

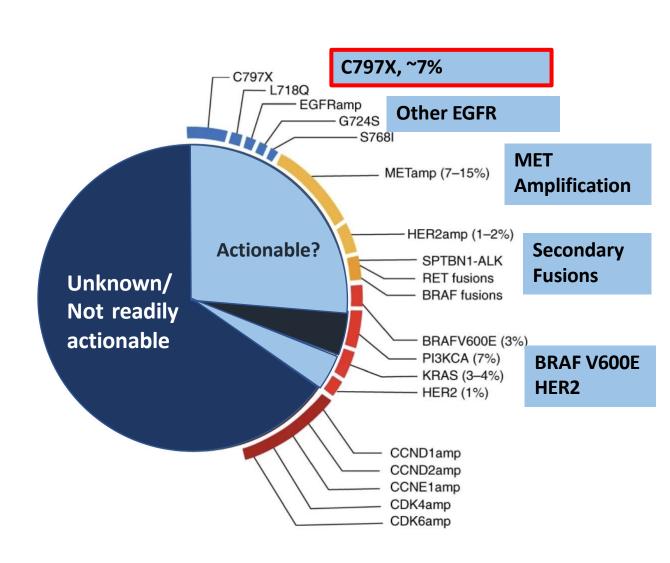
Presented by: Nagla Abdel Karim, MD Director of Early Therapeutics Program Inova Schar Cancer Institute Professor of Medicine University of Virginia

Objectives

- I. Mechanisms of EGFR Resistant NSCLC:
 - A. Possible Actionable Genomic Alteration
 - **B.** Histologic Transformation
- II. Management of EGFR Resistant NSCLC

III. Mechanisms of ALK Resistant NSCLC

IV. Management of ALK Resistant NSCLC


EGFR Resistant NSCLC

I. Mechanism of EGFR Resistant NSCLC:

Possible Actionable Genomic Alteration

- Acquired resistance to 3rd generation EGFR TKIs is heterogenous
- Dominant mechanisms include EGFR C797X mutations and MET amplification
- Fourth generation EGFR TKIs are in development with predicted activity against C797X
- EGFR + MET-targeted therapies are active for high-level acquired MET amplification
- While less common, TKI combinations offer promise for acquired secondary oncogenic driver mutations



EGFR Resistant NSCLC

What fraction of acquired resistance is associated with an actionable genomic alteration?

cfDNA, 1L Osimertinib

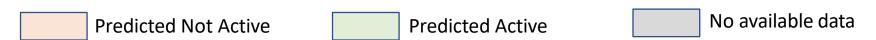
EGFR act+ T790M EGFR act+ T790M C797S T790M/C797S Osimertinib EGFR act+ C797S T790M/C797S T790M/C797S (Osimertinib in 1st line/T790M loss) 4th gen EGFR-TKI 2nd gen EGFR-TKI

EGFR C797X Mutations

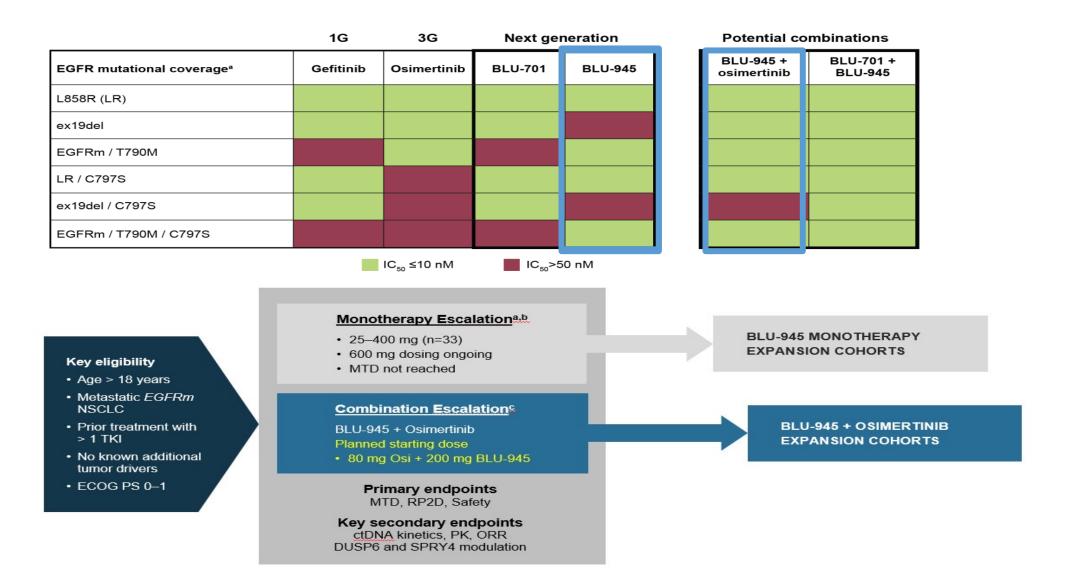
EGFRm + EGFR C797X "Double Mutant" e.g. Acquired Resistance to 1L Osimertinib

Reported Sensitivity to 1st Gen EGFR TKIs (geftinib, erlotinib)

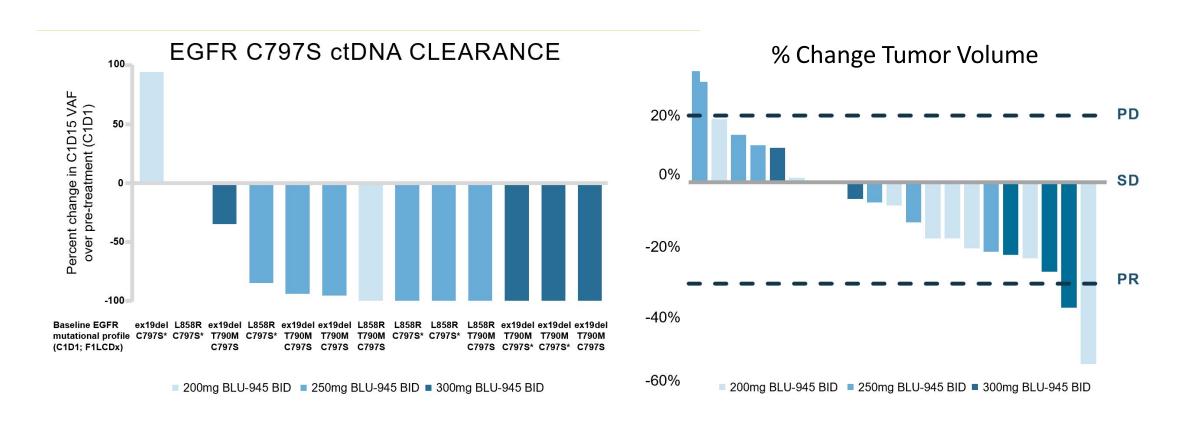
EGFRm + EGFR T790M + EGFR C797X "Triple Mutant" in trans
e.g. Acquired Resistance to sequential 1st and 3rd generation EGFR TKIs.


Reported sensitivity to combination osimertinib + gefitinib

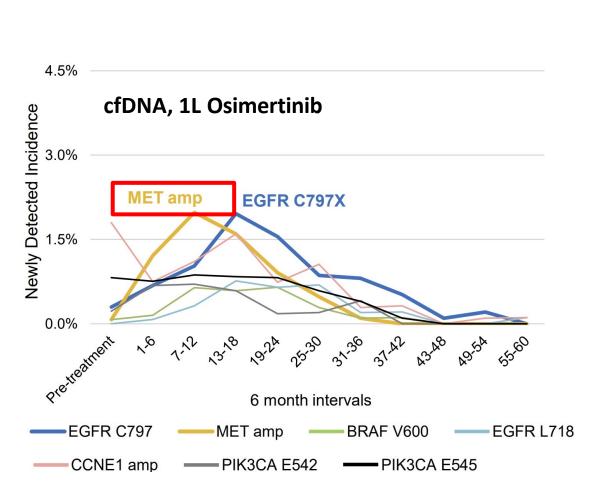
EGFRm + EGFR T790M + EGFR C797X "Triple Mutant" in <u>cis</u>
Resistant to all approved EGFR TKIs
Requires a 4th generation EGFR TKI

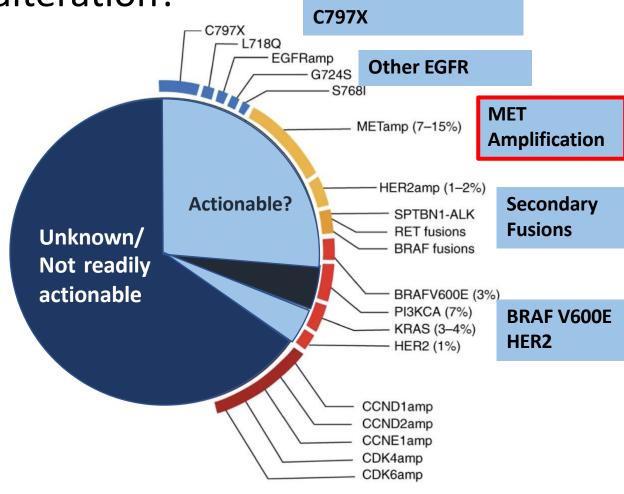

C797S-Active Compounds in Development: Preclinical Data

Compound	Del19	L858R	Del19/ T790M	L858R/ T790M	Del19/ C797S	L858R/ C797S	Triple Mutant	Other	CNS?	Status
BLU-945	-	X	X	X	-	X	Х		X	Phase 1/2 (NCT04862780)
BLU-701	X	X	-	-	X	X	Х		X	Discontinued
BLU-525	X	X	-	-	X	X	Х		X	Preclinical
BDTX-1535	X	X	-	-	X	X	Х	Uncommon	Χ	Phase 1 (NCT05256290)
THE-349	X	X	X	X	X	X	Х		X	Preclinical
H002	X	X	X	X	X	X	Х		X	Phase 1/2 (NCT05552781)
BAY 2927088	X	X			X	X		Ex20ins		Phase 1 (NCT05099172)
JIN-A02	X	X	X	X	X		Х		Х	Phase 1/2 (NCT05394831)
BBT-176	X	X	X		X	X	Х		X	Phase 1/2 (NCT04820023)

