

Contemporary Management of Advanced Bladder Cancer

Abhishek Tripathi MD Associate Professor, Department of Medical Oncology and Therapeutics Research <u>City of Hope Comprehensive Cancer Center, Duarte, CA</u>

Advanced UC is a heterogenous disease

Heterogeneity in initial stage of diagnosis: ?? biology

Heterogeneity in initial treatment of localized disease

Bladder Cancer Advocacy Network. Siegel RL, et al. CA Cancer J Clin. 2022;72(1):7-33. SEER 17.

Majority of cases diagnosed 65-85

Significant variation in comorbidities

Patient considerations in advanced UC

- Hearing loss
- Renal dysfunction
- Congestive heart failure
- Peripheral neuropathy
- Poor performance status

Cisplatin-ineligible (40-50%)

- ECOG PS \geq 3
- Cr Cl < 30 ml/min
- Peripheral neuropathy \geq Grade 2
- NYHA Heart Failure Class ≥ 3
- ECOG PS 2 AND Cr Cl < 30 ml/min

Platinum-ineligible (10-15%)

Galsky et al. Lancet Oncol 2011; Gupta et al. ASCO 2022

Platinum chemotherapy in advanced UC

Cisplatin-eligible patients: GC vs. MVAC

Fig 1. Kaplan-Meier curves for overall survival. GC, gemcitabine/cisplatin; MVAC, methotrexate/vinblastine/doxorubicin/cisplatin; HR, hazard ratio;

Cisplatin in-eligible: EORTC 30986

Fig 2. Duration of survival by treatment group. GC, gemcitabine/carboplatin; M-CAVI, methotrexate/carboplatin/vinblastine; O, observed number of deaths.

Chemo +/- pembrolizumab in untreated UC

Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial

Thomas Powles, Tibor Csőszi, Mustafa Özgüroğlu, Nobuaki Matsubara, Lajos Géczi, Susanna Y-S Cheng, Yves Fradet, Stephane Oudard, Christof Vulsteke, Rafael Morales Barrera, Aude Fléchon, Seyda Gunduz, Yohann Loriot, Alejo Rodriguez-Vida, Ronac Mamtani, Evan Y Yu, Kijoeng Nam, Kentaro Imai, Blanca Homet Moreno, Ajjai Alva, for the KEYNOTE-361 Investigators*

No significant improvement in PFS (pre-specified P value threshold: 0.0019)

No significant improvement in OS (pre-specified P value threshold: 0.0142)

Chemo +/- atezolizumab in untreated UC

Final PFS: ITT (Arm A vs Arm C)

Interim OS: ITT (Arm A vs Arm C)

Switch maintenance: JAVELIN 100 Bladder

*BSC (eg. antibiotics, nutritional support, hydration, or pain management) was administered per local practice based on patient needs and clinical judgment; other systemic antitumor therapy was not permitted, but palliative local radiotherapy for isolated lesions was acceptable

