

How I treat HER2+ Breast Cancer in 2023

Alberto J. Montero, MD, MBA

Clinical Director, Breast Cancer Medical Oncology Program

Diana Hyland Chair for Breast Cancer University Hospitals Seidman Cancer Center

Case Comprehensive Cancer Center Professor of Medicine Case Western Reserve University

Outline

- Early Stage/Adjuvant
- Neoadjuvant/post-neoadjuvant
- Metastatic

Impact of HER-2 Targeting Therapies on HER-2+ Breast Cancer

SM Tovey. British Journal of Cancer (2009) 100(5), 680 – 683

Ki-Tae Hwang. Clin Cancer Res; 25(6) March 15, 2019

How I treat early stage HER2+ breast cancer

Adjuvant Therapy

Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer: final 10-year analysis of the open-label, single-arm, phase 2 APT trial

Sara M Tolaney, Paolo Tarantino, Noah Graham, Nabihah Tayob, Laia Parè, Guillermo Villacampa, Chau T Dang, Denise A Yardley, Beverly Moy, P Kelly Marcom, Kathy S Albain, Hope S Rugo, Matthew J Ellis, Iuliana Shapira, Antonio C Wolff, Lisa A Carey, Romualdo Barroso-Sousa, Patricia Villagrasa, Michelle DeMeo, Molly DiLullo, Jorge Gomez Tejeda Zanudo, Jakob Weiss, Nikhil Wagle, Ann H Partridge, Adrienne G Waks, Clifford A Hudis, Ian E Krop, Harold J Burstein, Aleix Prat, Eric P Winer

Study Design: APT Trial

*Patients received paclitaxel (80 mg/m²) with trastuzumab x 12 weekly, followed by trastuzumab (weekly or every 3 weeks) x 39 weeks

Tolaney SM, et al. ASCO 2017. Abstract 511.

APT: Final 10 yr OS

De-escalation of Adjuvant therapy in HER2+ Early Stage Breast Cancer:

Adjuvant Pertuzumab and Trastuzumab in Earl HER2-Positive Breast Cancer in the APHINITY Trial: 6 Years' Follow-Up

Martine Piccart, MD, PhD¹; Marion Procter, PhD²; Debora Fumagalli, MD, PhD³; Evandro de Azambuja, MD, PhD¹; Emma Clark, MSc⁴; Michael S. Ewer, MD, JD, PhD⁵; Eleonora Restuccia, MD⁶; Guy Jerusalem, MD, PhD⁷; Susan Dent, BSc, MD⁸; Linda Reaby, AM, PHD^{9,10}; Hervé Bonnefoi, MD¹¹; Ian Krop, MD, PhD¹²; Tsang-Wu Liu, MD¹³; Tadeusz Pieńkowski, MD, PhD¹⁴; Masakazu Toi, MD, PhD¹⁵; Nicholas Wilcken, PhD^{16,17}; Michael Andersson, MD, DMSci^{19,18}; Young-Hyuck Im, MD, PhD¹⁹; Ling Ming Tseng, MD²⁰; Hans-Joachim Lueck, MD²¹; Marco Colleoni, MD²²; Estefania Monturus, PhD⁶; Mihaela Sicoe, MSc³; Sébastien Guillaume, MSc¹; José Bines, MD, PhD²³; Richard D. Gelber, PhD²⁴; Giuseppe Viale, MD²⁵; and Christoph Thomssen, MD²⁶ for the APHINITY Steering Committee and Investigators

APHINITY Trial Design

Aphinity: Adjuvant pertuzumab beneficial only for N+ dz

В

Α

Aphinity: Adjuvant pertuzumab no difference by ER status

No advantage of adjuvant anthracyclines vs. non-anthracyclines: BCIRG-006

Adjuvant Trastuzumab in HER2-Positive Breast Cancer

Dennis Slamon, M.D., Ph.D., Wolfgang Eiermann, M.D., Nicholas Robert, M.D., Tadeusz Pienkowski, M.D., Miguel Martin, M.D., Michael Press, M.D., Ph.D., John Mackey, M.D., John Glaspy, M.D., Arlene Chan, M.D., Marek Pawlicki, M.D., Tamas Pinter, M.D., Vicente Valero, M.D., Mei-Ching Liu, M.D., Guido Sauter, M.D., Gunter von Minckwitz, M.D., Frances Visco, J.D., Valerie Bee, M.Sc., Marc Buyse, Sc.D., Belguendouz Bendahmane, M.D., Isabelle Tabah-Fisch, M.D., Mary-Ann Lindsay, Pharm.D., Alessandro Riva, M.D., and John Crown, M.D., for the Breast Cancer International Research Group*

BCIRG-006 study design

BCIRG-006 DFS (5 and 10 years)

BCIRG-006: anthracycline/trastuzumab combo is not superior to TCH even in >4+ nodes

BCIRG-006 OS: final analysis

Abstract S5-04. Presented December 11, 2015.