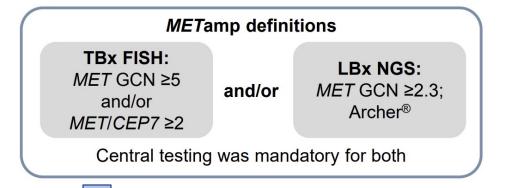


BLU-945 SYMPHONY Phase I/II Study

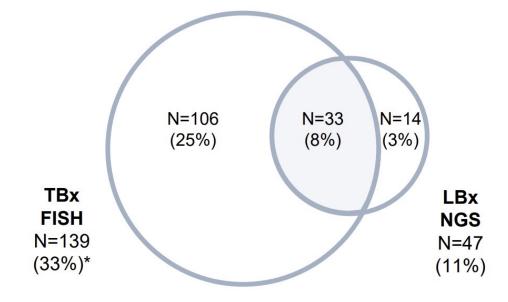



BLU-945: Preliminary Efficacy Data Monotherapy Cohorts, Top Dose Levels

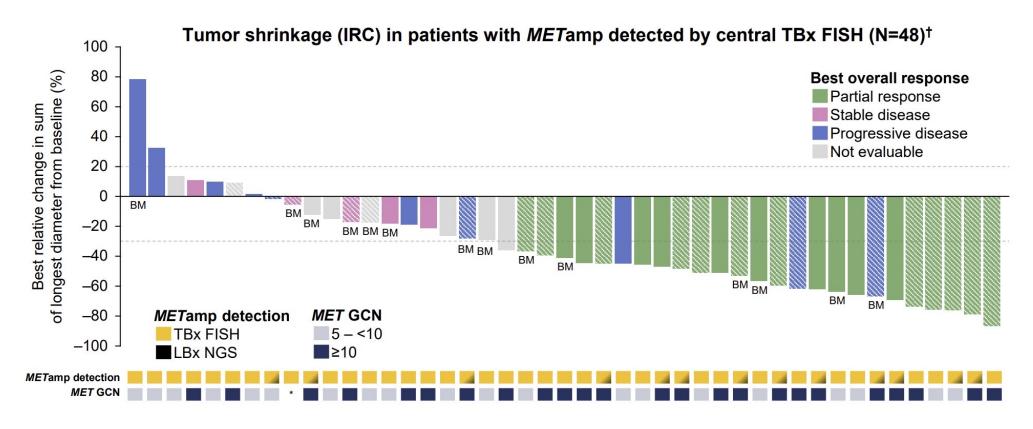
What fraction of acquired resistance is associated with an actionable genomic alteration?



INSIGHT 2: Osimertinib + Tepotinib


EGFRm NSCLC, Acquired Resistance to 1L Osimertinib with a MET amplification (n = 120)

Treatment with **osimertinib + tepotinib** or **tepotinib** alone


Primary Endpoint: ORR to combination in centrally confirmed MET FISH+ patients

Pre-screened Patients (n = 425) 36% MET-amplified

INSIGHT 2: Osimertinib + Tepotinib for MET-amplified EGFRm NSCLC

ORR 45.8%-56.5% osimertinib + tepotinib ORR 8.3% tepotinib monotherapy

EGFR + MET TKI Combinations

Osimertinib + Savolitinib for MET+ s/p Osimertinib

TATTON Phase Ib

FISH MET/CEP7 2+ or MET 5x+; IHC 3+ in 50%+; NGS 5X CNG)

ORR 30% post 3rd gen EGFRTKI

SAVANNAH Phase II

Definition MET+: IHC 50+ or FISH 5+ (62% screened)
Definition MET-high: IHC 90+/FISH 10+ (34% screened)

ORR 49%, PFS 7.1 mo MET-high ORR 9% if not MET-high

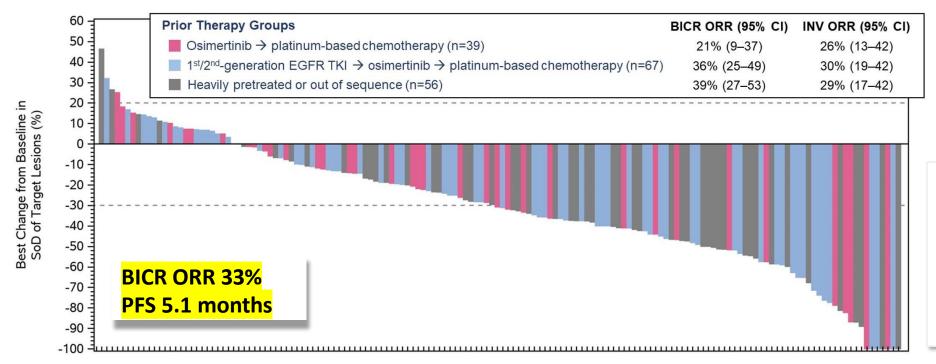
SAFFRON Phase III NCT NCT05261399

Osimertinib + Capmatinib for MET+ s/p Osimertinib

Case Reports of Activity

ORR 50% for erlotinib + capmatinib (MET FISH > ULN, or MET IHC 2+/3+)

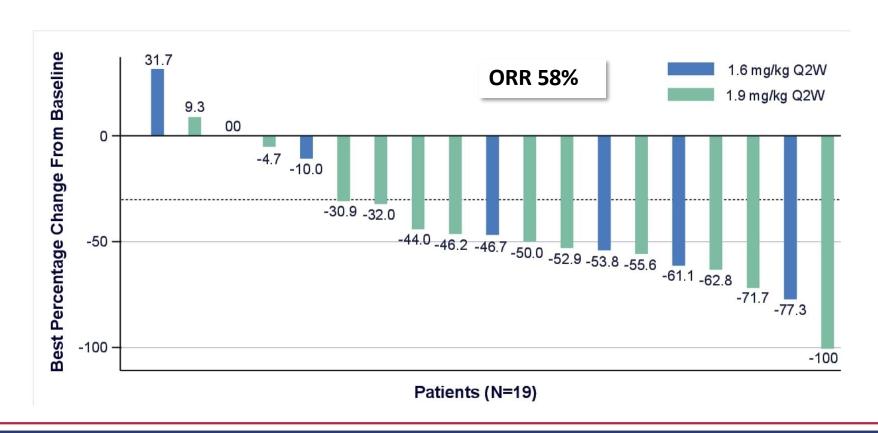
GEOMETRY-E Phase III


Randomized osimertinib + capmatinib vs platinum doublet

NCT 04816214 → study enrollment terminated

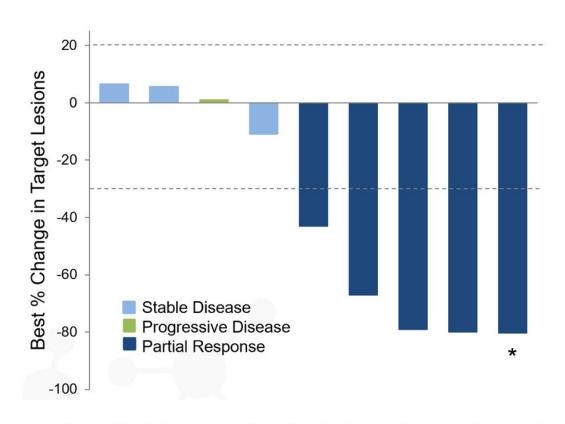
Amivantamab + Lazertinib

EGFR/MET Bispecific +3rd Gen EGFR TKI CHRYSALIS-2



In CHRYSALIS-1, MET/EGFR IHC score correlated with response (n=20)

ORR 90% if IHC+ ORR 10% if IHC-



Telisotuzumab vedotin + Osimertinib MET-ADC + EGFR TKI MET-overexpression: IHC 3+ in at 25% of tumor cells

Osimertinib + Selpercatinib For Acquired RET Fusions Patient series from the selpercatinib extended access program

One patient with clinical progression without radiographic evaluation not shown

Best Response (n=10)				
Objective Response n (%)	5 (50%)			
Partial Response*	5 (50%)			
Stable Disease	3 (30%)			
Progressive Disease	2 (20%)			
Disease Control Rate n (%)	8 (80%)			
Median Depth of Response (%)	-43%			

^{*}One partial response unconfirmed

- Median Treatment Duration: 7.4 months
- Median Treatment Duration Responders: 11 months

ALK Fusions

Osimertinib + Alectinib

6 months DoR

Case Reports

HER2 Amplification

T-DM1 + Osimertinib

HER 2+/3+ IHC or Amp (NGS)

ORR 0%, DCR 63%

TRAEMOS Ph II

BRAF Fusions

Osimertinib + Trametinib

Response, D/c at 5 mo (Tox) Case Report

BRAF V600E

Osimertinib + Dabrafenib/Trametinib

7-8 months DoR

Osimertinib+Vemurafenib

7+ months DoR

Case Reports

Targeting Other Acquired Oncogenic Drivers

ORCHARD (NCT03944772)

Biomarker-Guided Platform Study for Osimertinib Resistance

MET → Savolitinib

C797X → Gefitinib

ALK → Alectinib

RET → Selpercatinib

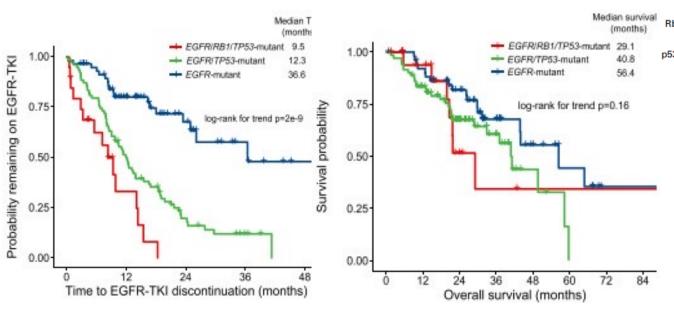
EGFR Amp → Necitumumab

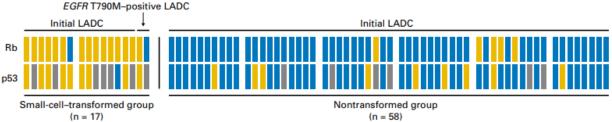
BRAF → Selumetinib

SCLC → Platinum/etoposide/durvalumab

Unmatched → Datopotamab deruxtecan

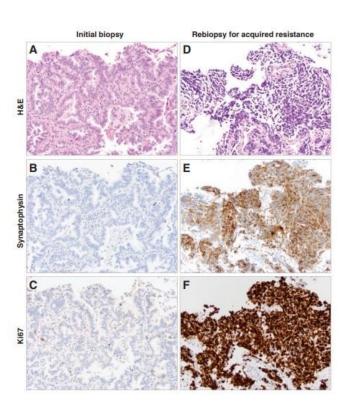
Mechanisms of resistance to 1L osimertinib

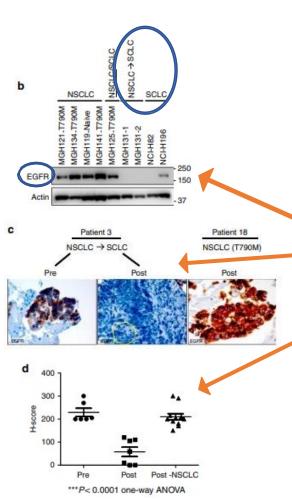

	Paired	Post- progression	Total (%)
On Target			
EGFR amplification	3	4	7 (7.4)
C7975	1	2	3 (3.2)
G724S	2	0	2 (2.1)
Off Target			
MET amp	7	2	9 (9.5)
HER2 amp	2	1	3 (3.2)
MYC amp	0	1	1 (1.1)
MDM2/CDK4 amp	0	1	1 (1.1)
CCND1 amp	0	1	1 (1,1)
PIK3CA mut	2	1	3 (3.2)
KRAS G12A	1	0	1 (1.1)
RET fusion	1	1	2 (2.1)
BRAF fusion	1	0	1 (1.1)
RB1 loss	1	1	2 (2.1)
Transformation			
SCLC	4	3	7 (7.4)
Squamous	5	0	5 (5.3)
LCNEC	2	0	2 (2.1)
Unknown	35	10	45 (47.4)
Sum	67	28	95


Acquired alterations

- Histologic Transformation (15%)
- Neuroendocrine (small cell, large cell)
- Squamous cell
- Only diagnosed by a **tumor tissue biopsy**, and can be seen in the setting of more indolent resistance

Molecular predictors of SCLC transformation


5-10% of EGFR-mutant lung cancers have concurrent RB1 and TP53 loss RB1 and TP53 loss may be detectable by IHC only (intact on NGS, IHC demonstrates protein loss).


