Advances in Non-PD(L)1 immunotherapies

Miguel Villalona-Calero MD, FACP, FAAAS City of Hope National Medical Center

Outline

- Other Immune Checkpoint Inhibitors
- TIGIT-PVR-NECTIN family axis
- Bispecific T Cell Engagers
- Cellular Therapies
 - CAR-T
 - Natural Killer Cells
 - Tumor Reactive And Cytokine-induced Killer (TRACK)-NK cells

Old dogs, new tricks- novel CTLA-4 antibodies Fc-Enhanced CTLA-4 Antibody

Botensilimab + Anti-PD1 activity

Front. Immunol., Sec. Cancer Immunity and Immunotherapy, Volume 13 - 2022

· RELATIVITY-047

RELATIVITY 047: PFS, OS, and ORR in all randomized patients

Outline

- Other Immune Checkpoint Inhibitors
- TIGIT-PVR-NECTIN family axis
- Bispecific T Cell Engagers
- Cellular Therapies
 - CAR-T
 - Natural Killer Cells
 - Tumor Reactive And Cytokine-induced Killer (TRACK)-NK cells

Chiang EY, Mellman I. J Immunother Cancer 2022;10:e004711. doi:10.1136/jitc-2022-004711

Anti TIGIT Monoclonal Antibodies in Clinical Development

Anti-TIGIT mAbsc	Phase*	Fc Region
Tiragolumab		Active
Domvanalimab		Inactive
Ociperlimab	111	Active
Vibostolimab	111	Active
BMS-986207	II (Planned)	Inactive
Etigilimab	II (Planned)	Active
EOS-448	1/11	Active
AZD-2936	1/11	Active
SEA-TGT	I	Active
COM-902	I	Inactive
IBI-939	I	Active
IBI-321	I	Unknown
AB308	I	Active
BAT-6005	I	Active
JS-006	I	Unknown
M-6223	I	Active
HB0030	l (as per pipeline)	Unknown

Anti-TIGIT mAbs	Phase*	Fc Region
AGEN1777	I (Planned)	Active
BAT-6021	I (Planned)	Inactive
ZG005	I (Planned)	Unknown
AGEN1327	Preclinical	Active
AK-127	Preclinical	Unknown
HLX-301	Preclinical	Unknown
LP-010	Preclinical	Active
MIL-100	Preclinical	Unknown
Ori-Ab-007	Preclinical	Unknown
Ori-Ab-008	Preclinical	Unknown
PH-804 TME	Preclinical	Unknown
PH-804 ACT / RXI-804	Preclinical	Unknown
SL-9258	Preclinical	Active
TJ-L1T6	Preclinical	Unknown
NTX-901	Preclinical	Unknown
HB0036	Preclinical	Unknown

Chiang EY, Mellman I. J Immunother Cancer 2022;10:e004711. doi:10.1136/jitc-2022-004711

Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and followup analyses of a randomised, double-blind, phase 2 study

Lancet Oncol 2022; 23: 781–92

ARC-7: Randomized phase 2 study of domvanalimab + zimberelimab ± etrumadenant versus zimberelimab in first-line, metastatic, PD-L1-high non-small cell lung cancer (NSCLC). Meeting Abstract | 2022 ASCO Monthly Plenary Series

Efficacy Population	Z (n = 44)	DZ (n = 44)	EDZ (n = 45)
Confirmed ORR n (%) [95% CI]	12 (27) [15.0, 42.8]	18 (41) [26.3, 56.8]	18 (40) [25.7 <i>,</i> 55.7]
Median PFS (mo) [95% CI]	5.4 [1.8, 9.6]	12.0 [5.5, NE]	10.9 [4.8, NE]
PFS Hazard Ratio vs Z [95% CI]	-	0.55 [0.31, 1.0]	0.65 [0.37, 1.1]
6-mo PFS % (95% CI)	43 (27, 59)	65 (49 <i>,</i> 80)	63 (48, 78)
Safety Population	Z (n = 50)	DZ (n = 49)	EDZ (n = 50)
IRAEs, n (%)	24 (48)	23 (47)	30 (60)
Infusion-related reactions	2 (4)	2 (4)	5 (10)
Rash	6 (12)	5 (10)	9 (18)

J Clin Invest. 2022;132(22):e163620. https://doi.org/10.1172/JCI163620.