AC-TH: increased CHF, cardiac deaths, and AML

Table 1: BCIRG-006: Therapeutic Index, Final Analysis at 10 Years

	AC-TH	тсн
Disease-free survival events	269	279
Grade 3/4 congestive heart failure	21 (2%)	4 (0.4%)
Total disease-free survival events	290	283
Treatment-related leukemia	7	0
Sustained LVEF loss > 10%	200	97

AC-TH = doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab; TCH = docetaxel, carboplatin, and trastuzumab; LVEF = left ventricular ejection fraction.

Can chemo be omitted in older HER2+ pts or those unable to tolerate paclitaxel or docetaxel?

Randomized Controlled Trial of Trastuzumab Wills or Without Chemotherapy for HER2-Positive Early Breast Cancer in Older Patients

Masataka Sawaki, MD, PhD¹; Naruto Taira, MD, PhD²; Yukari Uemura, PhD³; Tsuyoshi Saito, MD, PhD⁴; Shinichi Baba, MD⁵; Kokoro Kobayashi, MD⁶; Hiroaki Kawashima, MD, PhD⁷; Michiko Tsuneizumi, MD, PhD⁸; Noriko Sagawa, MD, PhD⁹; Hiroko Bando, MD, PhD¹⁰; Masato Takahashi, MD, PhD¹¹; Miki Yamaguchi, MD, PhD¹²; Tsutomu Takashima, MD, PhD¹³; Takahiro Nakayama, MD, PhD¹⁴; Masahiro Kashiwaba, MD, PhD⁵; Toshiro Mizuno, MD, PhD¹⁵; Yutaka Yamamoto, MD, PhD¹⁶; Hiroji Iwata, MD, PhD¹; Takuya Kawahara, PhD¹⁷; Yasuo Ohashi, PhD¹⁸; and Hirofumi Mukai, MD, PhD¹⁹, for the RESPECT study group

Sawaki et. al noninferiority trial results:

- Non-inferiority not met, however:
- 3 yr DFS trastuz vs. trastuz/chemo: 92.4% vs 95.3% (HR, 1.33; 95% Cl, 0.63 to 2.79; P =0.53).
- Observed loss of survival without chemotherapy ~1 month at 3 years

How small is too small for systemic therapy in HER2+ breast cancer?

Original Article

A comparison of local therapy alone with local plus systemic therapy for stage I pT1aN0M0 HER2+ breast cancer: A National Cancer Database analysis

Lifen Cao, MD, PhD ^(D)¹; Christopher W. Towe, MD²; Robert Shenk, MD^{3,4}; Nickolas Stabellini, MS⁵; Amanda L. Amin, MD, MS ^(D)^{3,4}; and Alberto J. Montero, MD, MBA ^(D)¹

BACKGROUND: Small invasive breast cancers (BCs) with tumor sizes ≤ 5 mm (Tla) are associated with an excellent prognosis without systemic therapy. Although HER2 overexpression (HER2+) is associated with a higher risk of recurrence and poorer clinical outcomes, in the absence of HER2 directed therapy, it remains unclear whether adjuvant systemic therapy is necessary in node-negative patients diagnosed with HER2+ invasive BCs ≤ 5 mm (pTlaNOM0). **METHODS:** The National Cancer Database was searched to identify patients diagnosed with HER2+ pTlaNOM0 BCs from 2004 to 2017. The cohort was stratified by treatment status: local therapy alone or local plus adjuvant systemic therapy. A 1:1 propensity match was performed. Overall survival (OS) was analyzed using stratified multivariable Cox proportional hazards regression analyses. **RESULTS:** Of the 8948 patients found, 4026 (45.0%) underwent surgery alone, and 4922 (55.0%) received surgery plus systemic therapy. Patients with either moderately differentiated (odds ratio [OR], 2.053; *P* < .001) or poorly/undifferentiated tumors (OR, 3.780; *P* < .001) or with the presence of lymphovascular invasion (OR, 3.351; *P* < .001) were more likely to have received systemic therapy. Propensity matching generated 1162 pairs of patients who were hormone receptor positive (HR+) and 748 pairs who were hormone receptor negative (HR-). Propensity matching effectively reduced selection bias between study groups. In the matched cohort, the addition of systemic therapy was not associated with superior OS (hazard ratio for HR+, 1.613; *P* = .107, and hazard ratio for HR- 1.319; *P* = .369) compared with patients who received local therapy alone. **Conclusions:** In pTlaNOMO HER2+ BC, the addition of adjuvant systemic therapy after surgical excision was not associated with improved OS compared with local therapy alone. **Cancer 2022;128:2433-2440.** (§ *2022 American Cancer Society*.