Switch maintenance: JAVELIN 100 Bladder

Switch maintenance: JAVELIN 100 Bladder

Subaroup	Avelumab + BSC	Imber of Patients BSC	3	Hazard Ratio (95% CI)
Subgroup	///ciainab · Boo	500		Hazara Hado (007/ 01)
All patients	145/350	179/350	_ 	0.69 (0.56, 0.86)
A				
Age:	61/100	52/407		0.70 (0.65, 4.45)
<65 years	61/129	53/107		0.79 (0.55, 1.15)
≥o5 years	04/221	120/243		0.03 (0.47, 0.03)
Sex:				
Male	105/266	145/275	•	0.64 (0.50, 0.83)
Female	40/84	34/75		0.89 (0.56, 1.41)
ECOG performance status:	77/040	101/011	-	0.01/0.10.0.00
0	77/213	101/211		0.64 (0.48, 0.86)
21	68/137	78/139		0.74 (0.54, 1.03)
Race:				
White	106/232	133/238	•	0.67 (0.52, 0.87)
Asian	26/75	36/81	-	0.70 (0.42, 1.16)
Other	13/43	10/31	•	0.91 (0.40, 2.07)
Pooled geographic region:				
Europe	93/214	114/203	_ -	0.64 (0.49, 0.85)
North America	5/12	8/22	•	0.86 (0.28, 2.65)
Asia	25/73	32/74	_	0.71 (0.42, 1.21)
Australasia	16/34	16/37	•	0.96 (0.48, 1.92)
Rest of the world	6/17	9/14 —	•	0.38 (0.13, 1.14)
First-line chemotherapy regimen:				
Gemcitabine + cisplatin	71/183	98/206		0.69 (0.51, 0.94)
Gemcitabine + carboplatin	68/147	73/122		0.66 (0.47, 0.91)
Gemcitabine + cisplatin/carboplatin*	6/20	7/20	•	0.75 (0.25, 2.25)
Best response to first-line chemotherapy:				
Complete response or partial response	104/253	127/252	_ -	0.69 (0.53, 0.89)
Stable disease	41/97	52/98		0.70 (0.46, 1.05)
Site of baseline metastasis:				
Visceral	93/191	101/191	_	0.82 (0.62, 1.09)
Nonvisceral	52/159	78/159	_	0.54 (0.38, 0.76)
				,
Creatinine clearance:				
≥60 mL/min	74/181	97/196	-	0.68 (0.50, 0.92)
<60 mL/min	71/168	81/148	_	0.68 (0.50, 0.94)
RD I 1 status:				
Positive	61/189	82/169		0.56 (0.40, 0.78)
Negative	76/139	72/131		0.86 (0.62, 1.18)
Unknown	8/22	25/50		0.69 (0.31, 1.53)
	ULL	20.00		0.00 (0.01, 1.00)
		T		
		0.125	0.25 0.5 1 2	4
			Hazard Ratio for OS with 95% CI	
			Favors Avelumab + BSC Favors BSC	
			<u> </u>	

First-line chemotherapy regimen:				
Gemcitabine + cisplatin	71/183	98/206		0.69 (0.51, 0.94)
Gemcitabine + carboplatin	68/147	73/122	•	0.66 (0.47, 0.91)
Gemcitabine + cisplatin/carboplatin*	6/20	7/20	•	0.75 (0.25, 2.25)
Best response to first-line chemotherapy:				
Complete response or partial response	104/253	127/252	•	0.69 (0.53, 0.89)
Stable disease	41/97	52/98		0.70 (0.46, 1.05)
Site of baseline metastasis:				
Visceral	93/191	101/191	_	0.82 (0.62, 1.09)
Nonvisceral	52/159	78/159	_	0.54 (0.38, 0.76)

OS from start of 1L chemotherapy

- In the overall population, median OS measured from the start of 1L chemotherapy was 29.7 months with avelumab + BSC and 20.5 months with BSC alone
- OS measured from the start of 1L chemotherapy was also longer with avelumab + BSC vs BSC alone irrespective of 1L chemotherapy regimen
- 1L, first line; BSC, best supportive care; HR, hazard ratio; OS, overall survival

PRESENTED BY: Srikala S. Sridhar, MD Presentation is property of the author and ASCO. Permission required for rouse; contact permissions@asco.org

The DISCUS TRIAL: 3 vs 6 cycles of platinum chemotherapy and maintenance avelumab

PI: Shilpa Gupta MD

Beyond chemotherapy/IO

- Antibody-drug conjugates
 - Enfortumab vedotin
 - Sacituzumab govitecan
 - HER-2-targeted ADCs
- Kinase inhibition:
 - FGFR inhibition
 - Multi-kinase inhibitors

Novel combinations: EV +/- pembrolizumab

Study EV-103 Cohort K: Antitumor activity of enfortumab vedotin monotherapy or in combination with pembrolizumab in previously untreated cisplatinineligible patients with locally advanced or metastatic urothelial cancer (la/mUC)

Enfortumab Vedotin: Nectin-4 Targeted Therapy Proposed Mechanism of Action

• **Primary endpoint:** confirmed ORR by RECIST v1.1 per BICR

Key secondary endpoints: confirmed ORR per RECIST v1.1 by investigator, DOR, DCR, PFS, OS, safety/ tolerability, and lab abnormalities

