

Advances in Small Cell Lung Cancer & Mesothelioma/Thymic Malignancies

Jyoti Malhotra, MD, MPH

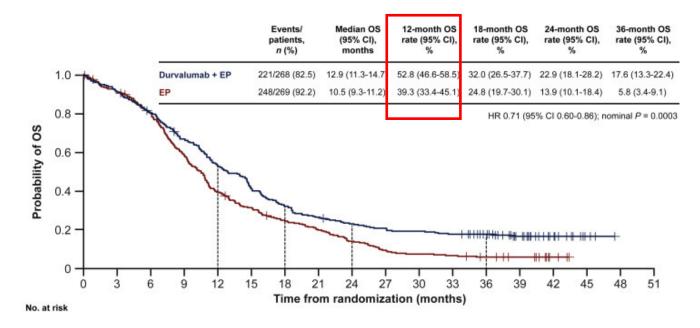
Associate Professor Department of Medical Oncology and Therapeutics Research

Small Cell Lung Cancer

Standard of care: first-line SCLC

Extensive-stage					
Carboplatin/etoposide + Atezolizumab (+Atezolizumab	Platinum/etoposide + Durvalumab (+Durvalumab				
maintenance)	maintenance)				
IMpower 133	CASPIAN				

Limited-stage

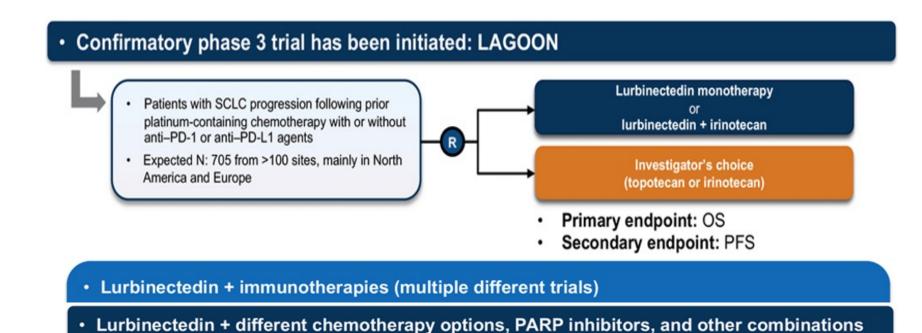

Platinum/etoposide

Radiation Therapy

PD(L)1 maintenance trials ongoing:

- NRG LU005
- ADRIATIC
- KEYLYNK-013

Updated survival analysis from CASPIAN

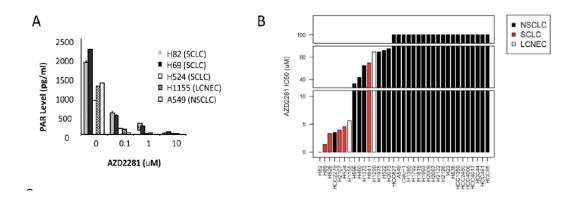

Limited options in 2nd line

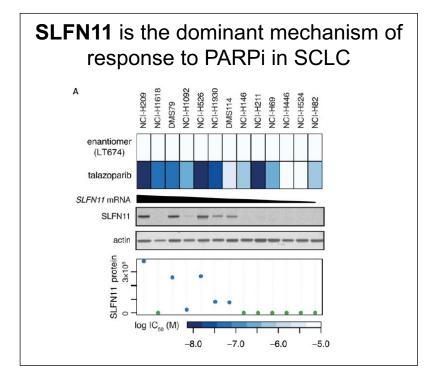
Drug	Median PFS	Approval
Topotecan	13.3 weeks	1998
Lurbinectedin	3.5 months	2020

Paz-Ares et al, ESMO Open 2022 von Pawel et al, JCO 1999. Trigo et al, Lancet Oncol 2020.

Lurbinectedin

- Selective inhibitor of oncogenic transcription
- In SCLC cohort of phase 2 basket trial, ORR 35.2%, DCR 68.6%
- ATLANTIS trial: did not meet OS endpoint (doxorubicin + Lurbinectedin vs topotecan/physician choice)

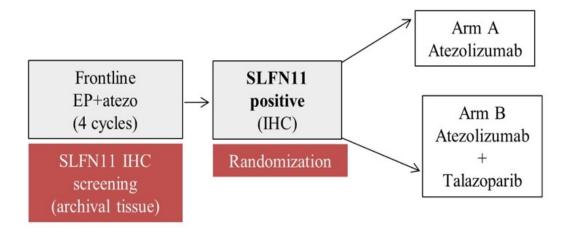

Trigo et al, Lancet Oncol 2020. Laz-pres et al, WCLC 2021. Figure courtesy: Jacob Sands