KEYWORDS: breast cancer, chemotherapy, HER2 positive, immunotherapy, Tla, trastuzumab.

For HER2+ pT1aN0 local therapy alone appears sufficient

Adjuvant therapy in HER2+ Early Stage Breast Cancer

How I treat early stage HER2+ breast cancer in 2023

Neoadjuvant/post neoadjuvant therapy

Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer

G. von Minckwitz, C.-S. Huang, M.S. Mano, S. Loibl, E.P. Mamounas, M. Untch, N. Wolmark, P. Rastogi,
A. Schneeweiss, A. Redondo, H.H. Fischer, W. Jacot, A.K. Conlin, C. Arce-Salinas, I.L. Wapnir, C. Jackisch,
M.P. DiGiovanna, P.A. Fasching, J.P. Crown, P. Wülfing, Z. Shao, E. Rota Caremoli, H. Wu, L.H. Lam,
D. Tesarowski, M. Smitt, H. Douthwaite, S.M. Singel, and C.E. Geyer, Jr., for the KATHERINE Investigators*

KATHERINE Post Neoadjuvant Residual Disease Study

Residual Invasive HER2 Positive Breast Cancer in Breast and/or Axillary Nodes after Neoadjuvant Chemotherapy and Trastuzumab

STRATIFICATION

- Clinical presentation: inoperable vs. operable
- Hormone receptor: ER or PR positive vs. ER and PR negative
- Preoperative therapy: Trastuzumab vs. dual HER2 targeting
 - Path nodal status after preoperative therapy: +/-

Accrual - 1484 patients

Adjuvant T-DM1: improved distant DFS and OS

N Engl J Med 2019;380:617-28.

Subgroup	T-DM1	Trastuzumab	Hazard Ratio for Invasi	ve-Disease Event (95% CI)	3-Yr Invasi Surv	ve Disease-free vival Rate
no. oj	f patients w even	vith an invasive-disease nt/total no.	2		T-DM1	Trastuzumab %
All patients	91/743	165/743		0.50 (0.39-0.64)	88.3	77.0
Age group						
<40 yr	20/143	37/153	⊢ •	0.50 (0.29-0.86)	86.5	74.9
40–64 yr	64/542	113/522	+₩	0.49 (0.36-0.67)	88.8	77.1
≥65 yr	7/58	15/68		0.55 (0.22–1.34)	87.4	81.1
Clinical stage at presentation						
Inoperable breast cancer	42/185	70/190	+ -	0.54 (0.37-0.80)	76.0	60.2
Operable breast cancer	49/558	95/553	├	0.47 (0.33-0.66)	92.3	82.8
Hormone-receptor status						
Negative (ER-negative and progesterone-receptor-negative or unknown	n) 38/209	61/203	⊢	0.50 (0.33-0.74)	82.1	66.6
Positive (ER-positive, progesterone-receptor-positive, or both)	53/534	104/540	⊢_∰(0.48 (0.35-0.67)	90.7	80.7
Preoperative HER2-directed therapy						
Trastuzumab alone	78/600	141/596	+-■+-1	0.49 (0.37-0.65)	87.7	75.9
Trastuzumab plus additional HER2-directed agent or agents	13/143	24/147	<u> </u>	0.54 (0.27-1.06)	90.9	81.8
Pathological nodal status after preoperative therapy						
Node-positive	62/343	103/346		0.52 (0.38-0.71)	83.0	67.7
Node-negative or NE	29/400	62/397		0.44 (0.28-0.68)	92.8	84.6
Primary tumor stage at definitive surgery						
ypT0, ypT1a, ypT1b, ypT1mic, ypTis	40/331	52/306		0.66 (0.44-1.00)	88.3	83.6
ypTl, ypTlc	14/175	42/184		0.34 (0.19-0.62)	91.9	75.9
урТ2	25/174	44/185	· • • · ·	0.50 (0.31-0.82)	88.3	74.3
урТ3	9/51	21/57	<	0.40 (0.18-0.88)	79.8	61.1
урТ4	3/12	6/11	<	0.29 (0.07-1.17)	70.0	30.0
Regional lymph-node stage at definitive surgery						
ypN0	28/344	56/335		0.46 (0.30-0.73)	91.9	83.9
ypN1	29/220	50/213		0.49 (0.31-0.78)	88.9	75.8
ypN2	16/86	38/103		0.43 (0.24-0.77)	81.1	58.2
ypN3	17/37	15/30		0.71 (0.35–1.42)	52.0	40.6
ypNX	1/56	6/62	-	0.17 (0.02–1.38)	98.1	88.7
			0.20 0.50 1.00	2.00 5.00		
			T-DM1 Better	Trastuzumab Better		