RB1 and TP53 loss are necessary but NOT sufficient-25% likelihood of transformation over disease course with EGFR/TP53/RB1 genotype.

 Concurrent TP53/RB1 alterations also associated with shorter time on EGFR TKI and shorter OS

Histologic Transformation

Pre-treatment EGFR+ LC almost always adeno (rare small cell, squamous cell, adenosq seen)

- Transformation is a mechanism of resistance to EGFR TKI because it results in loss of dependence on EGFR signaling.
 - Transformed SCLC does not express EGFR.
 - IHC staining for total EGFR largely lost with SCLC transformation.
 - H-score of EGFR staining from paired samples pre-treatment with EGFR TKI and post-treatment after SCLC transformation.
- Once transformation occurs, only targeting EGFR is not effective. Small cell-directed treatments are required to manage transformed SCLC

Clinical outcomes with SCLC transformation

Carboplatin/etoposide +/- osimertinib

Osimertinib maintenance

Retry Carbo/etop

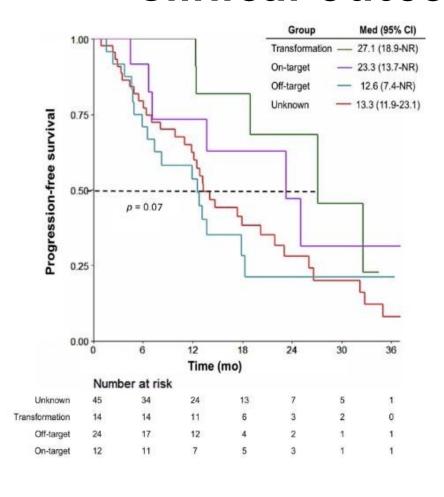
Taxane

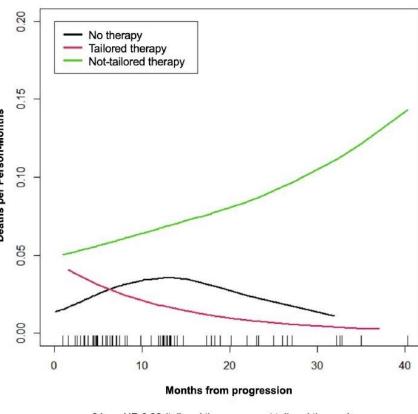
Lurbinectedin, Temozolomide, Clinical trial

Immunotherapy

Multi-center retrospective review

- 67 pts with EGFR+ SCLC from 8 institutions
- 87% were adeno at dx, 13% small cell/mixed at dx
- All patients retained their EGFR mutation in the transformed SCLC tumor.
- Median time from diagnosis to transformation was 17.8 months (95% CI 14.3-26.2).


Median OS from time of SCLC transformation was **10.9** months


- Platinum/etoposide= most common treatment RR=54% & mPFS = 3.4 months
- No responses to immunotherapy, with the longest time to progression on IO being 9 weeks
- Taxanes were often used with a clinical response rate of 50% and a median PFS of 2.7 months

II. Management of EGFR Resistant NSCLC with Histologic Transformation

Clinical outcomes with SCLC transformation

-If second-line therapy was tailored to mechanism of resistance (including histology directed chemo), risk of death was decreased compared to if 2L therapy was not tailored

24 mo HR 0.09 (tailored therapy vs. not tailored therapy) 24 mo HR 0.31 (tailored therapy vs. no therapy) p<0.001

Management of EGFR Resistant NSCLC with Histologic Transformation

Clinical outcomes with SCLC transformation

Continuation of Osimertinib with Chemo after PD

Pros

- CNS activity and protection
- Continued control of sensitive clones

Cons

- Toxicity
- Inconvenience
- No randomized data
- No NCCN endorsement
- Financial Burden

Continuation of Osimertinib with Chemo after PD

Pros

- CNS activity and protection
- Continued control of sensitive clones

Cons

- Toxicity
- Inconvenience
- Financial Burden

II. Management of EGFR Resistant NSCLC

Benefit of continued TKI in oligoprogressive disease

<u>J Thorac Oncol.</u> Author manuscript; available in PMC 2013 Dec 1. *Published in final edited form as:*

J Thorac Oncol. 2012 Dec; 7(12): 1807-1814.

doi: 10.1097/JTO.0b013e3182745948

PMCID: PMC3506112 NIHMSID: NIHMS415046 PMID: 23154552

Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene addicted non-small cell lung cancer

Andrew J. Weickhardt, MBBS DMedSc,^{1,*} Benjamin Scheier, MD,¹ Joseph Malachy Burke, MD,¹ Gregory Gan, MD,² Xian Lu, MSc,³ Paul A. Bunn, Jr., MD,¹ Dara L. Aisner, MD PhD,⁴ Laurie E. Gaspar, MD MBA,² Brian D. Kavanagh, MD MPH,² Robert C. Doebele, MD PhD,¹ and D. Ross Camidge, MD PhD¹

Based on the practices within this study, suggested criteria for considering local ablative therapy of oligoprogressive disease and treatment with a TKI beyond progression include:

- 1. ALK positive or EGFR mutant metastatic NSCLC
- 2. Relevant TKI (e.g. crizotinib or erlotinib) is well tolerated
- 3. Oligoprogressive disease on TKI therapy, defined as:
 - a. CNS progression without leptomeningeal disease amenable to WBRT, SRS or surgical resection
 - **b.** Progression in \leq 4 extra-CNS sites amenable to SBRT, XRT or surgical resection

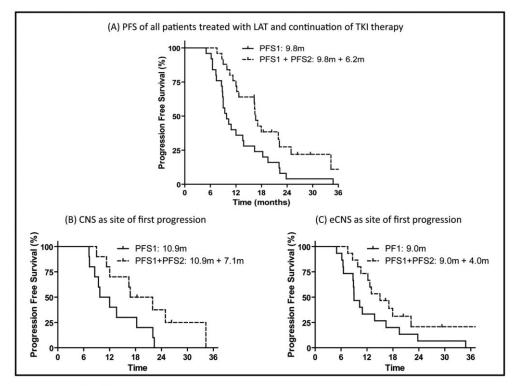
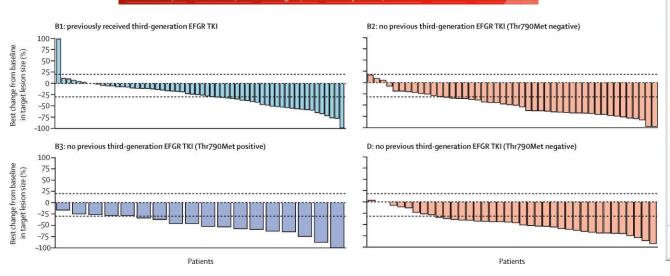


Figure 1.

PFS1 and PFS1+PFS2 survival curves of (A) All 25 patients treated with LAT; (B) 10 patients treated with LAT who first progressed only in the CNS; (C) 15 patients treated with LAT who first progressed in extra-CNS (eCNS) locations, including 3 patients with simultaneous CNS and eCNS progression.


II. Management of EGFR Resistant NSCLC

Continue Osimertinib with METTKI/ADC

Osimertinib plus savolitinib in patients with EGFR mutation-positive, METamplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study


Lecia V Sequist, MD † • Prof Ji-Youn Han, MD † • Prof Myung-Ju Ahn, MD • Byoung Chul Cho, MD • Helena Yu, MD • Prof Sang-We Kim, MD • Prof James Chih-Hsin Yang, MD • Jong Seok Lee, MD • Wu-Chou Su, MD • Dariusz Kowalski, MD • Sergey Orlov, PhD • Mireille Cantarini, MD • Remy B Verheijen, PhD • Anders Mellemgaard, MD Lone Ottesen, MD • Paul Frewer, MSc • Xiaoling Ou, PhD • Geoffrey Oxnard, MD 😕 🖾 • Show less • Show footnot

Teliso-V and osimertinib: Preliminary Efficacy

ORR: 58% (95%CI: 34-80)

Best Percentage Change From Baseline in **Target Lesion**

	PR	PD	PR	EGFR, epidermal grow Response Evaluation 0		
Ī	_	н	-	*RECIST v1.1; ORR (c		

Category

Teliso-V dose 1.6 mg/kg 1.9 mg/kg

c-Met level High (≥50%, 3+ staining)

EGFR mutation L858R

Last prior regimen

Contained Osi Did not contain Osi

Del19

Int (25-49%, 3+ staining)

Jonathan W. Goldman et al. Abstract 9013

2022 **ASCO**

Gonzalo Recondo MD PhD Center for Medical Education and Clinical Research (CEMIC) Content of this presentation is the property of the

Interim Objective Response Rate

12

19[†]

18[‡]

191

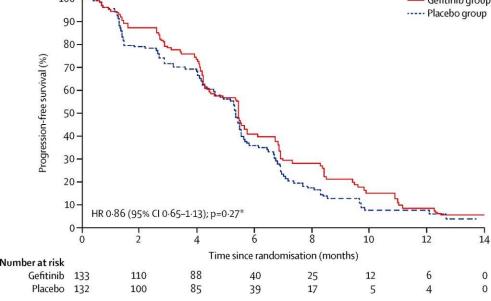
ASCO AMERICAN SOCIETY OF

[95% CI]

8 (67) [35, 90]

11 (58) [34, 80]

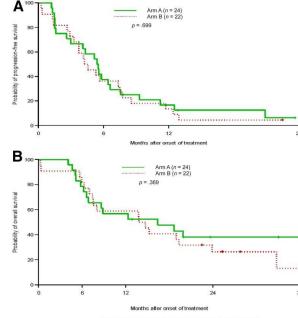
5 (63) [25, 92]


10 (56) [31, 79]

6 (67) [30, 93]

Management of EGFR Resistant NSCLC

Oncologist. 2015 Nov; 20(11): 1298-1303.