Blockade of the immunosuppressive KIR2DL5/PVR pathway elicits potent human NK cell-mediated antitumor immunity

Xiaoxin Ren,¹ Mou Peng,¹ Peng Xing,¹ Yao Wei,¹ Phillip M. Galbo Jr.,^{1,2} Devin Corrigan,¹ Hao Wang,¹ Yingzhen Su,¹ Xiaoshen Dong,¹ Qizhe Sun,¹ Yixian Li,^{1,3} Xiaoyu Zhang,¹ Winfried Edelmann,⁴ Deyou Zheng,^{2,5} and Xingxing Zang^{1,6,7,8}

Cancer immunotherapy targeting the TIGIT/PVR pathway is currently facing challenges. KIR2DL5, a member of the human killer cell, immunoglobulin-like receptor (KIR) family, has recently been identified as another binding partner for PVR. The biology and therapeutic potential of the KIR2DL5/PVR pathway are largely unknown. Here we report that KIR2DL5 was predominantly expressed on human NK cells with mature phenotype and cytolytic function and that it bound to PVR without competition with the other 3 known PVR receptors. The interaction between KIR2DL5 on NK cells and PVR on target cells induced inhibitory synapse formation, whereas new monoclonal antibodies blocking the KIR2DL5-PVR interaction robustly augmented the NK cytotoxicity against PVR⁺ human tumors. Mechanistically, both intracellular ITIM and ITSM of KIR2DL5 underwent tyrosine phosphorylation after engagement, which was essential for KIR2DL5-mediated NK suppression by recruiting SHP-1 and/or SHP-2. Subsequently, ITIM/SHP-1/SHP-2 and ITSM/SHP-1 downregulated the downstream Vav1/ERK1/2/p90RSK/NF-κB signaling. KIR2DL5⁺ immune cells infiltrated in various types of PVR⁺ human cancers. Markedly, the KIR2DL5 blockade reduced tumor growth and improved overall survival across multiple NK cell-based humanized tumor models. Thus, our results revealed functional mechanisms of KIR2DL5-mediated NK cell immune evasion, demonstrated blockade of the KIR2DL5/PVR axis as a therapy for human cancers, and provided an underlying mechanism for the clinical failure of anti-TIGIT therapies.

PVR – A Promising New Oncology Target

DNAM1 Restoration - Novel MOA

- PVR is a transmembrane protein, expressed on cancer cells and associated with immune exhaustion
- High PVR expression is associated with resistance to PD1 and PDL1 blockers
- PVR blockade by NTX1088 uniquely restores DNAM1 on T and NK cells and prevents TIGIT, KIR2DL5A and CD96 suppressive signaling
- DNAM1 restoration represents a novel and promising therapeutic approach never seen before
- PVR blockade offers potent monotherapy and combination activity with PD1 blockers
- The various Nectin family members of receptors and ligands will be explored as relevant predictive and pharmacodynamic biomarker

Mechanism of Action	Anti-TIGIT	Anti-CD96	NTX1088
Block TIGIT signaling	~	×	\checkmark
Block CD96 signaling	×	~	~
Block KIR2DL5A signaling	×	×	~
Increase DNAM1 surface expression and signaling	×	×	~

COH# 23219 | NTX-1088-01. A Phase 1, First-in-Human Study of NTX-1088, a Monoclonal Antibody Targeting the Poliovirus Receptor (PVR), as Monotherapy and Combined with Pembrolizumab, in Patients with Advanced Solid Malignancies

Outline

- Other Immune Checkpoint Inhibitors
- TIGIT-PVR-NECTIN family axis
- Bispecific T Cell Engagers
- Cellular Therapies
 - CAR-T
 - Natural Killer Cells
 - Tumor Reactive And Cytokine-induced Killer (TRACK)-NK cells

VH: Heavy chain variable region; VL: Light chain variable region; TAA: Tumor-associated antigen

Zhou, S., et al. The landscape of bispecific T cell engager in cancer treatment. Biomark Res 9, 38 (2021).

