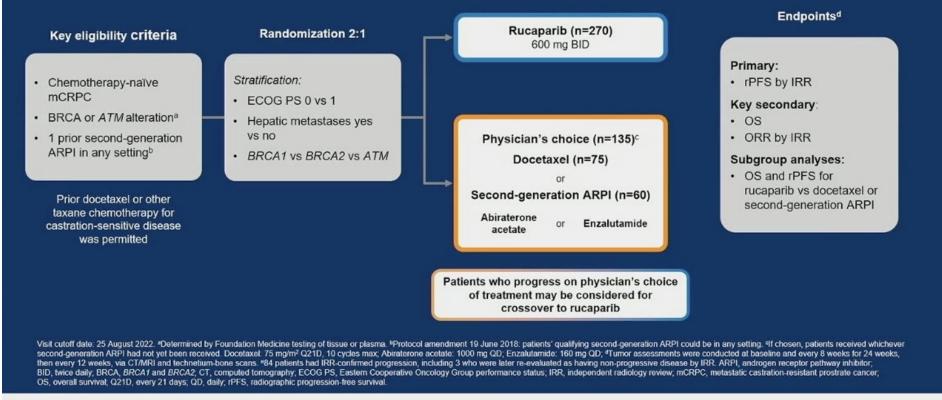
ASCO Genitourinary Cancers Symposium


#GU22 PRESENTED BY

PRESENTED BY: Professor Fred Saad Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse

PROpel: overall survival

28.6% maturity; trend towards improved OS with olaparib + abiraterone

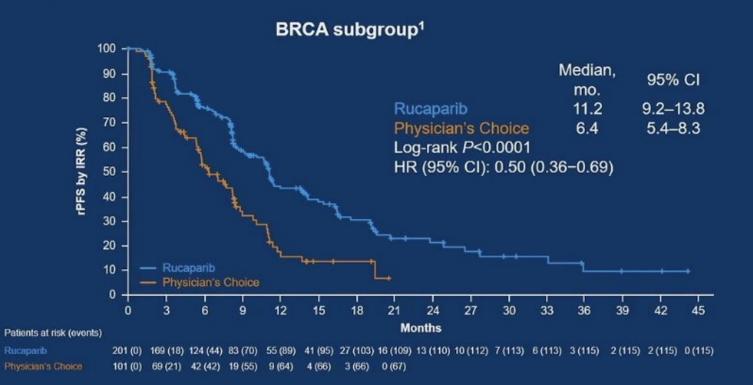

Randomized Trials with PARP Inhibitors in mCRPC

 TALAPRO-2: Talazoparib + Enzalutamide - 1st line mCRPC (HRRm, non-HRRm)

• PROpel: Olaparib + Abiraterone - 1st line mCRPC (HRRm, non-HRRm)

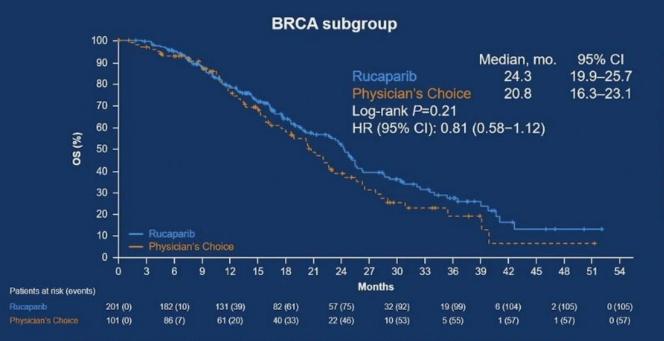
 TRITON-3: Rucaparib vs Investigators Choice (Docetaxel or NHA) in HRRm after failure of one NHA

TRITON3 Study Design


ASCO Genitourinary Cancers Symposium

#GU23 PRESENTED BY: L

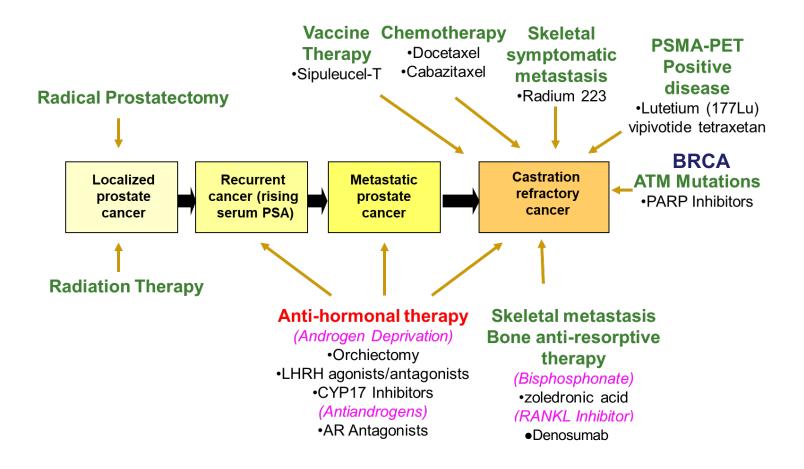
PRESENTED BY: Dr. Alan H. Bryce Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.