Neoadjuvant therapy is the treatment of choice in all but small (<2cm), node negative, HER2+ cancers

In HER2+ER+, yes to endocrine therapy, but what about neratinib?

⁹⁹ Consider extended adjuvant neratinib following adjuvant trastuzumab-containing therapy for patients with HR-positive, HER2-positive disease with a perceived high risk of recurrence. The benefit or toxicities associated with extended neratinib in patients who have received pertuzumab is unknown.

NCCN Breast Guidelines Version 4.2023 pg BINV-5

¹ Consider extended adjuvant neratinib following adjuvant trastuzumab-containing therapy for patients with HR-positive, HER2-positive disease with a perceived high risk of recurrence. The benefit or toxicities associated with extended neratinib in patients who have received pertuzumab or ado-trastuzumab emtansine is unknown.

NCCN Breast Guidelines Version 4.2023 pg BINV-L 2 of 9

How I treat metastatic HER2+ breast cancer in 2023

2023: Remarkable Progress in the Treatment of HER2+ mBC

- Established therapies
 - Pertuzumab and T-DM1
- New oral tyrosine kinase inhibitors
 - Tucatinib
 - Neratinib
 - Pyrotinib
- Antibody drug conjugates
 - Trastuzumab deruxtecan
 - T-DM1
- Fc engineered antibodies
 - Margetuximab
- New directions

Recurrent HER2+ breast cancer: 1st line

Printed by Alberto Montero on 7/31/2023 9:51:47 PM. For personal use only. Not approved for distribution. Copyright @ 2023 National Comprehensive Cancer Network, Inc., All Rights Reserved.

Comprehensive Cancer Invasive Breast Cancer

NCCN Guidelines Index Table of Contents Discussion

SYSTEMIC THERAPY REGIMENS FOR RECURRENT UNRESECTABLE (LOCAL OR REGIONAL) OR STAGE IV (M1) DISEASE^k

		HR-Positive or -Negative and HER2-Positive ^{j,k}
	Setting	Regimen
	Einet Linel	Pertuzumab + trastuzumab + docetaxel (Category 1, preferred)
	First Line	Pertuzumab + trastuzumab + paclitaxel (preferred)
1/	Second Line ⁿ	Fam-trastuzumab deruxtecan-nxki ^m (Category 1, preferred)
	Third Line	Tucatinib + trastuzumab + capecitabine ⁿ (Category 1, preferred)
	Third Line	Ado-trastuzumab emtansine (T-DM1) ^o
		Trastuzumab + docetaxel or vinorelbine
		Trastuzumab + paclitaxel ± carboplatin
	Fourth Line	Capecitabine + trastuzumab or lapatinib
	and Beyond	Trastuzumab + lapatinib (without cytotoxic therapy)
	sequence is	Trastuzumab + other chemotherapy agents ^{q,r}
	not known) ^p	Neratinib + capecitabine
		Margetuximab-cmkb + chemotherapy (capecitabine, eribulin, gemcitabine, or vinorelbine)
		Additional Targeted Therapy Options see BINV-Q (6)

See additional considerations for those receiving systemic HER2-targeted therapy (BINV-Q 4).

k Assess for germline BRCA1/2 mutations in all patients with recurrent or metastatic breast cancer to identify candidates for PARP inhibitor therapy. While olaparib and talazoparib are FDAindicated in HER2-negative disease, the panel supports use in any breast cancer subtype associated with a germline mutation. There is lower-level evidence for HER2-positive tumors, therefore category 2A for this setting.

¹Maintenance trastuzumab/pertuzumab after response (with concurrent endocrine therapy if ER+ and HER2+ metastatic breast cancer).