EV103: EV+/- pembrolizumab in cis-ineligible UC

PD

	E (N	EV+P =76)	EV Mono (N=73)
Male sex, n (%)	54	(71.1)	56 (76.7)
Age (yrs), median (range)	71 (51, 91)	74 (56, 89)
White race, n (%)	61	(80.3)	55 (75.3)
ECOG PS, n (%)			
0	33	(43.4)	28 (38.4)
1	33	(43.4)	35 (47.9)
2	10	(13.2)	10 (13.7)
Primary tumor location, n (%)			
Lower tract	46	(60.5)	51 (69.9)
Upper tract	30	(39.5)	21 (28.8)
Metastasis disease sites, n (%)			
Bone		19 (25.0)	21 (28.8)
Liver		13 (17.1)	13 (17.8)
Lung		37 (48.7)	30 (41.1)
Metastasis category, n (%)			
Lymph node only		10 (13.2)	12 (16.4)
Visceral disease		64 (84.2)	60 (82.2)
Not applicable ¹		2 (2.6)	1 (1.4)
PD-L1 status by combined posit	ive score	e,² n (%)	
CPS<10		44 (57.9)	38 (52.1)
CPS≥10		31 (40.8)	28 (38.4)
Not Evaluable		1 (1.3)	7 (9.6)

EV Mono		
sease sites	EV+P (N=76) n (%)	EV Mono (N=73) n (%)
Patient meeting at least one of the following Galsky criteria	76 (100%)	72 (98.6)
CrCL <60 and ≥30mL/min ¹	48 (63.2)	44 (60.3)
Grade ≥2 hearing loss	11 (14.5)	11 (15.1)
ECOG PS of 2	6 (7.9)	9 (12.3)
CrCL <60 and \geq 30mL/min ¹ and Grade \geq 2 hearing loss	7 (9.2)	7 (9.6)
CrCL <60 and ≥30mL/min ¹ and ECOG PS of 2	4 (5.3)	1 (1.4)
Patient considered cisplatin-ineligible by the investigator although not meeting Galsky criteria ²	0	1 (1.4)
	EV Mono sease sites Patient meeting at least one of the following Galsky criteria tegory CrCL <60 and ≥30mL/min ¹ Grade ≥2 hearing loss ECOG PS of 2 CrCL <60 and ≥30mL/min ¹ and Grade ≥2 hearing loss CrCL <60 and ≥30mL/min ¹ and ECOG PS of 2 Patient considered cisplatin-ineligible by the investigator although not meeting Galsky criteria ²	EV Mono sease sites EV+P (N=76) n (%) Patient meeting at least one of the following Galsky criteria 76 (100%) CrCL <60 and ≥30mL/min ¹ 48 (63.2) Grade ≥2 hearing loss 11 (14.5) ECOG PS of 2 6 (7.9) CrCL <60 and ≥30mL/min ¹ and Grade ≥2 hearing loss 7 (9.2) CrCL <60 and ≥30mL/min ¹ and ECOG PS of 2 4 (5.3) Patient considered cisplatin-ineligible by the investigator although not meeting Galsky criteria ² 0

CrCL: Creatinine Clearance; ECOG PS: Eastern Cooperative Oncology Group Performance Status; Mono: Monotherapy ¹Estimated creatinine clearance per Cockcroft-Gault formula or 24-hr urine collection or MDRD equation. ²One patient in the EV Mono arm was considered cisplatin-ineligible by the investigator due to age and Grade 1 hearing loss.