BISPECIFIC ANTIBODY DRUG APPROVALS

Drug Name	Targets	Approved Date (Country)	Indications
Blinatumomab	CD3/CD19	Dec 2014 (USA)	Relapsed or refractory precursor B-cell acute lymphoblastic leukemia (ALL)
Emicizumab	FIXa/FX	Nov 2017 (USA)	Bleeding due to hemophilia A
Amivantamab-vmjw	EGFR/cMet	May 2021 (USA)	Non-small cell lung cancer
Tebentafusp-tebn	GP100/CD3	Jan 2022 (USA)	unresectable or metastatic uveal melanoma
Faricimab-svoa	Ang-2/VEGF-A	Jan 2022 (USA)	Wet AMD and DME
Cadonilimab	PD-1/CTLA-4	Jun 2022 (China)	cervical cancer
Mosunetuzumab-axgb	CD20/CD3	Jun/Dec 2022 (EU/USA)	relapsed or refractory (R/R) follicular lymphoma (FL)
Teclistamab-cqyv	BCMA/CD3	Aug/Oct 2022 (EU/USA)	relapsed and refractory multiple myeloma
Ozoralizumab	ΤΝΓα /ΤΝΓα	Sep 2022 (Japan)	inflammatory diseases

Select bispecific antibodies in phase III trials in oncology

Drug	Targets	Key indications
Glofitamab	CD20×CD3	DLBCL
Epcoritamab	CD20×CD3	DLBCL
Elranatamab	BCMA×CD3	Multiple myeloma
Erfonrilimab	PDL1 ×CTLA4	NSCLC, PDAC
Tebotelimab*	PD1×LAG3	Gastric/GOJ cancer
lvonescimab	PD1×VEGF	NSCLC
Navicixizumab	DLL4 ×VEGF	Ovarian cancer
SI-B001*	EGFR × HER3	NSCLC
Zanidatamab	HER2 ×HER2	Gastro-oesophageal adenocarcinoma
Catumaxomab	EpCAM ×CD3	Gastric adenocarcinoma
Bintrafusp alfa	PDL1 ×TGFβ	NSCLC, biliary tract cancer
SHR-1701	PDL1 ×TGFβ	NSCLC, cervical cancer, gastric/GOJ cancer

Phase 1 Updated Exploration and First Expansion Data for DLL3-Targeted T-cell Engager Tarlatamab in SCLC (DeLLphi-300 Study)

Hossein Borghaei,¹¹ Luis Paz-Ares,² Melissa Johnson,³ Stephane Champiat,⁴ Taofeek Owonikoko,⁵ Victoria Lai,⁶ Michael Boyer,⁷ Horst-Dieter Hummel,⁸ Ramaswamy Govindan,⁹ Neeltje Steeghs,¹⁰ Fiona Blackhall,¹¹ Noemi Reguart,¹² Afshin Dowlati,¹³ Yiran Zhang,¹⁴ Nooshin Hashemi Sadraei,¹⁴ Amanda Goldrick,¹⁴ Hiroki Izumi¹⁵

> Borghaei, IASLC, 2022 Paz-Ares, JCO, 2023

Treatment-Related Adverse Events Summary

	Patients (N = 106)	
Treatment-related AEs (by preferred term)	All Grades, n (%)	Grade ≥ 3, n (%)*
Any treatment-related AE	97 (92)	33 (31)
Treatment-related AEs occurring in > 15% of patients (by preferred term)		
CRS	56 (53)	1 (1)
Pyrexia	40 (38)	2 (2)
Dysgeusia	24 (23)	0
Fatigue	23 (22)	3 (3)
Nausea	21 (20)	0

 4/106 (4%) patients discontinued tarlatamab due to treatment-related AEs: encephalopathy (n=1), neurotoxicity (n=1), and pneumonitis (n=2, including one grade 5 AE)

Includes one patient with grade 5 pneumonitis; AE, adverse event; CRS, cytokine release syndrome.