Published online 2015 Aug 25. doi: 10.1634/theoncologist.2015-0136

PMCID: PMC4718423 PMID: <u>26306902</u>

Language: English | Chinese

Randomized Phase II Trial of Erlotinib Beyond Progression in Advanced Erlotinib-Responsive Non-Small Cell Lung Cancer

Balazs Halmos, ^{Sa} Nathan A. Pennell, ^b Pingfu Fu, ^c Shumaila Saad, ^d Shirish Gadgeel, ^e Gregory A. Otterson, ^f Tarek Mekhail, ^g Michael Snell, ^h J. Philip Kuebler, ⁱ Neelesh Sharma, ⁱ and Afshin Dowlati^{SQ}

Arm A: median OS, 16.4 months (95% CI: 6.6, 39) Arm B: median OS, 14.2 months (95% CI: 7, 23.9)

	Number of events	/sample size (%)		HR (95% CI)
	Gefitinib	Placebo		
All patients	98/133 (74%)	107/132 (81%)	⊢≡	0-86 (0-65-1-13
Age				
≥65 years	32/43 (74%)	25/34 (74%)	 	1.01 (0.60-1.73)
<65 years	66/90 (73%)	82/98 (84%)	⊢ ■	0.76 (0.55-1.06)
Sex				
Female	61/87 (70%)	67/84 (80%)	 -	0.83 (0.58-1.17)
Male	37/46 (80%)	40/48 (83%)	├	0.83 (0.53-1.31)
Region				
Europe	20/29 (69%)	25/30 (83%)	 	0.95 (0.52-1.70)
Asia	78/104 (75%)	82/102 (80%)	⊢ 	0.80 (0.58-1.09
Previous response to gefitinib				
Partial or complete response	70/91 (77%)	81/100 (81%)	⊢	0.97 (0.70-1.34)
Stable disease	28/42 (67%)	26/32 (81%)	⊢	0.59 (0.35-1.02)
Smoking history				
Present or former	36/45 (80%)	34/41 (83%)	⊢ : - − 1	1-16 (0-72-1-86)
Never	62/88 (70%)	73/91 (80%)	⊢ - ≡ É	0.70 (0.50-0.98
Disease stage at diagnosis*				
Metastatic	95/129 (74%)	106/131 (81%)	⊢ ■÷1	0.83 (0.62-1.09)
Time from progression to randomisa	ation			
>2 weeks	66/87 (76%)	66/79 (84%)	├	0.79 (0.56-1.11)
≤2 weeks	32/46 (70%)	41/53 (77%)	⊢	0.89 (0.56-1.41)
EFGR mutation subtype				
Exon 19 deletion	65/86 (76%)	71/86 (83%)	⊢ ■ <u>÷</u> I	0.76 (0.54-1.07)
L858R mutation	28/40 (70%)	32/42 (76%)	 	1.08 (0.65-1.80)
Time to progression for initial gefitir	nib			
≤10 months	39/52 (75%)	52/58 (90%)	├	0.86 (0.56-1.31)
>10 months	59/81 (73%)	55/74 (74%)	├ - -	0.84 (0.58-1.21)
Site of disease at haveline				
Not brain or CNS	64/89 (72%)	80/101 (79%)	⊢ ■ ⊢	0.84 (0.60-1.16
Brain or CNS	34/44 (77%)	27/31 (87%)		0.66 (0.40-1.10)
WHO performance that us score	\$100000 \$4400 \$4500	77.300.000/1000/200-1000/501		
0	38/55 (69%)	42/53 (79%)	⊢	0.68 (0.44-1.06
1	60/78 (77%)	65/79 (82%)	⊢	0.95 (0.67-1.35)
		_		
		0.10	1.00	10-00
			Favours gefitinib Favours placel	bo

Clin Lung Cancer, Author manuscript; available in PMC 2022 May 1

Published in final edited form as:

Clin Lung Cancer. 2021 May; 22(3): 201-209.

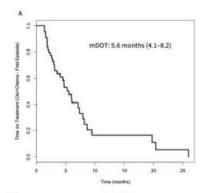
Published online 2021 Jan 27. doi: 10.1016/j.cllc.2021.01.010

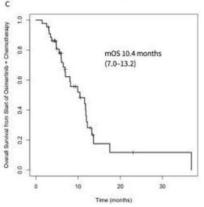
PMCID: PMC8205932 NIHMSID: NIHMS1675885

PMID: 33610453

Combining Osimertinib With Chemotherapy in EGFR-Mutant NSCLC at Progression

Maya N White, MD MS,*1 Zofia Piotrowska, MD MHS,*2 Kevin Stirling, MD,3 Stephen V Liu, MD,4 Mandeep K Banwait, BS,5 Kristen Cunanan, PhD,6 Lecia V Sequist, MD MPH,2 Heather A Wakelee, MD,1 Daniel Hausrath, MD,7 and Joel W Neal, MD PhD1


Baseline Characteristics


Characteristic	All patients (n=44)
Median age at diagnosis, years (range)	58 (34-82)
Sex – n (%)	
Female	30 (68)
Male	14 (32)
Race – n (%)	
Asian	20 (45)
White	17 (39)
Black	3 (7)
Other	4 (9)
Histologic type – n (%)	
Adenocarcinoma	44 (100)
Stage at initial diagnosis – n (%)	
Stage I-III	3 (7)
Stage IV	41 (93)
EGFR mutation – n (%)	
Exon 19 deletion	28 (64)
L858R	15 (34)
G719A	1(2)
T790M (ever detected with above) – n (%)	30 (68)
CNS metastases present – n (%)	
At diagnosis of metastatic disease	23 (52)
Prior to start of first osimertinib	35 (80)
Prior to start of osimertinib + chemotherapy	37 (84)
Number of prior lines of therapy (before osimertinib + chemotherapy) - n (%)	
2	22 (50)
3	10 (23)
4	9 (20)
≥5	3 (7)
Prior treatment (before osimertinib + chemotherapy) - n (%)	
Prior EGFR TKI	44 (100)
Prior 3rd generation EGFR TKI	43 (98)
Prior 1st or 2nd generation EGFR TKI	42 (95)
Prior chemotherapy alone	15 (34)
Prior immunotherapy	3 (7)
Immediate prior treatment (directly preceding osimertinib + chemotherapy) - n (%)	
Osimertinib monotherapy	38 (86)
Osimertinib + EGFR mAb	2 (5)
Investigational 3rd generation EGFR TKI	2 (5)
Chemotherapy alone	2(5)

Continuing Osimertinib with chemotherapy Safe and might have particular benefit for pts with CNSdisease

Adverse Events	Any Grade	Grade 3	Grade 4
AST/ALT elevation	15 (34%)	1 (2%)	0
Anemia	33 (75%)	4 (9%)	0
Neutropenia	14 (32%)	5 (11%)	2 (5%)
Thrombocytopenia	26 (59%)	1 (2%)	1 (2%)
Ejection fraction decreased	1 (2%)	1 (2%)	0
Pneumonitis	0	0	0

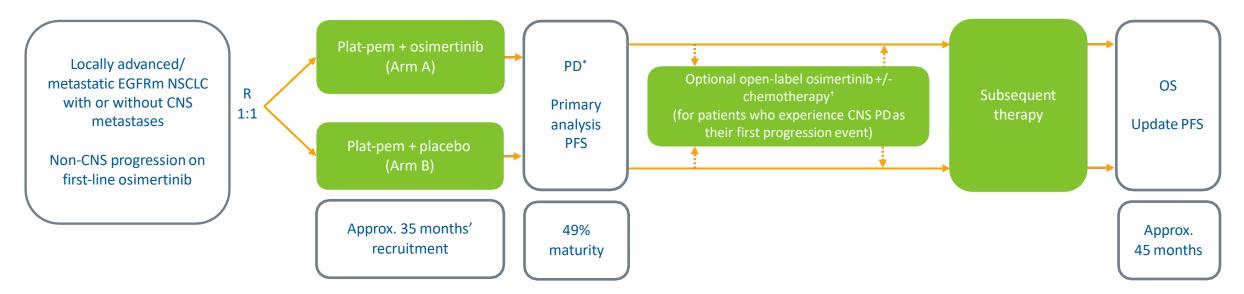
Among the 37 patients with CNS metastases present at the time of initiation of concurrent chemotherapy and osimertinib, 9 (24%) had CNS disease progression while on osimertinib plus chemotherapy. Among the 7 patients who did not have CNS metastases at the initiation of concurrent chemotherapy and osimertinib, 2 (29%) developed new CNS metastases while on chemotherapy plus osimertinib – one was 2.6 months and one was 5.3 months after starting combination therapy.

Post-Osimertinib Failure – Current SOC

- Treatment based on acquired resistance
- Chemotherapy carboplatin + pemetrexed <u>+</u> bevacizumab
- IMpower150 Cb/paclitaxel/bevacizumab/atezolizumab
- Clinical trial

- Chemo + IO NOT a standard option
 - Excluded from KN-189
 - CM722 negative trial (underpowered and minority got osi)
 - KN-789 pending

II. Management of EGFR Resistant NSCLC What's Next?



- Pembrolizumab¹⁻⁴ and other ICIs, as monotherapy and in combination with chemotherapy changed the treatment paradigm for previously untreated metastatic NSCLC without EGFR/ALK alterations^{5,6}
- EGFR TKIs are standard therapy for previously untreated metastatic NSCLC with sensitizing EGFR mutations; however, most patients develop resistance and experience disease progression⁵⁻⁸
 - Treatment options following disease progression have limited benefit⁹⁻¹²
- Subgroup analysis of 86 patients with TKI-resistant EGFR-mutant metastatic NSCLC with PD-L1 TPS ≥1% in the phase 2/3 KEYNOTE-010 study of pembrolizumab monotherapy vs docetaxel: HR for OS, 0.88 (95% CI, 0.45–1.70)¹³
- Subgroup analysis of TKI-resistant, EGFR-mutant nonsquamous metastatic NSCLC in phase 3 IMpower150 study indicated a trend in improvement in PFS with atezolizumab and bevacizumab plus chemotherapy¹²
- Studies evaluating the combination of ICIs plus TKIs for previously untreated advanced NSCLC with sensitizing EGFR
 mutations were associated with toxicity concerns^{14,15}
- Since pembrolizumab¹³ and other ICIs^{12,16} demonstrated activity in TKI-resistant, EGFR-mutant NSCLC, and to extend
 the benefit of ICIs in this population, the combination of pembrolizumab plus chemotherapy warranted further
 exploration in TKI-resistant, EGFR-mutant metastatic NSCLC

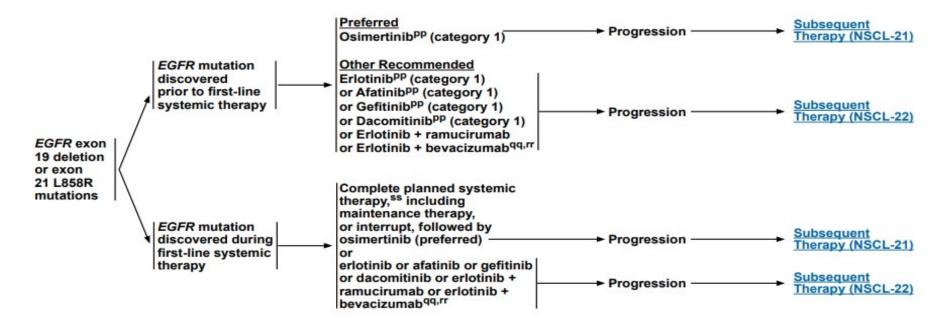
ICI, immune checkpoint inhibitor.