EV103: EV+/- pembrolizumab in cis-ineligible UC

100 - +	EV+P (N=76)	EV Mono (N=73)	-		
Confirmed ORR, n (%) (95% Ci)	49 (64.5) (52.7, 75.1)	33 (45.2) (33.5, 57.3)			
Best överall response, n (%)			•		
	^{₩-₩-} <u>₩-8 (10.5)</u>	<u> </u>		-+	
Bartia Response	41 (53.9)	30 (41.1)			
Staple Disease	17 (22.4)	25 (34.2)			
A A A A A A A A A A A A A A A A A A A	6 (7.9) _{95% CI}	7 (9.6)			
Not Evaluable Cohort K EV+P 76 31 -	(8.31, -) 3 (3.9)	5 (6.8)			
Mo Assessmer K EV+P 49 13 - (10.25, -)	¹¹ ¹² ¹³ 1 ¹ (1.35) ¹⁶ ¹⁷ Time (Months)	¹⁸ ¹⁹ 3°(4.21) ²² ²³	24 25	26	27 28
Median time to objective 7 8 9 10 11 12 13 response (range), mos 51 51 45 42Tinge (Me	14 15 2.077 (11.19, 60.62) 22 pntb22) 20 15 15 14 13 13	² 2.07 ² (1.9, 15.4) 8 4 3 1 1 1	1 1	1	
Median number of treatment cycles (rang	je) 11.0 (1, 29)	8.0 (1, 33)			

	EV+P (N=76)	EV Mono (N=73)
Responders, n	49	33
Progression events, n	13	14
mDOR (95% CI), mos	- (10.25, -)	13.2 (6.14, 15.97)
DOR ≥12 mos, %	65.4%	56.3%

	EV (N=	/+P :76)	EV Mono (N=73)		
	Any Grade n (%)	Grade ≥3 n (%)	Any Grade n (%)	Grade ≥3 n (%)	
Skin reactions	51 (67.1)	16 (21.1)	33 (45.2)	6 (8.2)	
Peripheral neuropathy	46 (60.5)	2 (2.6)	40 (54.8)	2 (2.7)	
Ocular disorders	20 (26.3)	0	21 (28.8)	0	
Dry eye	18 (23.7)	0	9 (12.3)	0	
Blurred vision	9 (11.8)	0	10 (13.7)	0	
Corneal disorders	0	0	4 (5.5)	0	

EV103: EV+/- pembrolizumab in cis-ineligible UC

100 - +	EV+P (N=76)	EV Mono (N=73)				F		3	
Confirmed ORR, n (%)	49 (64.5)	33 (45.2)		90 -					
(95% Cł) -	(52.7, 75.1)	(33.5, 57.3)		80 -			** **********************************		
Beet överall response, n (%) +			(%)	70 -			-	<u>···∿</u>	-++
		~ / / / ·	ิต	60 -					
Receive	ed accelerate	ed approval f	or cisplatin i	neli	gible untre	ated adva	nced U(2	
කි. ක්රීයා දී		•••	•		<u> </u>				
N Events (Months)	95% CI	• (•••)		10	N	Events (Months) 95	% CI		
Sot Evaluable Cohort K EV+P 76 31 - ((8.31, -) 3 (3.9)	5 (6.8)			Cohort K EV+P 76	20 22.3 (19.	09, —)		
Mediari Mod ASSESSITICITIC Cohort KEV+P 49 13 - (10.25, -)	¹ ¹² ¹³ 1 ¹ (1.35) ¹⁶ ¹⁷ Time (Months)	¹⁸ ¹⁹ 3 ²⁰ (4 ² ,1) ²² ²³ ²	24 25 26 27 28	0	1 2 3 4 5 6	7 8 9 10 11	12 13 14 15 1 Time (Months)	6 17 18 19 20	21 22 23 24 25
				_					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 2.07 (11.19, 6.62) 2	² ² 2.07 ² (1.9, 15.4)				EV	+P	EVI	lono
response (range), mos $_{51}$ $_{51}$ $_{45}$ $_{42}$ Tinge (Months	(15 22.07 (11.19, 60.62)) 2 20 15 15 14 13 13	² ² 2.07 ² (1:9, 15.4) ⁸ ⁴ ³ ¹ ¹ ¹	1 1 1			EV (N=	+P 76)	EV N (N=	lono 73)
$\begin{array}{c} \mbox{Median}_{stime to objective - 7} & \mbox{H}_{stime to objective - 7} & \mbox{H}_{stime to - 10} & \mbox{H}_{11} & \mbox{H}_{12} & \mbox{H}_{13} & \mbox{H}_{14} & \mbox{H}_{14} & \mbox{H}_{12} & \mbox{H}_{14} &$	¹⁵ 2.07 (1.1, 19, 69.62) 2 20 15 15 14 13 13 11.0 (1, 29)	² ² 2.072(1?9, 15.4) 8 4 3 1 1 1 8.0 (1, 33)	1 1 1			EV (N= Any Grade n (%)	+P 76) Grade ≥3 n (%)	EV M (N= Any Grade n (%)	lono 73) Grade ≥3 n (%)

