Liquid biopsy and Precision Oncology

Christian Rolfo, MD, PhD, MBA, Dr.hc Professor in Medicine Icahn School of Medicine, Mount Sinai Associate Director of Clinical Research Center for Thoracic Oncology The Tisch Cancer Institute Mount Sinai, New York, NY, US

Mount Sinai The Tisch Cancer Institute

Current Treatment and Trial Paradigm

Nature Reviews | Cancer

Clinical utility of tissue and liquid biopsy in oncogene-addicted NSCLC

The Traditional Drug Development Paradigm

Phase I	Phase II	Phase III
		- Magningful honofit
o Safety, tolerability	o Efficacy observed in selected tumor	obtained in a randomized
• Pharmacokinetics	types, e.g. ORR, TTP, PFS	setting against existent standard e.g. OS
• Pharmacodynamics		
 Preliminary antitumor activity 		

The Current Drug Development Paradigm

Courtesy of David Hong

Selected new designs in drug development

Genotype driven	Basket trials	Test the effect of one or more drugs on one or more single mutation in a variety of cancer types	
	Umbrella	Test the impact of different drugs in different mutations in a single type of cancer	
	Adaptative trial	based on modifying parameters of a clinical trial evaluating a treatment according to outcomes in participants	
New designs	N of 1	Assessing the administration of an investigational agent over a short period of time	
	Windows of opportunity	Assessing the administration of an investigational agent over a short period of time	

Adapted from Postel-Vinay et al. , Annals of Oncol. 2016

Efficiency Gain From A Thoughtful Scientific/Regulatory Strategy

Adapted from Postel-Vinay et al. , Annals of Oncol. 2016

Krebs et al (Rolfo), JAMA Oncology OCT 2022

TRK fusions found in diverse cancer histologies

Estimated 1,500–5,000 patients harbor TRK fusion-positive cancers in the United States annually

Presented By David Hyman at 2017 ASCO Annual Meeting

TRK Inhibitors Are Active in Brain Metastases

Patients With Brain Metastases	Larotrectinib ¹	Entrectinib ²
ORR (at all sites), %	60% (n = 5)	50% (n = 12)
Intracranial ORR, %	66% (n = 3)	55% (n = 11)
Intracranial PFS, mo	Not reported	14.3

TRK Fusion–Positive Lung Cancer With Brain Metastases Treated With Larotrectinib³

- Confirmed PR (-34%)
- Near intracranial CR (-95%, volumetric)
- Remains on therapy at 6+ mo

1. Drilon. ASCO 2019. Abstr 2006. 2. Doebele. Lancet Oncol. 2020;21:271. 3. Rosen. JCO Precis Oncol. 2019;3:PO.19.00009.

Larotrectinib Trial Demonstrates Potential for Neoadjuvant Targeted Therapy in *TRK*+ Cancers

pCR achieved

Drilon. N Engl J Med. 2018;378:731. Kummar. Target Oncol. 2018;13:545. Slide credit: clinicaloptions.com

RET Inhibitors Are Active in Fusion-Positive Cancers

- N = 32 response evaluable patients
 - ORR (95% CI): 47 (29-65)

Subbiah. ASCO 2020. Abstr 109. Subbiah. AACR 2021. Abstr CT011. Slide credit: clinicaloptions.com

Tumor Response by *RET* Fusion Partner in Various Tumor Types: Pralsetinib (n = 12)

*Pt received alternate starting dose during dose escalation; transitioned to 400 mg QD. [†]Included mixed sarcoma/adenocarcinoma, mixed SCLC/NSCLC, atypical carcinoid.

- n = 12 response evaluable patients
 - ORR (95% CI): 50 (21-79); responses observed in all pts with pancreatic adenocarcinoma (n = 3) and cholangiocarcinoma (n = 2)

Hypersensitivity Reactions to Selpercatinib Treatment with Prior Immune Checkpoint Inhibitor Therapy

McCoach & Rolfo, et al. JTO Feb 2022

Acquired resistance is a dynamic process

Mechanisms of acquired resistance might be heterogenous and multiple mechanisms can simultaneously occur in the same patient, reflecting the clonal heterogeneity of the tumor

Tracking the clonal evolution of the tumor over time might allow the implementation of tailored therapeutic approaches

Treatment Timeline

Passaro A, et al. (Rolfo) ESMO Open 2020

Clonal evolution of treatment resistance

Our New Way to Work . . . Molecular Tumor Board

Levels of evidence tools have been developed to rank genomic alterations: OncoKB

Summary

418 genes fully annotated 3516 functionally significant SNVs 80 drugs associated with a OncoKB Level of Evidence OncoKB annotation incorporated into MSK-IMPACT reports ~1,000 reports / month Multidisciplinary molecular tumour board: a tool to improve clinical practice and selection accrual for clinical trials in patients with cancer

Hepatocellular carcinoma

Lung squamous cell carcinoma

Renal Pelvis Urothelial Carcinom

Targeted therapy

4 3a 3b 2b

3a 2a

Lung adenocarcinoma

Small Cell Lung Carcinoma

Rolfo C, et al. ESMO Open 2018

Attributes of a Successful Precision Medicine Program

Zeggini et al, Science 27 Sep 2019:

Gomes et al, NEJM 388;26 June 29, 2023

Liquid vs. tissue biopsies in cancer interception

Mj. Serrano, Critofanilli et al (Rolfo) Cancer Discov 2020;10:1635–44

Challenges to implementation of genomic medicine

- Lack of familiarity and understanding by patients and clinicians
- Poor access to genomic medicine expertise and testing
- High cost and lack of reimbursement for genetic or genomic tests and services
- Potentially overwhelming and rapidly evolving nature of genomic information
- Need for extensive informatics and infrastructure to integrate genomic results into electronic medical records
- Non-acceptance of genomic medicine by institutions and clinicians
- Potential burden of following up genotyped patients when the clinical significance of genomic variants changes or becomes clear

Krebs et al (Rolfo), JAMA Oncology OCT 2022

Tissue vs. Liquid biopsy

Expedited diagnostic odyssey

Stacking diagnostic steps may be able to shorten the diagnostic odyssey

Rolfo et al, in preparation

Tailoring treatment with Liquid Biopsy

Tumor Fraction Correlates With Detection of Actionable Variants Across > 23,000 Circulating Tumor DNA Samples

- Elevated ctDNA shed is associated with both high sensitivity and negative predictive value for detection of actionable Genomic Alterations.
 - The presence of elevated TF suggests adequate tumor profiling and may reduce the value of subsequent reflex to confirmatory tissue testing in patients with negative LBx results.

Husain at al, JCO PO, OCT 2022

Solid biopsy (tumour specimen)

Advantages Allow histological diagnosis

Limitations

Very invasive and risky procedure Sometimes not feasible due to tumour anatomical location Not representative of tumour heterogeneity Static snapshot

Liquid biopsy (CSF ctDNA)

Advantages

Less-invasive and easier to obtain than a tumour biopsy CSF obtained as SOC for some patients Concordance with tissue characterisation Representative of intratumour and interlesion heterogeneity Longitudinal real-time monitoring

Limitations

No histological characterisation Lack of standardisation Contraindications for lumbar puncture Limited sensitivity

Sources of false positive and false-negative results in plasma NGS

Technical Factors: Sample differences (> 6 months from tissue to plasma sampling)

WBC contamination: Germline Variants **Clonal Hematopoiesis**

Tumor Heterogeneity: Positive Plasma & Negative Tissue (assumes tissue is "Gold standard")

Heterogeneity of PD-L1 Expression

An imperfect but useful biomarker

- Intratumor heterogeneity
- Intrapatient heterogeneity

McLaughlin et al, JAMA Oncol. 2016;2(1):46-54

Christian Rolfo, Center of Thoracic Oncology, The Tisch Csncer Institute, Mount Sinai

Use of Liquid Biopsy in Immunotherapy

Changes in Circulating Tumor DNA Reflect Clinical Benefit Across Multiple Studies of Patients With Non–Small-Cell Lung Cancer Treated With Immune Checkpoint Inhibitors

Median

in Years

NR

1.2 (0.9-1.6

0.5 (0.3-0.9

1-Year

Estimate

74% (62-86)

58% (48-68)

32% (15-49)

CtDNA may serve as an important tool in clinical development and an early indicator of treatment benefit

Merino Vega et al (Allen J) JCO P), Aug 2022

CITAN: ctDNA-guided Immunotherapy-based Therapy in Treatment Naïve Advanced NSCLC

PI: Dr. Mack – Dr Rolfo

Krebs et al (Rolfo), JAMA Oncology OCT 2022

Different types of ctDNA MRD Assays

- Genotyping with no knowledge of tumor mutations ("off the shelf")
- Faster, less expensive
- Limit of detection ~0.1%

Tumor-informed

- Tracking <u>multiple known</u> mutations (bespoke or personalized)
- Requires tumor tissue, time, \$\$
- Limit of detection ~0.01%

Longitudinal measurements of clonal evolution in the plasma from surgery to therapy and recurrence

Depictions of longitudinal tumour evolution for examples of monoclonal, polyclonal monophyletic and polyclonal polyphyletic metastatic dissemination patterns.

Abbosh C, et al. Nature. 2023 Apr;616(7957):553-562

Application of ctDNA analysis for posttreatment surveillance in patients with localised lung cancer

KM curves stratified by ctDNA detection status during posttreatment surveillance

ctDNA detection and time to imaging progression

Proposed clinical trial designs for early-stage NSCLC using ctDNA as a biomarker for treatment personalization

Pellini B & Chaudhuri AA. JCO 2022

ctDNA positivity was strongly prognostic, with DFS favouring atezo in both ctDNA+ and ctDNA- patients

In all ctDNA-evaluable stage II-IIIA patients, mDFS was NR (atezo) vs 31.4 months (BSC), with an HR of 0.69 (95% CI:

Atezo (n=218)	BSC (n=204)
NR	NR
0.72 (0.52, 1.00)	
Atezo (n=53)	BSC (n=59)
19.1	7.9
	Atezo (n=218) NR 0.72 (0.5 Atezo (n=53)

Plasma collection for ctDNA analysis

Liquid Biopsy in Neoadjuvant IO + chemo combination

WES ctDNA in 89 pts

Mount Sinai / Presentation Name / Date

Forde P. et al, Note Marky APP RV 20 92 De Leigh

Take Home Message

- Liquid and tissue biopsy have a high concordance
- Liquid Biopsy is a great tool for real time monitoring in advance disease
- Liquid Biopsy is a perfect tool for MRD
- Tissue informed approach advantage , but also limitations
- Integrating liquid biopsy in clinical trials is a necessity