COMPEL study design (NCT04765059)

Phase III, randomised, double-blind, placebo-controlled study

Randomisation of 204 patients Stratification criteria: Presence of stable CNS metastases per CNS RECIST 1.1 assessments versus no CNS metastases

Endpoints


- Primary: PFS from randomisation to progression (CNS or non-CNS, whichever occurs first) per RECIST 1.1 and CNS RECIST 1.1
- Secondary: CNS PFS per CNS RECIST 1.1, non-CNS PFS per RECIST 1.1, and OS
- Safety: AEs, vital signs, clinical laboratory assessments, ECGs, LVEF, and WHO performance status
- **Exploratory:** Key genetic, gene expression and proteomic markers, and efficacy post-re-challenge (third-line osimertinib) in patients with CNS PD as their first progression event

^{*}Patients will receive randomised study treatment until RECIST 1.1- or CNS RECIST 1.1-defined progression, based on Investigator assessment, or until another discontinuation criterion is met. At the Investigator's discretion, study treatment may continue for as long as a patient continues to derive clinical benefit through RECIST 1.1 or CNS-RECIST 1.1 progression in the absence of any discontinuation criteria. Chest and abdominal imaging will continue until RECIST 1.1-defined non-CNS progression; CNS imaging will continue until CNS RECIST 1.1-defined CNS progression (and until second CNS RECIST 1.1-defined CNS progression for patients who receive open-label osimertinib)

[†]Patients who receive open-label osimertinib may also receive platinum chemotherapy and/or pemetrexed at the Investigator's discretion

EGFR EXON 19 DELETION OR EXON 21 L858R MUTATIONS^{II}

FIRST-LINE THERAPY⁰⁰

Principles of Molecular and Biomarker Analysis (NSCL-H).

Note: All recommendations are category 2A unless otherwise indicated.

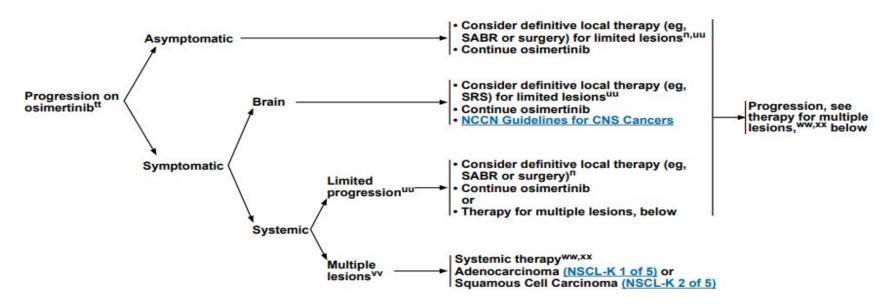
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Moleculer or Biomarker-Directed Therapy for Advanced or Metastatic Disease (NSCL-J).

pp For performance status 0-4.

qq Criteria for treatment with bevacizumab; nonsquamous NSCLC, and no recent history of hemoptysis.

^π An FDA-approved biosimilar is an appropriate substitute for bevacizumab.


ss If systemic therapy regimen contains an immune checkpoint inhibitor, physicians should be aware of the long half-life of such drugs and data reporting adverse events when using osimertinib in combination with or following checkpoint inhibitors. Schoenfeld AJ, et al. Ann Oncol 2019;30:839-844; Oshima Y, et al. JAMA Oncol 2018;4:1112-1115; Oxnard GR, et al. Ann Oncol 2020;31:507-516.

NCCN Guidelines Version 1.2023 Non-Small Cell Lung Cancer

NCCN Guidelines Index
Table of Contents
Discussion

EGFR EXON 19 DELETION OR EXON 21 L858R MUTATIONS^{II}

SUBSEQUENT THERAPYOO

ⁿ IGTA therapy (eg, cryotherapy, microwave, radiofrequency) may be an option for select patients not receiving SABR or definitive RT. <u>Principles of Image-Guided Thermal Ablation Therapy (NSCL-D)</u>.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Principles of Molecular and Biomarker Analysis (NSCL-H).

O Moleculer or Biomarker-Directed Therapy for Advanced or Metastatic Disease (NSCL-J).

^{**}Beware of flare phenomenon in subset of patients who discontinue TKI. If disease flare occurs, restart TKI.

uu Clinical trials have included up to 3 to 5 progressing sites.

VV Consider a biopsy at time of progression to rule out SCLC transformation (approximately 6%) and evaluate mechanisms of resistance.

Principles of Molecular and Biomarker Analysis (NSCL-H) NCCN Guidelines for Small Cell Lung Cancer.

www Afatinib + cetuximab may be considered in patients with disease progression on EGFR TKI therapy.

xx The data in the second-line setting suggest that PD-1/PD-L1 inhibitor monotherapy is less effective, irrespective of PD-L1 expression, in EGFR exon 19 deletion or exon 21 L858R, ALK+ NSCLC.

Comprehensive NCCN Guidelines Version 1.2023 Non-Small Cell Lung Cancer

NCCN Guidelines Index Table of Contents Discussion

SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE^{a,b,c}

ADENOCARCINOMA, LARGE CELL, NSCLC NOS (PS 0-1) No contraindications to PD-1 or PD-L1 inhibitors^d

Preferred

- Pembrolizumab/carboplatin/pemetrexed (category 1)^{1,2,e}
- Pembrolizumab/cisplatin/pemetrexed (category 1)²

Other Recommended

- Atezolizumab/carboplatin/paclitaxel/bevacizumab^e (category 1)^{3,f,g,h,i}
- Atezolizumab/carboplatin/albumin-bound paclitaxel^{4,e}
- Nivolumab/ipilimumab^{5,e}
- Nivolumab/ipilimumab/pemetrexed/(carboplatin or cisplatin) (category 1)
- Cemiplimab-rwlc/paclitaxel/(carboplatin or cisplatin) (category 1)^{7,e}
- Cemiplimab-rwlc/pemetrexed/(carboplatin or cisplatin) (category 1)^{7,6}
- Tremelimumab-actl/durvalumab/carboplatin/albumin-bound paclitaxel^{8,e}
- Tremelimumab-actl/durvalumab/(carboplatin or cisplatin)/pemetrexed^{8,e}

Contraindications to PD-1 or PD-L1 inhibitors^d **Useful in Certain Circumstances**

- Bevacizumab[†]/carboplatin/paclitaxel (category 1)^{9,g,h,i}
 Bevacizumab[‡]/carboplatin/pemetrexed^{9,10,g,h,i}
 Bevacizumab[‡]/cisplatin/pemetrexed^{11,g,h,i}
- Carboplatin/albumin-bound paclitaxel (category 1)¹²
- Carboplatin/docetaxel (category 1)¹³
- Carboplatin/etoposide (category 1)^{14,15}
- Carboplatin/gemcitabine (category 1)¹⁶
- Carboplatin/paclitaxel (category 1)
- Carboplatin/pemetrexed (category 1)¹⁸
- Cisplatin/docetaxel (category 1)
- · Cisplatin/etoposide (category 1)19
- Cisplatin/gemcitabine (category 1)^{17,20}
 Cisplatin/paclitaxel (category 1)²¹

- Cisplatin/pemetrexed (category 1)²⁰
- Gemcitabine/docetaxel (category 1)²²
- Gemcitabine/vinorelbine (category 1)²³

ADENOCARCINOMA, LARGE CELL, NSCLC NOS (PS 2)

Preferred

Carboplatin/pemetrexed¹⁸

Other Recommended

- Carboplatin/albumin-bound paclitaxel^{25,26}
- Carboplatin/docetaxel¹³
- Carboplatin/etoposide^{14,15}
- Carboplatin/gemcitabine¹⁶
- Carboplatin/paclitaxel¹

ADENOCARCINOMA, LARGE CELL, NSCLC NOS (PS 3-4)

Best supportive care See NCCN Guidelines for Palliative Care

- a Albumin-bound paditaxel may be substituted for either paditaxel or docetaxel in patients who have experienced hypersensitivity reactions after receiving paclitaxel or docetaxel despite premedication, or for patients where the standard premedications (ie, dexamethasone, H2 blockers, H1 blockers) are contraindicated.
- Carboplatin-based regimens are often used for patients with comorbidities or those who cannot
- c If first-line systemic therapy completed before treatment for an actionable mutation, and disease has progressed, see Subsequent Therapy NSCL-K 4 of 5.

Useful in Certain Circumstances

- Albumin-bound paclitaxel²⁴
 Docetaxel^{27,28}
- Gemcitabine²⁹⁻³¹
- Gemcitabine/docetaxel²²
- Gemcitabine/vinorelbine²³
 Paclitaxel³²⁻³⁴
- Pemetrexed³⁵

Maintenance Therapy NSCL-K 3 of 5 Subsequent Therapy NSCL-K 4 of 5

References

d Contraindications for treatment with PD-1/PD-L1 inhibitors may include active or previously documented autoimmune disease and/or current use of immunosuppressive agents; some oncogenic drivers (ie, EGFR exon 19 deletion or L858R, ALK rearrangements) have been shown to be associated with less benefit from PD-1/PD-L1 inhibitors.

e If progression on PD-1/PD-L1 inhibitor, using a PD-1/PD-L1 inhibitor is not recommended.

An FDA-approved biosimilar is an appropriate substitute for bevacizumab.