	(N=76)	(N=73)
Responders, n	49	33
Progression events, n	13	14
mDOR (95% CI), mos	- (10.25, -)	13.2 (6.14, 15.97)
DOR ≥12 mos, %	65.4%	56.3%

	EV+P (N=76)		EV N (N=	lono 73)
	Any Grade n (%)	Grade ≥3 n (%)	Any Grade n (%)	Grade ≥3 n (%)
Skin reactions	51 (67.1)	16 (21.1)	33 (45.2)	6 (8.2)
Peripheral neuropathy	46 (60.5)	2 (2.6)	40 (54.8)	2 (2.7)
Ocular disorders	20 (26.3)	0	21 (28.8)	0
Dry eye	18 (23.7)	0	9 (12.3)	0
Blurred vision	9 (11.8)	0	10 (13.7)	0
Corneal disorders	0	0	4 (5.5)	0

EV 302: EV+/- pembrolizumab in platinum eligible UC

EOT= End of Treatment; Pembro=pembrolizumab; PROs=patient reported outcomes

- Stratification Factors for Randomization: cisplatin eligibility (eligible/ineligible), liver metastases (present/absent), PD-L1 expression (high/low)
- · Follow-up until disease progression, death, consent withdrawal, or study closure

Sacituzumab Govitecan in Refractory UC

Sacituzumab Govitecan in Refractory UC

Sacituzumab Govitecan in Refractory UC

Anti-HER-2-ADC: Disitamab vedotin

Characteristics	Total (N=41)
HER2 Expression(n,%)	
IHC 3+	5 (12.2%)
IHC 2+	19 (46.3%)
IHC 1+	14 (34.1%)
IHC 0	3 (7.3%)

Subgroups	cORR (%, 95% CI)
HER2 & PD-L1 Expression	
HER2 IHC(2+/3+), PD-L1(+) (n=8)	75.0(34.9~96.8)
HER2 IHC(2+/3+), PD-L1(-) (n=16)	87.5(61.7~98.4)
HER2 IHC(1+), PD-L1(+) (n=4)	50.0(6.8~93.2)
HER2 IHC(1+), PD-L1(-)(n=10)	70.0(34.8~93.3)
HER2 IHC(0), PD-L1(+)(n=1)	0.0(0.0~97.5)
HER2 IHC(0), PD-L1(-)(n=2)	50.0(1.3~98.7)

Anti-HER-2-ADC: TxD

Summary of Efficacy Results in UC Cohorts

Cohort 3 HER2 IHC 3+/2+

	n = 30
Confirmed ORR by ICR (ORR, CR + PR)	
n (%)	11 (36.7)
95% CI	(19.9-56.1)
Best overall response, n (%)	
CR	4 (13.3)
PR	7 (23.3)
SD	12 (40.0)
PD	5 (16.7)
NEª	2 (6.7)
DOR, median (95% CI), months	13.1 (4.1-NE)
PFS, median (95% CI), months	6.9 (2.7-14.4)
TTR, median (95% CI), months	1.9 (1.2-6.9)
OS, median (95% CI), months	11.0 (7.2-NE)
Treatment duration, median (range), months	
T-DXd	3.9 (1-21)
Nivolumab	4.1 (1-20)

- Data cutoff: July 22, 2021
- In cohort 3:
 - HER2 IHC 3+: 62.5% (5/8) patients had a confirmed objective response, including 2 CR (25%)
 - HER2 IHC 2+: 27.3% (6/22) patients had a confirmed objective response, including 2 CR (9.1%)
- In cohort 4 (HER2 IHC 1+)^b:
 - 2 patients had a PR
 - 1 patient had SD
 - 1 patient had PD

CR, complete response; DOR, duration of response; ICR, independent central review; NE, nonevaluable; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; TTR, time to response.