Recent maintenance trials in first-line ES-SCLC

Trial	Phase	Maintenance agent	Efficacy
CheckMate 451	III	PD-1/CTLA4	No OS benefit
SKYSCRAPER-02	III	PDL-1/anti-TIGIT	No OS and PFS benefit
SWOG S1929	II	PD1/PARPi (only in SLFN11+)	PFS benefit, but no OS benefit

Activity of PARP-inhibitors in SCLC

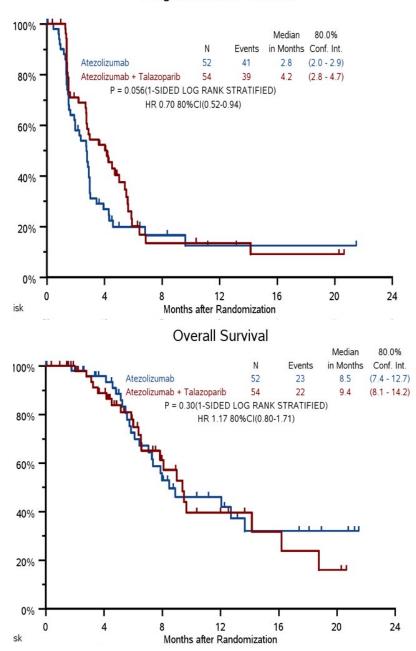
- PARP1 mRNA expression and protein levels significantly elevated in SCLC cell lines
- PARPi → significant activity in SCLC lines
- SCLC sensitive to PARPi even though BRCAneg/HRD-neg



SLFN11 expressed in about 50% of SCLC as measured by IHC

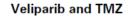
Zoppoli et al, Proc Natl Acad Sci USA, 2012 Zhang et al, Br J Cancer, 2022 Byers et al, Cancer Discovery 2012 Lok et al, Clinical Cancer res 2017

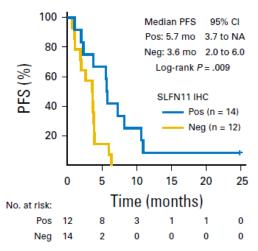
SWOG1929: Phase 2 EP+Atezo followed by Atezo vs Atezo+Talazoparib in **SLFN11-Positive** ES-SCLC


Pls: Karim, Reckcamp Translational Pls: Gay, Byers

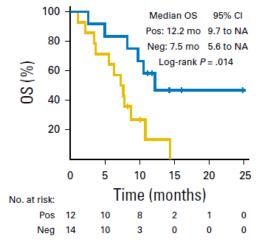
Primary Objective: PFS

Secondary: OS, ORR, AE

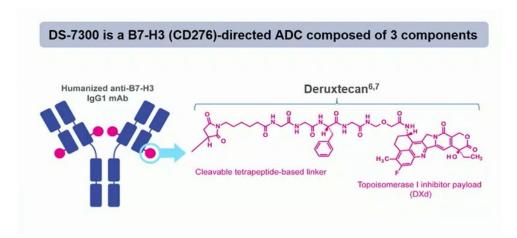

Progression Free Survival



PARPi + Temozolomide in 2nd line and beyond

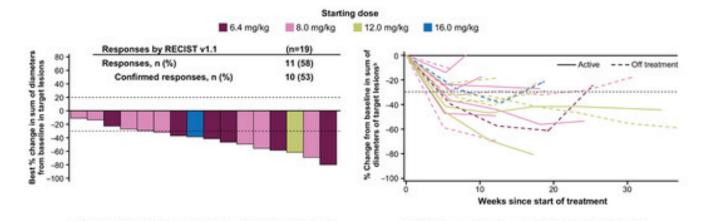

Trial	Agents	
Pietanza et al, J Clin Oncol. 2018	TMZ + veliparib	39%
Farago et al, Cancer Discov. 2019	Low-dose TMZ + olaparib	41.7%
Goldman et al, ASCO 2022	Low-dose TMZ + talazoparib	39.3%

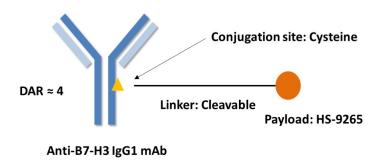
SLFN11 IHC predicts improved survival



Emerging biomarker driven therapies for second-line SCLC

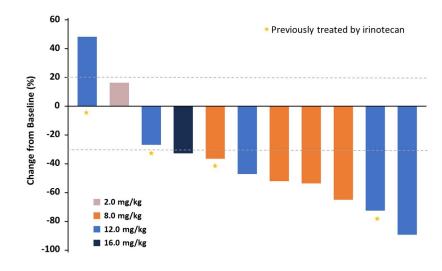
	Targeted	MAb	ADC	BiTE	TriTE	CAR-T
В7-Н3			DS-7300, HS-20093			
DLL3			Rova-T	Tarlatamab, BI764532	HPN328	AMG 119, LB102
Fucosyl-GM1		BMS-986012				
SEZ6			ABBV-011, ABBV-706			
SLFN11	PARPi, ATRi					


B7-H3: member of the B7 superfamily, highly expressed in various solid tumors, but limited expression in normal tissues.