⁹ Bevacizumab should be given until progression.

h Any regimen with a high risk of thrombocytopenia and the potential risk of bleeding should be

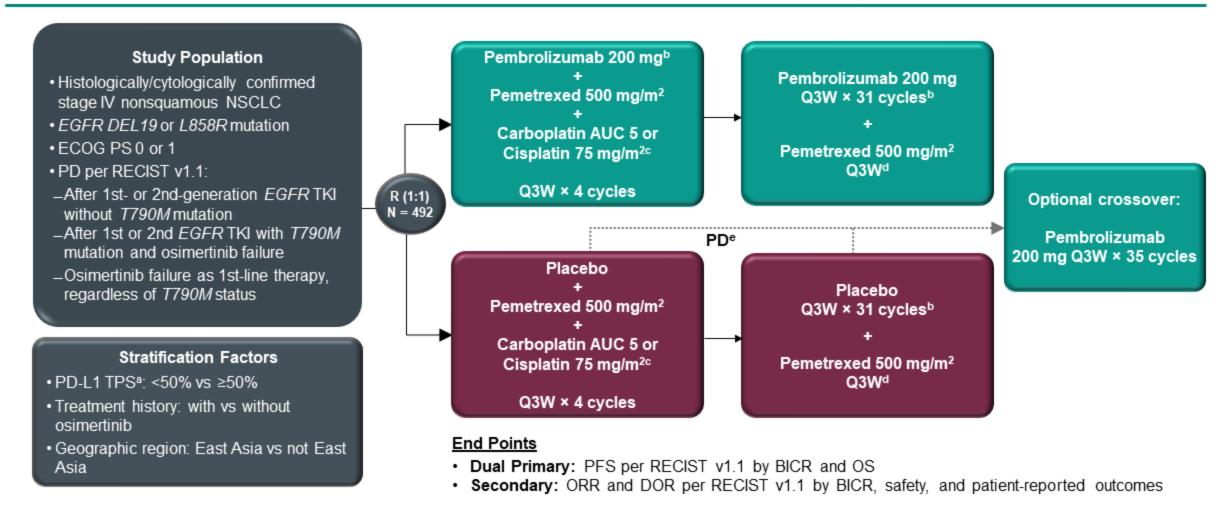
used with caution in combination with bevacizumab.

Criteria for treatment with bevacizumab: nonsquamous NSCLC, and no recent history of hemoptysis. Bevacizumab should not be given as a single agent, unless as maintenance if initially used with chemotherapy.

Continued

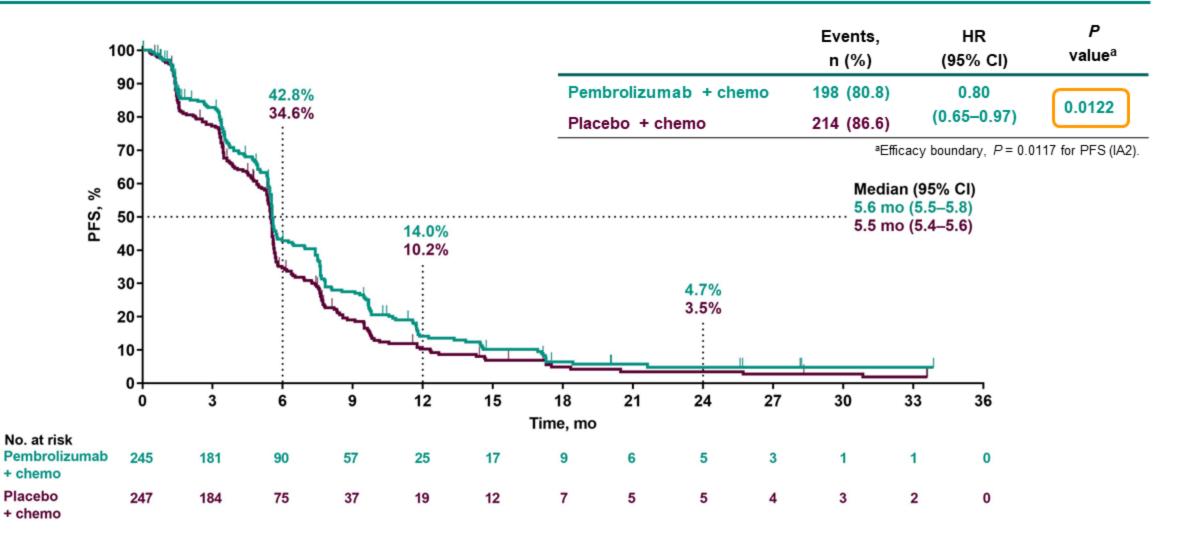
Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

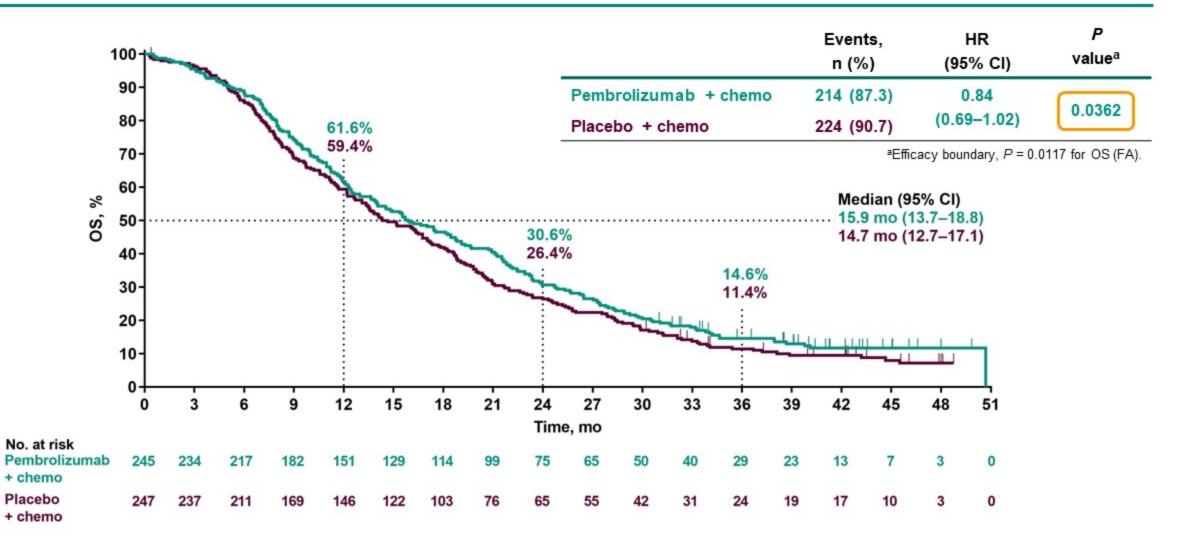

NSCL-K 1 OF 5

Pemetrexed and Platinum With or Without Pembrolizumab for Tyrosine Kinase Inhibitor (TKI)-Resistant, *EGFR*-Mutant, Metastatic Nonsquamous NSCLC: Phase 3 KEYNOTE-789 Study

James Chih-Hsin Yang,¹ Dae Ho Lee,² Jong-Seok Lee,³ Yun Fan,⁴ Filippo de Marinis,⁵ Isamu Okamoto,⁶ Takako Inoue,⁷ Jerónimo Rodríguez-Cid,⁸ Li Zhang,⁹ Cheng-Ta Yang,¹⁰ Emmanuel de la Mora Jimenez,¹¹ Jianying Zhou,¹² Maurice Pérol,¹³ Ki Hyeong Lee,¹⁴ David Vicente,¹⁵ Eiki Ichihara,¹⁶ Gregory J. Riely,¹⁷ Yiwen Luo,¹⁸ M. Catherine Pietanza,¹⁸ Niyati Bhagwati,¹⁸ Shun Lu¹⁹

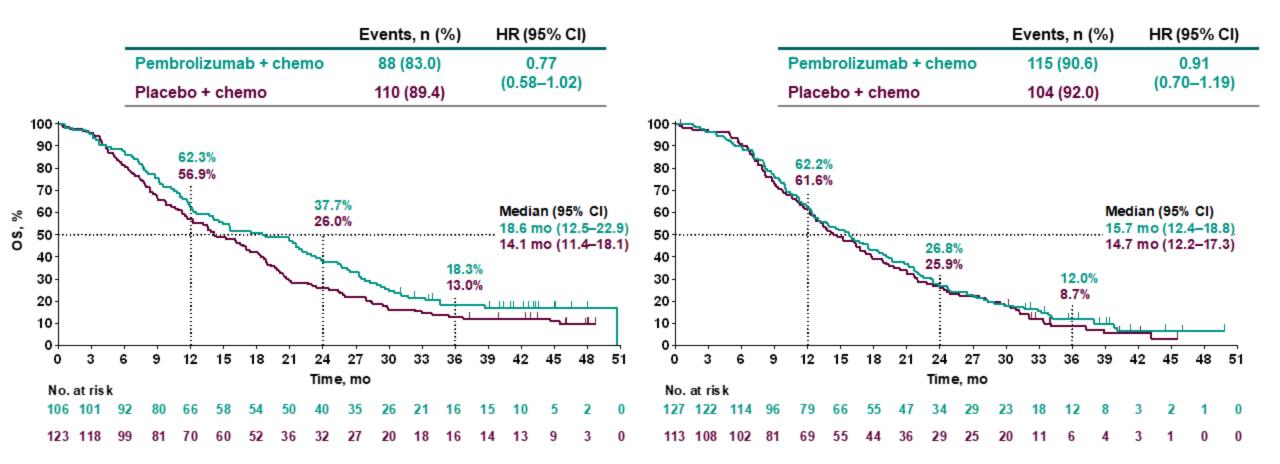

¹National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan; ²Asan Medical Center, Seoul, South Korea; ³Seoul National University Bundang Hospital, Seoul, South Korea; ⁴Zhejiang Cancer Hospital, Hangzhou, China; ⁵Istituto Europeo di Oncologia, Milan, Italy; ⁶Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; ²Osaka International Cancer Institute, Osaka, Japan; ⁶Oncology Center, Medica Sur Hospital, Mexico City, Mexico; ⁶Peking Union Medical College Hospital, Beijing, China; ¹¹Chang Gung Memorial Hospital, Taoyuan, Taiwan; ¹¹Instituto Jalisciense de Cancerología, Guadalajara, Mexico; ¹²The First Affiliated Hospital, Zhejiang University, Zhejiang, China; ¹³Centre Leon Berard, Lyon, France; ¹⁴Chungbuk National University Hospital, Cheongju-si, South Korea; ¹⁵Hospital Universitario Virgen Macarena, Sevilla, Spain; ¹⁶Okayama University Hospital, Okayama, Japan; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁶Merck & Co., Inc., Rahway, NJ, USA; ¹⁶Shanghai Chest Hospital, Shanghai, China

KEYNOTE-789: Phase 3 Randomized Study (NCT03515837)



^aPD-L1 expression was centrally assessed using PD-L1 IHC 22C3 pharmDx (Agilent Technologies, Carpinteria, CA). ^bIf a patient has documented PD but is benefiting clinically, they may receive pembrolizumab monotherapy to complete a total of 35 pembrolizumab administrations. ^cCarboplatin or cisplatin therapy is at the investigator's choice. ^dMaintenance pemetrexed may continue past 35 cycles until reaching a discontinuation criterion if the patient is receiving benefit; however, pembrolizumab or saline placebo are limited to 35 cycles. ^ePatients could crossover at any time during the treatment. To be eligible for crossover, PD must have been verified by BICR.