^m Fam-trastuzumab deruxtecan-nxki may be considered in the first-line setting as an option for select patients (ie, those with rapid progression within 6 months of neoadjuvant or adjuvant therapy [12 months for pertuzumab-containing regimens]). Fam-trastuzumab deruxtecan-nxki is associated with interstitial lung disease (ILD)/pneumonitis. Regular monitoring for this serious side effect is recommended. For patients with a history of ILD/pneumonitis, there are no data on managing safety or toxicity of this drug in a trial.

ⁿ Tucatinib + trastuzumab + capecitabine is preferred in patients with both systemic and CNS progression in the third-line setting and beyond; and it may be given in the second-line setting.
 ^o May be used as an option for third-line and beyond; the optimal sequence for third-line therapy and beyond is not known. If not a candidate fam-trastuzumab T-DM1 could be considered in the second-line.

P Multiple lines of concurrent chemotherapy with anti-HER2 therapy (trastuzumab or a TKI) offer clinical benefit for recurrent unresectable HER2+ metastatic breast cancer and have been studied in phase 2 or 3 trials. Clinical experience suggests frequent clinical benefit for such treatment. However, there are no meaningful data for use of any of these regimens among patients previously treated with pertuzumab-based chemotherapy, ado-trastuzumab emtansine, fam-trastuzumab deruxtecan-nxki, or trastuzumab/capecitabine/tucatinib regimens. Thus, the optimal sequence or true benefit of therapy is not known.

^q Trastuzumab given in combination with an anthracycline is associated with significant cardiac toxicity. Concurrent use of trastuzumab and pertuzumab with an anthracycline should be avoided.

^r Trastuzumab may be safely combined with all non-anthracycline-containing preferred and other single agents listed on (BINV-Q 5) for recurrent or metastatic breast cancer.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

First-Line Pertuz/Trastuz: CLEOPATRA and Peruse

Swain et al. Lancet Oncol 2020 Miles et al. Ann Oncol 2021

	Median PFS, mo	Median OS, mo
Pertuzumab + Trastuzumab/Doc	18.7	57.1
Placebo + Trastuzumab/Doc	12.4	40.8
HR	0.69	0.69

Peruse Study

- 1436 p\ts Rx with trastuzumab/pertuzumab + either paclitaxel, nab-paclitaxel or docetaxel.
- 41% received paclitaxel
- Median PFS/OS similar regardless of taxane

First-Line ET Plus Trastuzumab/Pertuzumab: **PERTAIN Trial**

PERTAIN Trial: *Results*

Rimawi M, et al. J Clin Oncol. 2018;36:2826-2835.

Recurrent HER2+ breast cancer: 2nd line

Printed by Alberto Montero on 7/31/2023 9:51:47 PM. For personal use only. Not approved for distribution. Copyright @ 2023 National Comprehensive Cancer Network, Inc., All Rights Reserved.

NCCN NCCN NCCN Network[®]

Comprehensive Cancer Invasive Breast Cancer

NCCN Guidelines Index Table of Contents Discussion

SYSTEMIC THERAPY REGIMENS FOR RECURRENT UNRESECTABLE (LOCAL OR REGIONAL) OR STAGE IV (M1) DISEASE^k

	HR-Positive or -Negative and HER2-Positive ^{j,k}
Setting	Regimen
First Line	Pertuzumab + trastuzumab + docetaxel (Category 1, preferred)
FIRSULINE	Pertuzumab + trastuzumab + paclitaxel (preferred)
Second Line ⁿ	Fam-trastuzumab deruxtecan-nxki ^m (Category 1, preferred)
Third Line	Tucatinib + trastuzumab + capecitabine ⁿ (Category 1, preferred)
Third Line	Ado-trastuzumab emtansine (T-DM1) ^o
	Trastuzumab + docetaxel or vinorelbine
	Trastuzumab + paclitaxel ± carboplatin
Fourth Line	Capecitabine + trastuzumab or lapatinib
and Beyond	Trastuzumab + lapatinib (without cytotoxic therapy)
sequence is	Trastuzumab + other chemotherapy agents ^{q,r}
not known) ^p	Neratinib + capecitabine
	Margetuximab-cmkb + chemotherapy (capecitabine, eribulin, gemcitabine, or vinorelbine)
	Additional Targeted Therapy Options see BINV-Q (6)

See additional considerations for those receiving systemic HER2-targeted therapy (BINV-Q 4).

k Assess for germline BRCA1/2 mutations in all patients with recurrent or metastatic breast cancer to identify candidates for PARP inhibitor therapy. While olaparib and talazoparib are FDAindicated in HER2-negative disease, the panel supports use in any breast cancer subtype associated with a germline mutation. There is lower-level evidence for HER2-positive tumors, therefore category 2A for this setting.