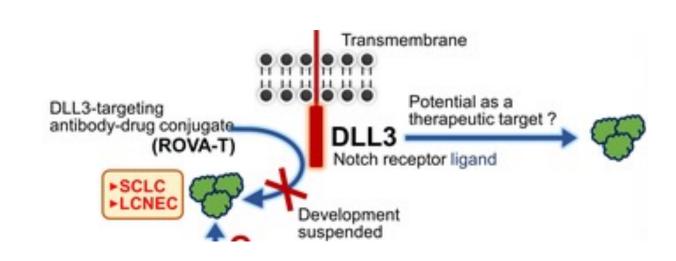

DS-7300

- phase I/II dose-finding study of DS-7300 (4.8 to 16.0 mg/kg)
- 147 patients with advanced solid tumors unselected for B7-H3 expression
- In 19 patients with SCLC, 58% ORR, with a median duration of response of 5.5 months.

Antitumour activity: SCLC subset^a

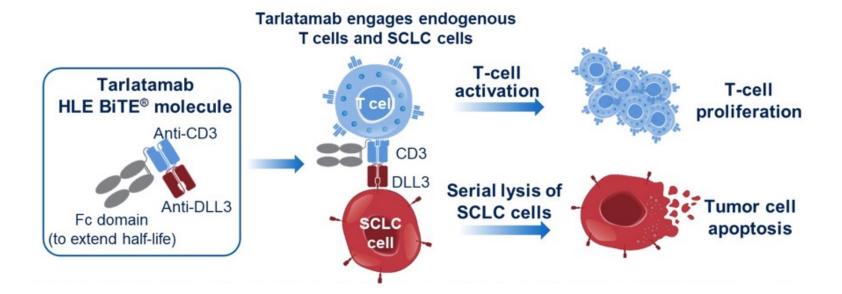

B7-H3

HS-20093 is a B7-H3-targeted antibody-drug conjugate (payload: exatecan derivative)


HS-20093

- ARTEMIS-001: phase I dose-finding study of HS-20093 (1 to 16.0 mg/kg)
- 53 patients with advanced solid tumors unselected for B7-H3 expression
- In 11 patients with SCLC, 64% ORR, with a median PFS of 4.6months.
- Toxicity: mainly hematological

DLL3 (Delta Like Protein-3)


- Inhibitory ligand of Notch signaling pathway
- Expressed as cell surface marker
- Minimal expression in normal cells
- Related to transcription factor ASCL1
- Key regulator of neuroendocrine differentiation

DLL3 ADC Rovalpituzumab Tesirine (Rova-T) program discontinued in 2019: promising results in phase 1 but no clinical benefit and increased toxicity in phase III trials (TAHOE, MERU)

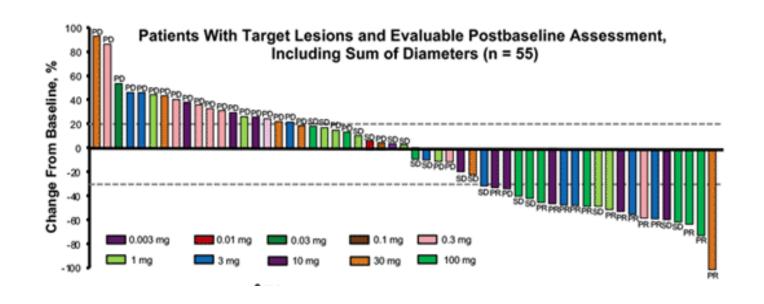
DLL3: BITE

Tarlatamab (AMG 757): half-life extended Bispecific T-cell engager (BITE) targeting DLL3

DLL3: BITE

Tarlatamab: FIH phase 1 dose-escalation and expansion (107 patients)