Progression-Free Survival at IA2 (RECIST v1.1, BICR)

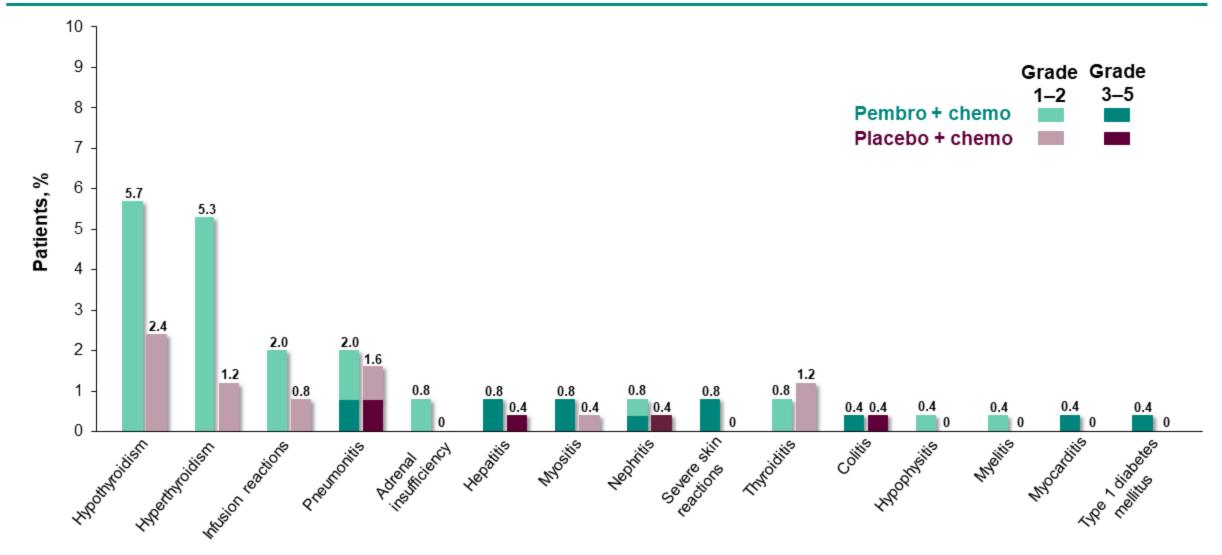

Overall Survival at FA

Overall Survival in PD-L1 TPS ≥1% and <1% at FA

PD-L1 TPS ≥1%

PD-L1 TPS < 1%

Summary of AEs

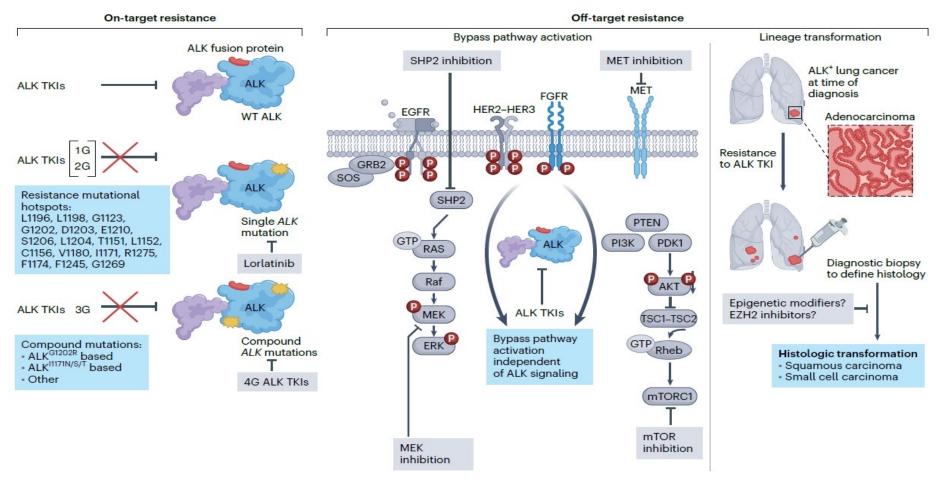

 Median (range) number of treatment cycles: 8 (1-62) in pembrolizumab plus chemotherapy; 8 (1-63) in placebo plus chemotherapy group

Patients With AE, n (%)	Pembrolizumab Plus Chemotherapy n = 245	Placebo Plus Chemotherapy n = 246
Any AE (all-cause)	239 (97.6)	241 (98.0)
Grade 3–5	137 (55.9)	143 (58.1)
Led to death	5 (2.0)	12 (4.9)
Treatment related	220 (89.8)	212 (86.2)
Grade 3–5 ^a	107 (43.7)	95 (38.6)
Led to discontinuation of any treatment component	40 (16.3)	29 (11.8)
Led to discontinuation of pembrolizumab or placebo	24 (9.8)	11 (4.5)
Led to discontinuation of any chemotherapy	31 (12.7)	29 (11.8)
Led to discontinuation of all treatment components	7 (2.9)	5 (2.0)
Immune-mediated AEs and infusion reactions	49 (20.0)	20 (8.1)
Grade 3–5	11 (4.5)	5 (2.0)

all patient in the pembrolizumab plus pemetrexed-platinum group died due to a treatment-related. AE of myocarditis; 2 patients in the placebo plus pemetrexed-platinum group died due to treatment-related. AEs of bone marrow failure (n = 1) and general physical health deterioration (n = 1).

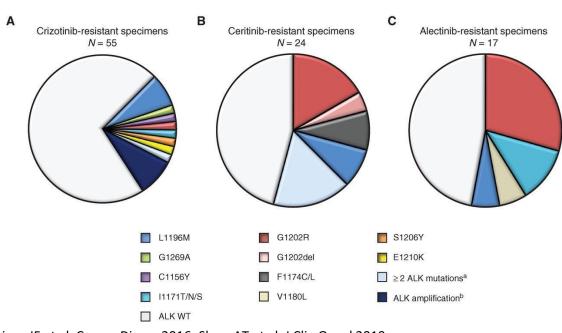
Data cutoff: January 17, 2023.

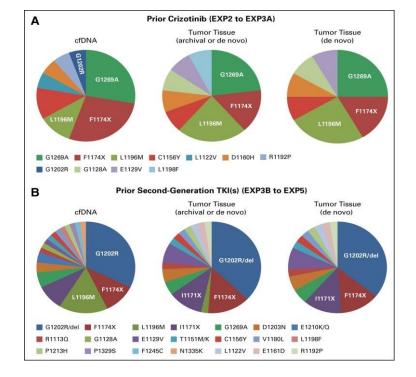
Immune-Mediated AEs and Infusion Reactions^a


^aEvents were based on a list of terms specified at the time of analysis and were included regardless of attribution to study treatment or immune relatedness by the investigator. Related terms were included. Data cutoff date: January 17, 2023.

Conclusions

- Addition of pembrolizumab to chemotherapy prolonged PFS and OS vs placebo plus chemotherapy in TKI-resistant, EGFR-mutant, metastatic nonsquamous NSCLC, but the results did not reach statistical significance per the prespecified statistical analysis plan
 - PFS (at IA2): median 5.6 mo vs 5.5 mo (HR 0.80; P = 0.0122)
 - OS (at FA): median 15.9 mo vs 14.7 mo (HR 0.84; P = 0.0362)
- AEs were manageable, with no new safety signals identified
- Results are consistent with prior findings that TKI-resistant, EGFR-mutant metastatic NSCLC derives less benefit from anti–PD-(L)1-based treatment than EGFR wild-type metastatic NSCLC¹
 - Additional biomarker research is needed to determine which patients will benefit from ICI therapy in TKI-resistant, EGFR-mutant metastatic NSCLC, as there remains a great unmet need for this patient population


III. Mechanisms of ALK Resistant NSCLC



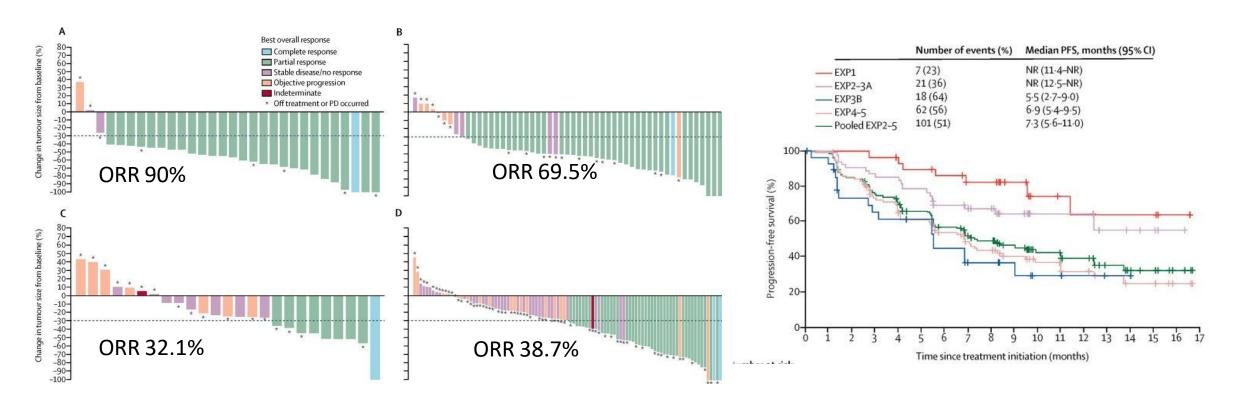
ALK-mediated resistance

- Dependent on prior ALK TKI exposure
- Resistance on first and second generation ALK TKI → single ALK mutation

Gainor JF et al. Cancer Discov 2016; Shaw AT et al. J Clin Oncol 2019.

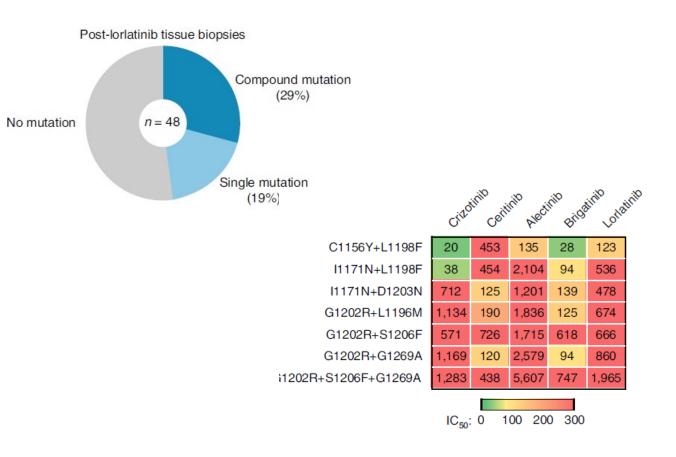
IV. Management of ALK Resistant NSCLC; an area of unmet need

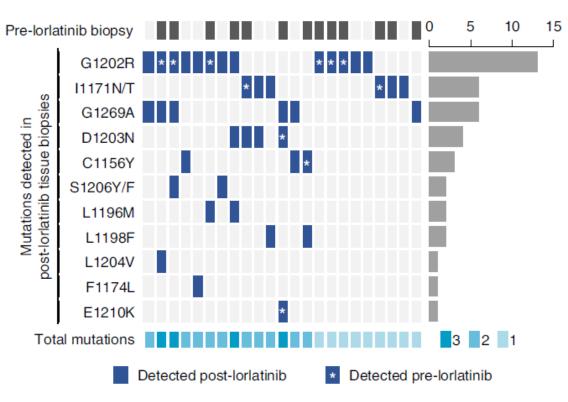
- Chemotherapy is still the backbone of NSCLC and in ALK-positive patients progressing after ALK TKIs
 without actionable resistance mutations. Platinum-based chemotherapy is still a valid option.
- The role of single-agent immune checkpoint inhibitors (ICIs) is still a matter of debate. The combination of an ALK inhibitor and an ICI were studied and resulted in a negative outcome.
- Phase I/II study combination nivolumab with crizotinib as a first-line treatment (CheckMate 370), the enrollment was discontinued due to significant hepatotoxicity.
- Similar results were observed in the combination of ceritinib and nivolumab presented ASCO 2017.
- In contrast, a manageable toxicity profile has been reported with the combinations avelumab with lorlatinib
 in the phase 1b/2 JAVELIN Lung 101 trial33 and atezolizumab with alectinib34. with no new or unexpected
 side effects.
- Encouraging data are emerging with the chemoimmunotherapy combinations in a small subset analysis of the IMpower 150 trial.