¹Maintenance trastuzumab/pertuzumab after response (with concurrent endocrine therapy if ER+ and HER2+ metastatic breast cancer).

^m Fam-trastuzumab deruxtecan-nxki may be considered in the first-line setting as an option for select patients (ie, those with rapid progression within 6 months of neoadjuvant or adjuvant therapy [12 months for pertuzumab-containing regimens]). Fam-trastuzumab deruxtecan-nxki is associated with interstitial lung disease (ILD)/pneumonitis. Regular monitoring for this serious side effect is recommended. For patients with a history of ILD/pneumonitis, there are no data on managing safety or toxicity of this drug in a trial.

ⁿ Tucatinib + trastuzumab + capecitabine is preferred in patients with both systemic and CNS progression in the third-line setting and beyond; and it may be given in the second-line setting.
^o May be used as an option for third-line and beyond; the optimal sequence for third-line therapy and beyond is not known. If not a candidate fam-trastuzumab T-DM1 could be considered in the second-line.

P Multiple lines of concurrent chemotherapy with anti-HER2 therapy (trastuzumab or a TKI) offer clinical benefit for recurrent unresectable HER2+ metastatic breast cancer and have been studied in phase 2 or 3 trials. Clinical experience suggests frequent clinical benefit for such treatment. However, there are no meaningful data for use of any of these regimens among patients previously treated with pertuzumab-based chemotherapy, ado-trastuzumab emtansine, fam-trastuzumab deruxtecan-nxki, or trastuzumab/capecitabine/tucatinib regimens. Thus, the optimal sequence or true benefit of therapy is not known.

^q Trastuzumab given in combination with an anthracycline is associated with significant cardiac toxicity. Concurrent use of trastuzumab and pertuzumab with an anthracycline should be avoided.

^r Trastuzumab may be safely combined with all non-anthracycline-containing preferred and other single agents listed on (BINV-Q 5) for recurrent or metastatic breast cancer.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

DESTINY-Breast03: First Randomized Ph3 Study of T-DXd

An open-label, multicenter study (NCT03529110)

Patients

- Unresectable or metastatic HER2-positive^a breast cancer
- Previously treated with trastuzumab and taxane in advanced/metastatic setting^b
- Could have clinically stable, treated brain metastases

Stratification factors

- Hormone receptor status
- Prior treatment with pertuzumab
- History of visceral disease

Interim analysis for PFS (data cutoff: May 21, 2021)

- Efficacy boundary for superiority: P < 0.000204 (based on 245 events)
- IDMC recommendation to unblind study (July 30, 2021)

Key secondary endpoint, OS: boundary for efficacy: *P* < 0.000265 (based on 86 events)

Cortes et al, ESMO 2021

2021 ESVO

BICR, blinded independent central review; DOR, duration of response; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Ph3, phase 3; Q3W, every 3 weeks.

^aHER2 IHC3+ or IHC2+/ISH+ based on central confirmation. ^bProgression during or <6 months after completing adjuvant therapy involving trastuzumab and taxane

Details:

- HR+: 50%
- Brain mets: 24 vs 20%
- Prior pertuzumab: 61%
- One line of piror rx: 50 vs 47%

Primary Endpoint: PFS by BICR

PFS by Investigator Assessment

	T-DXd	T-DM1	
mPFS, mo (95% CI)	25.1 (22.1-NE)	7.2 (6.8-8.3)	
12-mo PFS rate, %	76.3	34.9	
(95% CI)	(70.4-81.2)	(28.8-41.2)	
	0.26 (0.2	20-0.35)	
HK (95% CI)	P = 6.5 $ imes$ 10 ⁻²⁴		

PFS in Key Subgroups

Median PFS (mo, 95% CI)

Number of Events

HR (95% CI)

Patients Still at Risk:

T-DXd (261) 261 256 250 244 240 224 214 202 200 183 168 164 150 132 112 105 79 64 53 45 36 29 25 19 10 6 5 3 2 0 **T-DM1 (263)** 263 252 200 163 155 132 108 96 93 78 65 60 51 43 37 34 29 23 21 16 12 8 6 4 1 1 1 1 1 1 1 1 1 0

Key Secondary Endpoint: OS

T-DXd (261) 261 256 256 255 254 251 249 244 243 241 237 230 218 202 180 158 133 108 86 71 56 50 42 33 24 18 11 10 7 6 2 2 1 T-DM1 (263) 263 258 253 248 243 241 236 232 231 227 224 210 188 165 151 140 120 91 75 58 52 44 32 27 18 11 5 4 3 3 1 1 0