Toxicity: mostly CRS (52% all grade; 1

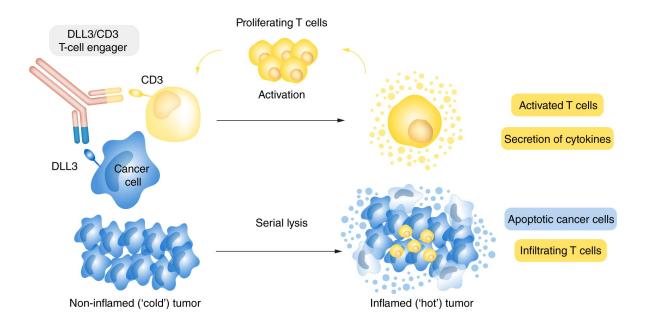

grade 3)

DLTs: G5 pneumonitis (1)

RR: 23.4%; DCR 51.4%

mPFS: 3.7 months

mDOR: 12.3 months

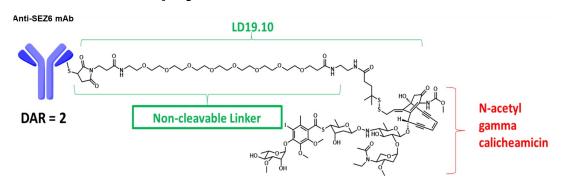


Phase III in 2nd line and phase I in first-line ongoing

DLL3: BITE

BI 764532, DLL3/CD3 IgG-like T-cell engager

- phase I FIH, dose-escalation trial (ongoing) in SCLC, NEC or small cell carcinoma of any other origin
- Regimen (R) A (fixed iv dose q3w); RB1 (fixed iv dose qw); RB2 (step-in doses followed by a fixed dose)
- CRS 58% (≥G3 2%)

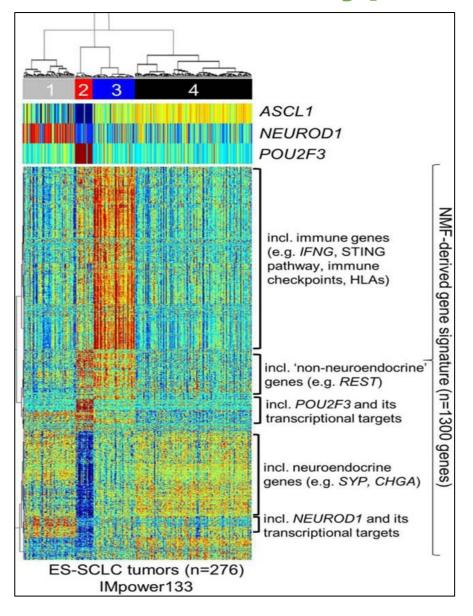


n, (%)	SCLC (n=39; 100%)*	epNEC (n=27; 100%)*	LCNEC (n=5; 100%)*
PR	10 (26)	5 (19)	3 (60)
SD	10 (26)	7 (26)	2 (40)
PD	12 (31)	13 (48)	0
DCR	20 (51)	12 (44)	5 (100)
NE†	7 (18)	2 (7)	0

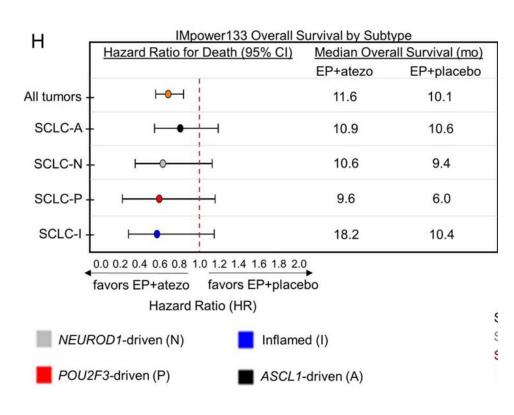
Wermke et al, ASCO Annual meeting 2023 Wermke et al, Future Oncol 2022

Seizure-related Homolog Protein 6 (SEZ6)