 As ctDNA and tissue NGS techniques continue to advance, we expect a better understanding of the optimal treatment sequencing to emerge.

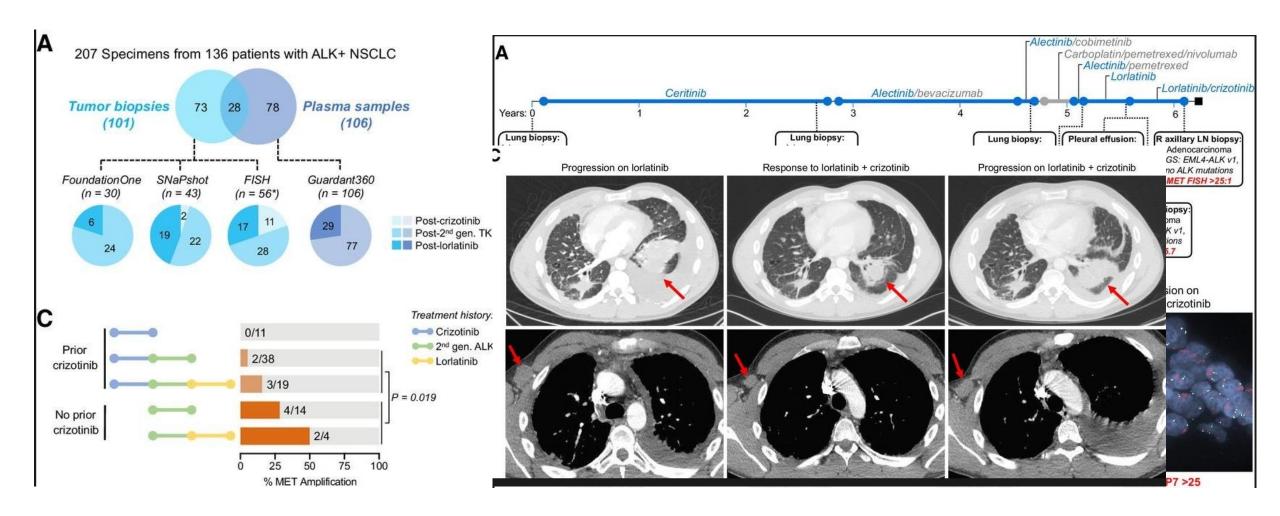
 The role of immunotherapy in combination with chemotherapy should be addressed in prospective clinical trials in order to produce more robust efficacy data in this small subgroup of NSCLC patients and to define their exact place in the therapeutic armamentarium of ALKrearranged NSCLCs.


The efficacy of Iorlatinib after prior ALK TKI



(A) EXP1: treatment-naive patients. (B) EXP2–3A: previous <u>crizotinib</u> with or without 1–2 <u>chemotherapy regimens</u>. (C) EXP3B: previous non-crizotinib <u>ALK</u> TKI with or without chemotherapy. (D) EXP4–5: two or more previous ALK TKIs with or without chemotherapy.

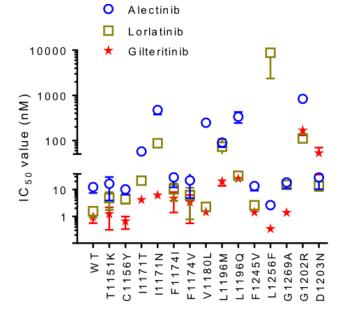
Resistance to Iorlatinib is more challenging

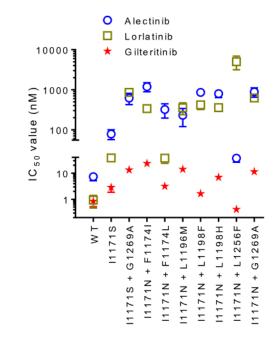


ALK-independent resistance

Bypass mechanism	Prior ALK TKI ^a	Prevalence
MET amplifications	Second-generation TKIs	12% in first or later lines
	Lorlatinib	22% in later lines
MET rearrangements	Alectinib or Iorlatinib	3% in later lines
MET exon 14 mutations	Alectinib	Unknown, data limited to case reports
RET rearrangements	Brigatinib	Unknown, data limited to case reports
EGFR activation	Crizotinib	44% in first line
EGFR mutations	Crizotinib	9–14% in first line
HER2 amplifications	Crizotinib, alectinib	Unknown, data limited to case reports
KIT amplifications/activation	Crizotinib	15% in first line
IGF1R activation	Crizotinib	80% in first line
SHP2 signalling	Ceritinib	Preclinical data only
NF2 mutations	Lorlatinib	20% in later lines
YES1 amplifications	Crizotinib, ceritinib	11.8% in later lines
KRAS mutations	Crizotinib	18% in first line
BRAF ^{V600E} mutations	Alectinib	Unknown, data limited to case reports
MAP2K1 mutations	Ceritinib	Unknown, data limited to case reports
DUSP6 loss	Crizotinib	83%
PIK3CA mutations	Lorlatinib or ceritinib	Unknown, data limited to case reports
AXL overexpression	Earlier-generation TKIs	Preclinical data only

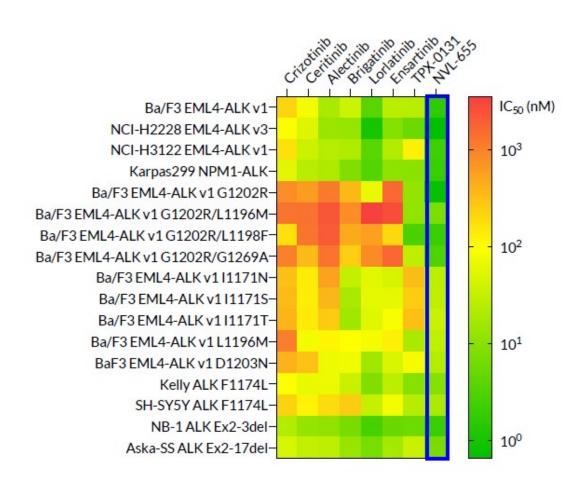
Treating ALK resistance

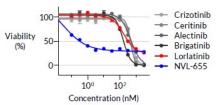



A Phase I Study of Gilteritinib for ALK Positive NSCLC

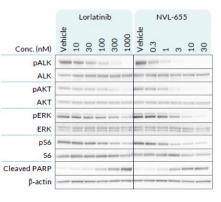
 Gilteritinib is a TKI approved by the FDA for the treatment of relapsed/refractory FLT3 mutated AML

Activity against FLT3, LRTK, ALK, AXL, tropomyosin receptor kinase A, ROS, RET

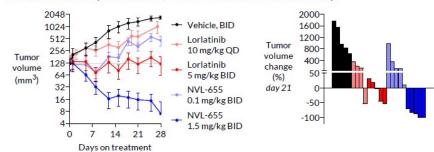

and MER kinases



Next generation ALK inhibitor



NVL-655 potently suppressed viability (IC $_{50}$ < 1 nM) and ALK pathway signaling (IC $_{50}$ < 3 nM) in MR448re cells. By contrast, Iorlatinib had poor activity against MR448re in both assays (IC $_{50}$ > 300 nM).

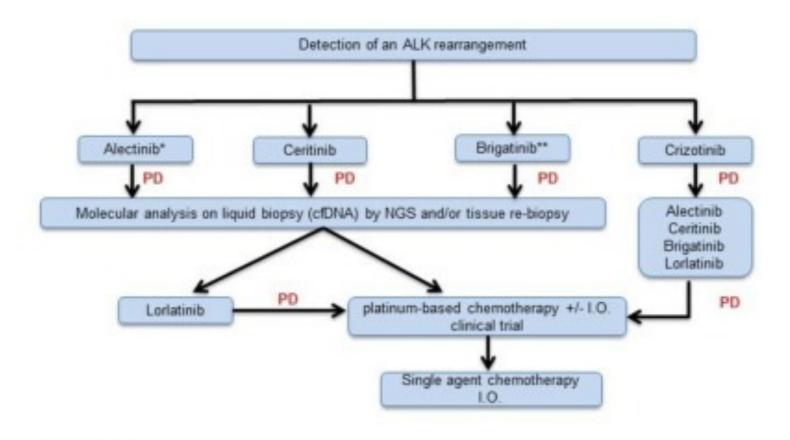


▲ Figure 7 Activity of ALK TKIs in MR448re cells. (Left) Dose-response curves from 3-day viability assays. Mean ± SEM plotted. Data from n ≥ 2 repeat testing. (Right) Western blot showing ALK pathway activity. Cells were treated for 6 hours. Figure adapted from Reference 13.

NVL-655 induced regression in the MR448re patient cell line-derived xenograft without causing significant body weight changes (data not shown). MR448re showed reduced sensitivity to lorlatinib, consistent with treatment history.

Fujino T et al. EORTC-NCI-AACR 2022

Ongoing clinical trials


- A Phase IB/II Study of Alectinib Combined With Cobimetinib in Advanced ALK-Rearranged (ALK+) NSCLC. NCT 03202940
- A Study Evaluating Platinum-Pemetrexed-Atezolizumab (+/-Bevacizumab) for Patients With Stage IIIB/IV Non-squamous NSCLC With EGFR Mutations, ALK Rearrangement or ROS1 Fusion Progressing After Targeted Therapies. NCT 04042558

 Clinical Trial of CD40L-Augmented TIL for Patients With EGFR, ALK, ROS1 or HER2-Driven NSCLC. NCT05681780.

 Lorlatinib Combinations in Lung Cancer. NCT04292119.

Patient with advanced ALK-positive NSCLC

*preferred option

**not yet FDA/EMA approved for this indication

"Addressing the unmet Needs of EGFR and ALK Resistant NSCLC Patients"