Early OS data with relatively few events (33 in the T-DXd arm, 53 in the T-DM1 arm)

 ^{a}P = .007172, but does not cross pre-specified boundary of P < .000265

Warnings and Precautions: ILD/Pneumonitis Monitoring and Management

Interstitial lung			T-Dxd 5.4 r	mg/kg (N = 184)		
disease, n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade/Total
Aug 2019 data cutoff	5 (2.7)	15 (8.2)	1 (0.5)	0	4 (2.2)	25 (13.6)
June 2020 data cutoff	6 (3.3)	16 (8.7)	1 (0.5)	0	5 (2.7)	28 (15.2)

As determined by an independent interstitial lung disease adjudication committee. At data cutoff, 1 grade 1 event and 1 grade 3 event were pending adjudication.

Modi et al, SABCS 2020

ENHERTU [prescribing information]. Basking Ridge, NJ: Daiichi Sankyo Inc and Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2019.

Incidence of ILD after implementation of toxicity management guidelines

Updated toxicity management guidelines implemented (December 2019)

Incidence of ILD over time

	2016 (n=74)	2017 (n=168)	2018 (n=569)	2019 (n=179)	2020 (n=160)
Any Grade ILD, n (%)	18 (24.3)	33 (19.6)	87 (15.3)	28 (15.6)	11 (6.9)
Grade ≥3 ILD, n (%)	2 (2.7)	6 (3.6)	21 (3.7)	8 (4.5)	3 (1.9)
Grade 5 ILD, n (%)	1 (1.4)	5 (3.0)	12 (2.1)	5 (2.8)	2 (1.3)

Patients grouped by year of enrollment, based on a data snapshot from December 2020.

 Patients enrolled in 2020 (after implementation of toxicity management guidelines) appear to have had lower rates of all grade (6.9%), grade ≥3 (1.9%) and grade 5 ILD (1.3%) compared with those enrolled in previous years based on a December 2020 snapshot; however, this may be partly due to the shorter treatment duration

Powell, et al AACR 2021

Adverse Events of Special Interest

Adjudicated as drug-related ILD/pneumonitis ^a , n (%)						
n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
T-DXd (n = 257)	7 (2.7)	18 (7.0)	2 (0.8)	0	0	27 (10.5)
T-DM1 (n = 261)	4 (1.5)	1 (0.4)	0	0	0	5 (1.9)

• There were no grade 4 or 5 adjudicated drug-related ILD/pneumonitis events observed with T-DXd

LVEF decrease, n (%)						
n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
T-DXd (n = 257)	1 (0.4) ^b	6 (2.3) ^c	0	0	0	7 (2.7)
T-DM1 (n = 261)	0	1 (0.4) ^c	0	0	0	1 (0.4)

 In the T-DXd arm, all reported adverse events of LVEF decrease were asymptomatic and no cases of cardiac failure occurred

Drug-Related TEAEs in ≥20% of Patients

Gastrointestinal disorders	All grade	-DXd grade >3	All grade T-DM1	<u>grade >3</u>
Nausea	<mark>187 (72.8)</mark>	<mark>17 (6.6)</mark>	72 (27.6)	1 (0.4)
Vomiting	113 (44.0)	4 (1.6)	15 (5.7)	1 (0.4)
Diarrhea	61 (23.7)	1 (0.4)	10 (3.8)	1 (0.4)

^aPatients with prior history of ILD/pneumonitis requiring steroids were excluded. ^bLeft ventricular dysfunction. ^cDecreased ejection fraction.