ABBV-011 is an ADC targeting SEZ6 with a calicheamicin payload

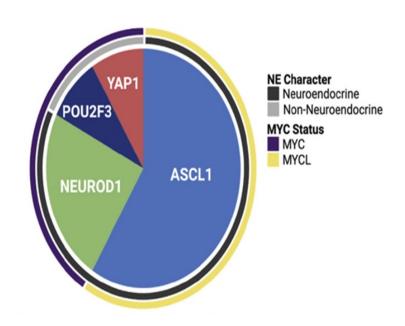


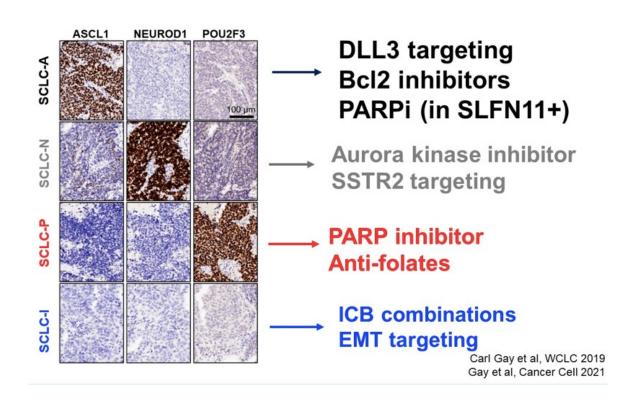
SEZ6 IHC expression cutoff	% positivity in study tissue samples (N=445)
≥1% tumor cells at 1+ or above	86%
≥25% tumor cells at 1+ or above (enrollment cutoff for dose expansion)	55%


- Phase I trial of ABBV-011 +/- budigalimab (anti-PD1)
- 99 patients were treated; 1 DLT of G3 fatigue
- 1 mg/kg MTD

Efficacy Outcome	CTFI <90 days (n=12)	CTFI ≥90 days (n=26)
Confirmed ORR, n (%) [95% CI]	3 (25%) [5, 57]	7 (27%) [12, 48]
CBR, n (%) [95% CI]	7 (58%) [28, 85]	18 (69%) [48, 86]
CBR lasting >12 weeks, n (%) [95% CI]	4 (33%) [10, 65]	13 (50%) [30, 70]
Median PFS, months [95% CI]	3.0 [1.2, 3.9]	4.1 [1.5, 5.8]

Molecular subtypes in SCLC

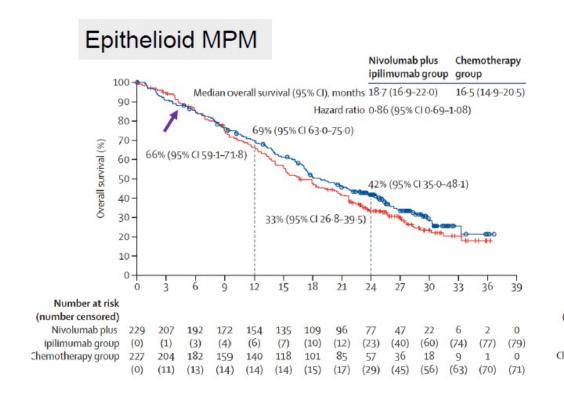

Based on expression of 4 key transcription regulators

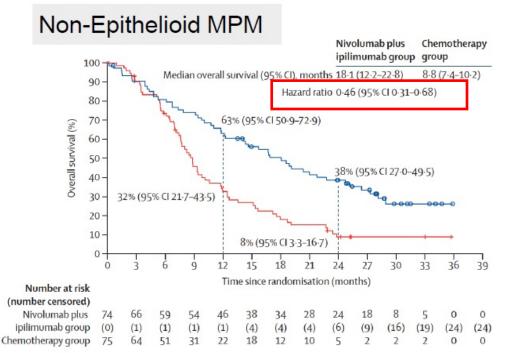


SCLC-inflamed (SCLC-I) subtype associated with greater benefit from immunotherapy

Gay et al, Cancer Cell 2021

Molecular subtypes in SCLC

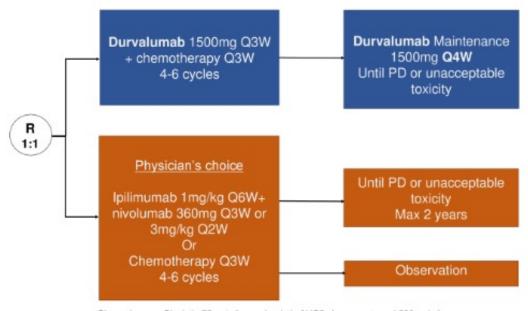

Conclusions


- Checkpoint inhibitors with chemotherapy SOC for 1st line ES-SCLC, trials ongoing for LS-SCLC
- Further biomarker-based therapies as monotherapy or in combination for 2nd line and beyond being explored