Patients were missing postbaseline scans.

#GU22

^bFor cohort 4, efficacy endpoints are not summarized because of the small sample size (n = 4).

PRESENTED BY: Matthew D. Galsky, MD

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

4

FGFR Inhibitors in Advanced UC

 FGFR (1-3) mutations can be seen in 15-20% of patients with advanced UC

• Enriched in upper tract and luminal papillary subtypes

FGFR = fibroblast growth factor receptor. Robinson BD, et al. *Nat Commun*. 2019;10(1):2977. Babina IS, et al. *Nat Rev Cancer*. 2017;17(5):318-332.

Erdafitinib in Advanced UC with FGFR Alterations

QD = daily; ORR = overall response rate; DoR = duration of response; PK = pharmacokinetic. Siefker-Radtke AO, et al. *J Clin Oncol.* 2018;36(15 Suppl):4503.

Phase 3 THOR Study: Erdafitinib Versus Chemotherapy of Choice in Patients With Advanced Urothelial Cancer and Selected FGFR Aberrations

Cohort 1

Key eligibility criteria

1:1

N=266^b

- Age ≥18 years
- Metastatic or unresectable UC
- Confirmed disease progression
- Prior tx with anti–PD-(L)1
- 1-2 lines of systemic tx
- Select *FGFR3/2alt* (mutation/fusion)^a
- ECOG PS 0-2

NCT03390504

Chemotherapy of Choice (n=130) docetaxel or vinflunine once every 3 weeks

Stratification factors: region (North America vs European Union vs rest of world), ECOG PS (0 or 1 vs 2), and disease distribution (presence vs absence of visceral [lung, liver, or bone] metastases)

Primary end point:

OS

Key secondary end points:

- PFS
- ORR
- Safety

Demographics and Disease Characteristics

Characteristic	Erdafitinib (n=136)	Chemotherapy (n=130)
Age, median (range), years	66 (32-85)	69 (35-86)
Men, n (%)	96 (70.6)	94 (72.3)
Race, n (%)		
White	81 (59.6)	63 (48.5)
Asian	37 (27.2)	40 (30.8)
Black or African American	0	1 (0.8)
Multiple	0	1 (0.8)
Not reported	18 (13.2)	25 (19.2)
Presence of visceral metastases, n (%)	101 (74.3)	97 (74.6)
Liver	31 (22.8)	38 (29.2)

Characteristic	Erdafitinib (n=136)	Chemotherapy (n=130)
ECOG PS 0-1, n (%)	124 (91.2)	117 (90)
Primary tumor upper tract, n (%)	41 (30.1)	48 (36.9)
PD-L1 low (CPS <10), n (%)	89 (92.7) ª	68 (86.1) ª
<i>FGFRalt</i> , n (%) ^b	(n=135)	(n=129)
Mutations	108 (79.4)	107 (82.3)
Fusions	25 (18.4)	19 (14.6)
Mutations and fusions	2 (1.5)	3 (2.3)
Prior lines of systemic therapy ^c		
1 line	45 (33.1)	33 (25.4)
2 lines	90 (66.2)	97 (74.6)

• Patient baseline characteristics were generally balanced between treatment arms

All Patients Enrolled in the Study Had Received Anti–PD-1 in the First- or Second-Line Setting

	Patients receiving prior therapy, n (%)	Erdafitinib (n=136)ª	Chemotherapy (n=130)
	1 line of prior systemic therapy	45 (33.1)	33 (25.4)
	Chemotherapy + anti–PD-(L)1 ^b	33 (24.3)	15 (11.5)
	Anti–PD-(L)1 ^c	11 (8.1)	16 (12.3)
	Chemotherapy	1 (0.7)	2 (1.5)
	2 lines of prior systemic therapy	90 (66.2)	97 (74.6)
	First line of therapy		
	Chemotherapy	77 (56.6)	76 (58.5)
	Chemotherapy + anti–PD-(L)1	6 (4.4)	10 (7.7)
	Other	7 (5.1)	11 (8.5)
	Second line of therapy		
	Anti–PD-(L)1	76 (55.9)	76 (58.5)
	Chemotherapy	10 (7.4)	14 (10.8)
	Other	4 (2.9)	7 (5.4)