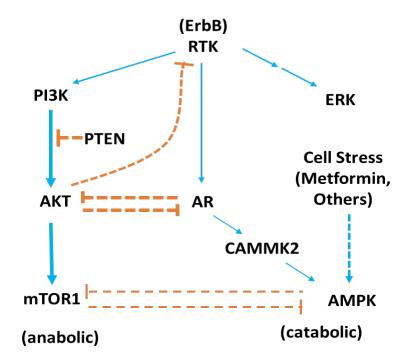
Radiographic PFS

Visit cutoff date: 25 August 2022. BRCA subgroup data maturity (rucaparib vs physician's choice): 182/302 (60.3%). 1. Bryce et al. Presented at the 2022 PCF Annual Retreat. BRCA, BRCA1 and BRCA2; HR, hazard ratio; IRR, independent radiology review, ITT, intent to treat; PFS, progression-free survival; rPFS, radiographic progression-free survival.

Interim OS



A CONTRACTOR OF		Constant Statement of Statement
	nonu	lation
	popu	lation


	Rucaparib (n=270)	Physician's Choice (n=135)		
Median OS, mos (95% CI)	23.6 (19.7–25.0)	20.9 (17.5–24.4)		
Log-rank P	0.67ª			
HR (95% CI)	0.94 (0.72–1.23)			

- BRCA subgroup data maturity (rucaparib vs physician's choice): 162/302 (53.6%)
- Target maturity for final analysis: 70%

*Nominal. Visit cutoff date: 25 August 2022. BRCA, BRCA1 and BRCA2; HR, hazard ratio; ITT, intent to treat; OS, overall survival.

Prostate cancer progression and treatment

ErbB, AKT, AR cross-signaling in AR-expressing prostate cancer cells.

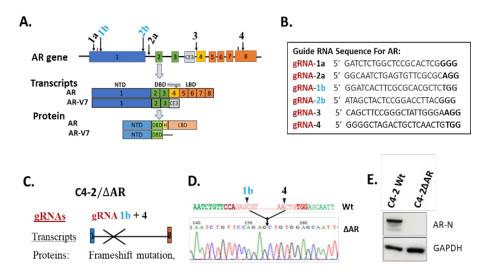


Fig 10. C4-2/ Δ AR cells, generated by AR gene knock out in C4-2 cells. A) Schematic representation of AR gene, canonical exons and cryptic exon3 (CE3); arrows show gRNA target sites. B) gRNA sequences. C) gRNAs used to knock out AR in C4-2 cells. D, E) AR knock out in C4-2/ Δ AR clone confirmed by DNA sequencing and western blot, respectively.

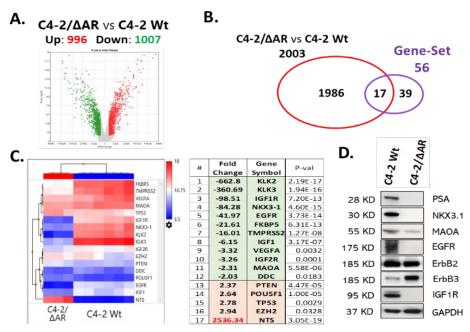


Fig 11. Analysis of C4-2/∆AR clone. RNA expression data analyzed using TAC software. A) Volcano plot; 2003 genes differentially expressed between Wt and AR knock out clone. B) Venn diagram. 17 genes (passed Gene-Set filter) in common with the pre-defined 56 gene panel. C) Heat map of the 17 genes in B. D) Western blot, protein expression of selected genes.

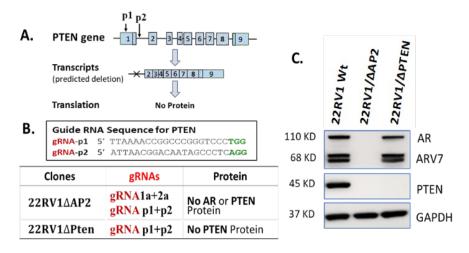


Fig 17. PTEN knock out and PTEN + AR^{FL}/ARV7 knockouts in 22RV1 cells. A) Schematic representation of PTEN gene. B) gRNAs p1, p2 used to knock out PTEN to generate clone 22RV1/ Δ PTEN; gRNAs 1a, 2a (Fig 10B), and gRNAs p1, p2 used to knock out both AR^{FL}/ARV7 and PTEN to generate clone 22RV1/ Δ AP2. C) Western blot confirmation of the respective knockouts.