Pleural Mesothelioma

First-line: PD(L)1 + CTLA4

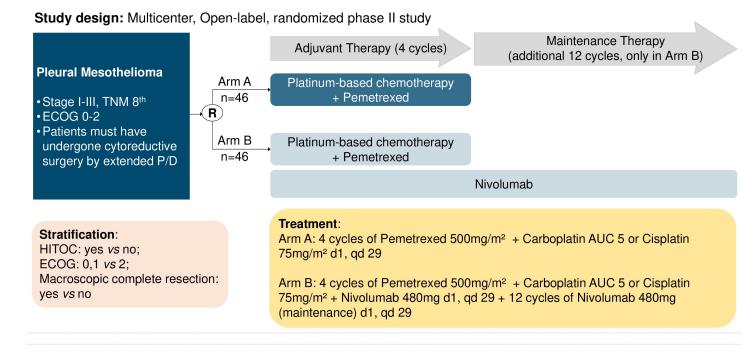
Checkmate 743: new SOC


What's next in first-line

Study	Therapies	Phase	ORR	PFS, months	OS, months
DREAM ¹ , n=55	Cis/Pem + Durva	2	48%	6.9	18.4
PrE0505 ² , n=55	Platinum/Pem + Durva	2	56.4%	6.7	20.4
IND 227	Chemo vs Chemo + Pembro	2/3			
BEAT-Meso	Chemo/Bev vs Chemo/Bev/Atezo	3			
DREAM3R	Chemo vs Chemo + Durva	3			

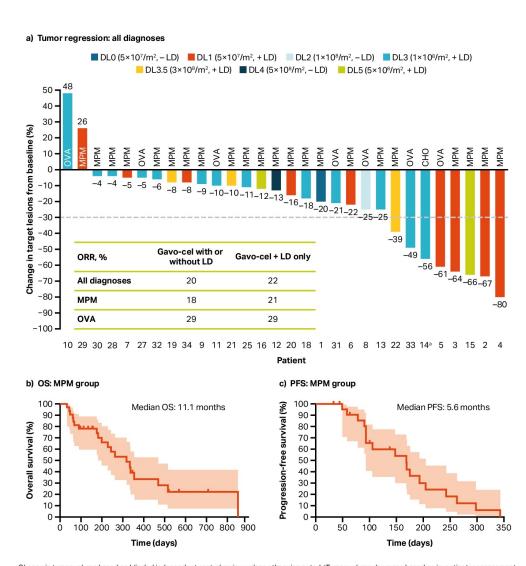
DREAM 3R trial

Current enrollment: 170/480


USA and Australia

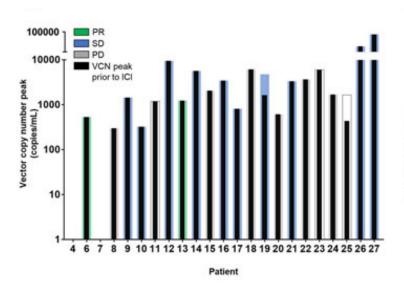
Chemotherapy: Cisplatin 75mg/m² or carboplatin AUC5 plus pemetrexed 500mg/m²

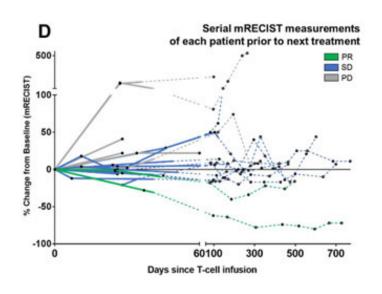
Neoadjuvant chemo-immunotherapy


- NICITA trial: Nivolumab with chemotherapy in pleural mesothelioma after surgery
- Primary endpoint: time to next treatment, safety

Accrual: As of May 2nd 2023, all of fourteen sites are active and all of 92 planned patients have been enrolled.