Comprehensive NCCN Guidelines Version 2.2022

SYSTEMIC THERAPY REGIMENS FOR RECURRENT UNRESECTABLE (LOCAL OR REGIONAL) OR STAGE IV (M1) DISEASE^h

HER2-Positive							
Setting	Regimen	NCCN Category of Preference	NCCN Category of Evidence				
et a constituit de la const	Pertuzumab + trastuzumab + docetaxel ^k	Preferred Regimen	1				
First line.	Pertuzumab + trastuzumab + paclitaxel ^k	Preferred Regimen	2A				
Cocond line	Fam-trastuzumab deruxtecan-nxki ^{j,l,m}	Preferred Regimen	1				
Second line	Ado-trastuzumab emtansine (T-DM1) ^j	Other Recommended Regimen	2A				
	Tucatinib + trastuzumab + capecitabine ^{k,n}	Other Recommended Regimen ⁿ	1				
	Trastuzumab + docetaxel or vinorelbine ^{k,o}	Other Recommended Regimen	2A				
Third line	Trastuzumab + paclitaxel ± carboplatin ^{k,o}	Other Recommended Regimen	2A				
and beyond	Capecitabine + trastuzumab or lapatinib ^{k,o}	Other Recommended Regimen	2A				
(optimal	Trastuzumab + lapatinib ^{k,o} (without cytotoxic therapy)	Other Recommended Regimen	2A				
sequence is not known)	Trastuzumab + other agents ^{k,o,p,q}	Other Recommended Regimen	2A				
	Neratinib + capecitabine ^o	Other Recommended Regimen	2A				
	Margetuximab-cmkb + chemotherapy ^o (capecitabine, eribulin, gemcitabine, or vinorelbine)	Other Recommended Regimen	2A				

Additional targeted therapy options (See BINV-R)

^h See additional considerations for those receiving systemic HER2-targeted therapy (BINV-Q 3 of 8).

- ¹Maintenance trastuzumab/pertuzumab after response (with concurrent endocrine therapy if ER+ and HER2+ metastatic breast cancer).
- ^j Regimens may also be used as an option for third-line and beyond; the optimal sequence for third-line therapy and beyond is not known.
- k An FDA-approved biosimilar is an appropriate substitute for trastuzumab.
- ¹ Fam-trastuzumab deruxtecan-nxki may be considered in the first-line setting as an option for select patients (ie, those with rapid progression within 6 months of neoadjuvant or adjuvant therapy [12 months for pertuzumab-containing regimens]).
- ^m Fam-trastuzumab deruxtecan-nxki is contraindicated for patients with pneumonitis or interstitial lung disease (ILD).
- ⁿ Tucatinib + trastuzumab + capecitabine is preferred in patients with both systemic and CNS progression in the third-line setting and beyond; and it may be given in the second-line setting.
- ^o Multiple lines of concurrent chemotherapy with anti-HER2 therapy (trastuzumab or a TKI) offer clinical benefit for recurrent unresectable HER2+ metastatic breast cancer and have been studied in phase 2 or 3 trials. Clinical experience suggests frequent clinical benefit for such treatment. However, there are no meaningful data for use of any of these regimens among patients previously treated with pertuzumab-based chemotherapy, ado-trastuzumab emtansine, fam-trastuzumab deruxtecan-nxki, or trastuzumab/capecitabine/ tucatinib regimens. Thus, the optimal sequence or true benefit of therapy is not known.
- P Trastuzumab given in combination with an anthracycline is associated with significant cardiac toxicity. Concurrent use of trastuzumab and pertuzumab with an anthracycline should be avoided.
- ^q Trastuzumab may be safely combined with all non-anthracycline containing preferred and other single agents listed on <u>BINV-Q (1 of 8)</u> for recurrent or metastatic breast cancer.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

BINV-Q 2 OF 8

Version 2.2022, 12/20/21 @ 2021 National Comprehensive Cancer Network* (NCCN*), All rights reserved. NCCN Guidelines* and this illustration may not be reproduced in any form without the express written permission of NCCN.

HER2CLIMB Primary Analysis Results

- The HER2CLIMB trial met all primary and alpha-controlled secondary endpoints at the first interim analysis.
- Importantly, the secondary endpoint of PFS in patients with brain metastases was met.

PFS by BICR N=480*	Overall Survival N=612	PFS by BICR in patients with brain metastases N=291
Risk of progression or death was reduced by 46% (HR.54)	Risk of death was reduced by 34% (HR .66)	Risk of progression or death was reduced by 52% (HR .48)
95% CI: 0.42 to 0.71, P<0.001	95% CI, 0.50 to 0.88, P=0.005	95% CI, 0.34 to 0.69, P<0.001
PFS 5.6 to 7.8 mo.	OS 17.4 to 21.9 mo.	PFS 5.4 to 7.6 mo.
	Updated OS: 19.2 vs 24.7 mo.	

*The primary endpoint of PFS was assessed in the first 480 patients enrolled.

Murthy RK, et al. *N Engl J Med* 2020;382:597-609. Curigliano G et al. ASCO 2021. Abstract 1043.

PFS and OS for Patients with Brain Metastases

Safety: Most Common AEs (>20% for Tucatinib)

Okines et al, ASCO 2020

2023 Approach to Therapy for HER2+ mBC

*AI+TP in select cases and for maintenance in ER+ disease; # endocrine Tx + HER2 therapy at clinically appropriate points for ER+ MBC