Phase 3 THOR Study: Erdafitinib Versus Chemotherapy of Choice in Patients With Advanced Urothelial Cancer and Selected FGFR Aberrations

Overall Survival for Erdafitinib Was Superior to Investigator's Choice of Chemotherapy

- Median follow-up was 15.9 months
- Median OS was 12.1 months for erdafitinib versus 7.8 months for chemotherapy
- Erdafitinib reduced the risk of death by 36% versus chemotherapy
 - HR, 0.64 (95% Cl, 0.47-0.88;
 P = 0.005)^a
- Based on these interim analysis results, the IDMC recommended to stop the study, unblind data, and cross over patients from chemotherapy to erdafitinib

The Safety Profiles Were Consistent With the Known Profiles of Erdafitinib and Chemotherapy (1/2)

Patients with AEs,	Erdafitinib (n=135)	
n (%)ª	Any grade	Grade 3-4
≥1 treatment-related AE	131 (97.0)	62 (45.9)
Hyperphosphatemia	106 (78.5)	7 (5.2)
Diarrhea	74 (54.8)	4 (3.0)
Stomatitis	62 (45.9)	11 (8.1)
Dry mouth	52 (38.5)	0
PPE syndrome	41 (30.4)	13 (9.6)
Onycholysis	31 (23.0)	8 (5.9)
Patients who discontinued study treatment, n (%)		
Discontinuation due to treatment-related AEs	11 (8.1%) ^b	

• In the erdafitinib group:

- 18 patients (13.3%) had treatmentrelated serious AEs
- 1 treatment-related death occurred^c
- AEs with erdafitinib were mostly manageable with dose modifications and supportive care

• In the chemotherapy group:

- 27 patients (24.1%) had treatmentrelated serious AEs
- 6 treatment-related deaths occurred^d

Patients with AEs,	Chemotherapy (n=112)	
n (%) ^e	Any grade	Grade 3-4
≥1 treatment-related AE	97 (86.6)	52 (46.4)
Anemia	31 (27.7)	7 (6.3)
Alopecia	24 (21.4)	0
Nausea	22 (19.6)	2 (1.8)
Neutropenia	21 (18.8)	15 (13.4)
Leukopenia	13 (11.6)	9 (8.0)
Febrile neutropenia	9 (8.0)	10 (8.9)
Patients who discontinued study treatment, n (%)		
Discontinuation due to treatment-related AEs	15 (13.4) ^f	

Sequencing agents in second line setting (post platinum and PD-1)

- Limited prospective data!
- Factors to consider:
 - Prior line of therapy
 - Level of evidence
 - Genomic characteristics
 - Patient comorbidity/preference

Summary of agents in post platinum/IO space

	Enfortumab	Sacituzumab	Erdafitinib
Level of evidence	Randomized phase 3	Non-randomized	Randomized phase 3
Biomarker selection	n/a	n/a	+
Mode of administration	IV	IV	Oral
Patient out of pocket cost	+	+	++
Toxicity	Peripheral neuropathy, rash, hyperglycemia	Myelosuppression, GI toxicity	Diarrhea, hyperPHOS, mucositis
Limited data suggests efficacy of SG after enfortumab			

Remaining questions...

- Accelerated approval of EV/Pembrolizumab introduces additional sequencing challenges
- Role/tolerability and efficacy of platinum in post EV/Pembro setting needs to be evaluated
- Efficacy of erdafitinib after sequential ADC use needs to be better evaluated
- ? Therapy de-escalation in durable responders

Take home message

- EV/pembrolizumab poised to disrupt frontline treatment landscape
 - Could bring change to cisplatin eligible/in-eligible paradigm
- Sequential ADCs with different targets/payloads likely to play role in relapsed refractory setting
- FGFR inhibitors first targeted therapy to demonstrate improved OS

 Utilization of NGS crucial to identify patients likely to benefit from targeted therapy/clinical trials 36

Thank You