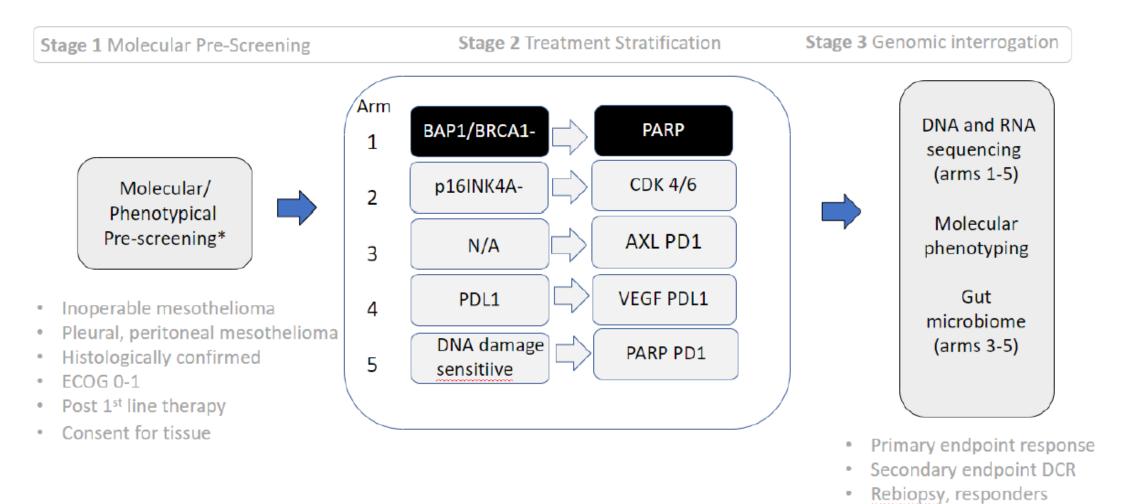
T-cell therapy


- Phase 1 trial of gavo-cel, an autologous genetically engineered anti-mesothelin T cell receptor fusion construct (TRuC™) cell therapy in solid tumors
- Eligibility required 2+ or 3+ mesothelin expression by IHC in ≥50% of tumor cells.
- 32 pts (23 MPM); median no of prior therapies was
 5 including ICI
- At the RP2D, 2/13 (15%) pts had reversible gr≥3 CRS.
- ORR 20% and DCR 77%



nange in tumor volume based on biinded independent central review unless otherwise noted. °I umor volume decrease based on investigator assessmen

CAR T-cell therapy


- FIH phase I study of regionally delivered, autologous, mesothelin-targeted CAR T-cell therapy
- Intrapleural administration of CAR T cells in 27 patients safe and well tolerated
- CAR T-cells were detected in peripheral blood for >100 days in 39% of patients
- 18 patients also received pembrolizumab safely
 - mOS 23.9 months; 2 patients with complete metabolic response on PET scan.

Mesothelioma Stratified Therapy (MiST) study design

Trials.gov ID NCT03654833

Conclusions

- PD1+CTLA4 vs platinum-pemetrexed standard of care for advanced MPM
- Emerging options for second line and beyond are:
 - Immunotherapy combinations with VEGFi, PARPi, AXLi
 - Targeted therapies such as CDKi
 - CAR-T therapies & anetumab targeting mesothelin expression
 - EZH2 inhibitors targeting BAP1
 - Tumor-treating fields

Thymic Malignancies

Systemic therapies

	Thymoma	Thymic carcinoma	
First-line			
	Carboplatin/paclitaxel Cisplatin/doxorubicin/cyclophosphamide (CAP) Cisplatin/etoposide		
Second-line			
Chemotherapy	Etoposide, Paclitaxel, Pemetrexed, gemcitabine, capecitabine		
CPI		Pembrolizumab	
Multi-target TKI		Sunitinib, Lenvatinib	
MTOR inhibitor	Everolimus		

Small molecular targeted therapies for thymic cancer

First Author, Year	Drug	Patients (T/TC)	ORR % (T/TC)	DCR % (T/TC)	mPFS mo (T/TC)
Multi-targeted	anti-angiogen	ic TKI, including	c-Kit		
Thomas 2015	Sunitinib	40 (16/24)	6/26*	81/91	8.5/7.2
Kim 2018	Sunitinib	25 (0/25)	22*	92	15.2
Proto 2023	Sunitinib	44 (12/32)	0/22*	92/89	7.7/8.8
Sato 2020	Lenvatinib	42 (0/42)	38*	95	9.3
Perrino 2023	Regorafenib	19 (11/8)	10/14	96/100	9.6/9.2*
mTOR, class I P	PI3K inhibitor				
Zucali 2018	Everolimus	51 (32/19)	9/17	94/78*	16.6/5.6
Abu Zaid 2022	Buparlisib	14 (14/0)	7.1	50	11.1

- Multi-target anti-angiogenic TKI with efficacy in thymic cancer.
- mTOR inhibitors with efficacy in both thymoma and thymic cancer.

Checkpoint inhibitors

TET subtype	ICI type	Number of Patients	Response Rate (%)	Disease Stabilization (%)	Median PFS (months)
	Pembrolizumab ^{1,2}	40	22.5	52.5	4.2
	Pembrolizumab ³	26	19.2	53.8	6.1
Thymic Carcinoma	Nivolumab ⁴	15	0	73.3	3.8
	Avelumab ⁵	1	0	100	Not reported
	Avelumab ⁶	10	20.0	60.0	14.7
	Avelumab ⁵	7	57.1	28.6	Not reported
Thymoma	Avelumab ⁶	12	16.7	83.3	6.4
	Pembrolizumab ³	7	28.6	71.4	6.1

- Giaccone, G., et al., Lancet Oncol, 2018
- 2. Giaccone, G. and C. Kim, J Thorac Oncol, 2021
- Cho, J., et al., J Clin Oncol, 2019

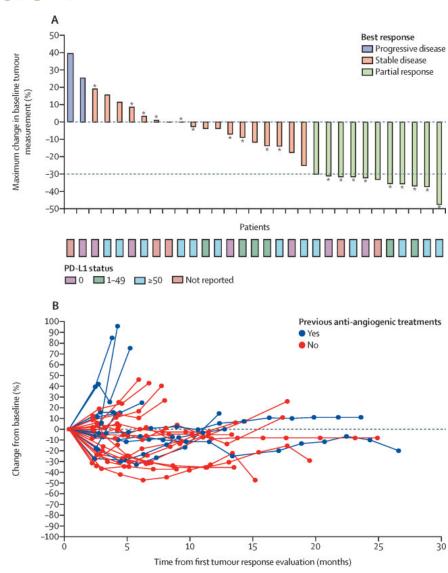
- Katsuya, Y., et al., Eur J Cancer, 2019
- 5. Rajan, A., et al., J Immunother Cancer, 2019
- Rajan, A, et al., SITC, 2019

Use limited by irAE

Grade 3-4 irAE

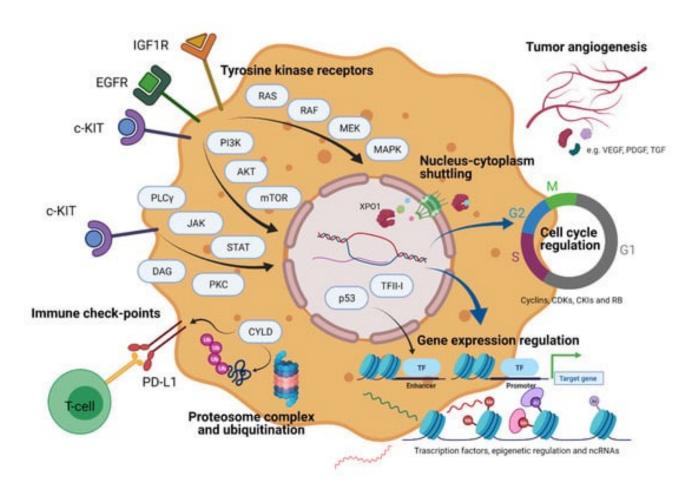
- 71% in thymoma
- 15-20% in thymic cancer

Chen Zhao, WCLC 2022


Ongoing Immunotherapy trials

Intervention	Modality	Target	Patient Population	Trial
Nivolumab, Ipilimumab	Combinatory Immunotherapy	PD-1, CTLA-4	Thymic carcinoma, B3 thymoma	NCT03134118
Bintrafusp alfa	Combinatory Immunotherapy	PD-L1, TGF-β	Thymic carcinoma, thymoma	NCT04417660
Pembrolizumab, Epacadostat	Combinatory Immunotherapy	PD-1, IDO1	Thymic carcinoma	NCT02364076
Avelumab, Axitinib	Immunotherapy + Targeted Therapy	PD-L1, VEGFR	Thymic carcinoma, B3 thymoma	2017-004048-38
Nivolumab, Vorolanib	Immunotherapy + Targeted Therapy	PD-1, VEGFR, PDGFR	Thymic carcinoma	NCT03583086
Pembrolizumab, Sunitinib malate	Immunotherapy + Targeted Therapy	PD-1, VEGFR, PDGFR, CSFR	Thymic carcinoma	NCT03463460
Anetumab ravtansine	Cancer Antigen Targeting Therapy	Mesothelin	Thymic carcinoma	NCT03102320
Pembrolizumab	Neoadjuvant Immunotherapy	PD-1	Thymic carcinoma, thymoma	NCT03858582

- ICIs should only be offered as part of a clinical trial for patients with thymoma, require close monitoring for thymic carcinoma as well.
- Biomarkers needed for risk mitigation.


PD1 and multi-kinase TKI combination

- CAVEATT: single-arm, multicenter, phase II trial in Italy in patients with type B3 thymoma or thymic carcinoma pre-treated with chemotherapy
- Avelumab 10 mg/kg intravenously every 2 weeks and axitinib 5 mg orally twice
- 32 patients enrolled (27 thymic cancer)
- ORR 34%
- G3-4 irAEs 12%

Conforti et al, Lancet Oncol 2022

Molecular Change/Oncogene	Thymoma (%)	Thymic Carcinoma (%)		
c-KIT				
Overexpression (IHC)	<5	73–86		
HER2				
Overexpression (IHC)	6	53		
EGFR				
Gene amplification (FISH)	20	25		
Overexpression (IHC)	50–70	20–30		
IGF-1R				
Overexpression	4	37		

Thank you!