Borghaei, IASLC, 2022 Paz-Ares, JCO, 2023

Tarlatamab Induces Response in Previously Treated SCLC

Tarlatamab Delivers Durable Responses in Previously Treated SCLC

Survival with Tarlatamab in Previously Treated SCLC

Mechanisms of Resistance

- Immunosuppressive Factors
 - Upregulation of Immune checkpoints, e.g., PD-L1
 - Increase of T regs (CD4/CD25/FOXP3)
 - Myeloid-derived suppressor cells (CD11b/CD13/CD16)
- Loss of Antigen

Zhou, S., et al. The landscape of bispecific T cell engager in cancer treatment. Biomark Res 9, 38 (2021).

Safety and Efficacy from the Phase 1/2 First-in-Human Study of REGN5459, a BCMA×CD3 Bispecific Antibody with Low CD3 Affinity, in Patients with Relapsed/Refractory Multiple Myeloma (RRMM)

Attaya Suvannasankha¹², Prashant Kapoor³, Matthew J. Pianko⁴, Joshua Richter⁵, Anita D'Souza⁶, Larry D. Anderson, Jr.⁷, Andrew Magyar⁸, Oluwaseun Aina⁸, Anita Boyapati⁸, Damien Cronier⁸, Nikhil Singh⁸, Karen Rodriguez Lorenc⁸, Glenn S. Kroog⁸, Hans C. Lee⁹

Cytokine Release Syndrome: Uncontrolled systemic inflammatory response with elevated levels of cytokines, primarily IL6, which is triggered by T cell activation.

Organ System	Symptoms		
Constitutional	Fever ± rigors, malaise, fatigue, anorexia, myalgias, arthalgias, nausea, vomiting, headache		
Skin	Rash		
Gastrointestinal	Nausea, vomiting, diarrhea		
Respiratory	Tachypnea, hypoxemia		
Cardiovascular	Tachycardia, widened pulse pressure, hypotension, increased cardiac output (early), potentially diminished cardiac output (late)		
Coagulation	Elevated D-dimer, hypofibrinogenemia ± bleeding		
Renal	Azotemia		
Hepatic	Transaminitis, hyperbilirubinemia		
Neurologic	Headache, mental status changes, confusion, delirium, word finding difficulty or frank aphasia, hallucinations, tremor, dysmetria, altered gait, seizures		

Table B1. Clinical signs and symptoms associated with CRS

Table B2. ASTCT CRS consensus grading system (14)

CRS Parameter	Grade 1	Grade 2	Grade 3	Grade 4
Fever*	Temp ≥ 38°C	Temp ≥38°C	Temp ≥ 38°C	Temp ≥ 38°C
		with	With	with
Hypotension	None	Not requiring vasopressors	Requiring a vasopressor with or	Requiring multiple vasopressors
			without vasopressin	(excluding vasopressin)
		and/or†	and/or†	and/or†
Hypoxia	None	Requiring low-flow nasal cannula‡ or blow-by	Requiring high-flow nasal cannula‡, facemask, nonrebreather mask, or Venturi mask	Requiring positive pressure (e.g., CPAP, BiPAP, intubation and mechanical ventilation)

Table B3. ASTCT immune effector cell-associated neurotoxicity syndrome (ICANS) consensus grading system for adults (14)

Neurotoxicity Domain	Grade 1	Grade 2	Grade 3	Grade 4
ICE score*	7-9	3-6	0-2	0 (patient is unarousable and unable to perform ICE)
Depressed level of consciousness†	Awakens spontaneously	Awakens to voice	Awakens only to tactile stimulus	Patient is unarousable or requires vigorous or repetitive tactile stimuli to arouse. Stupor or coma
Seizure	N/A	N/A	Any clinical seizure focal or generalized that resolves rapidly or nonconvulsive seizures on EEG that resolve with intervention	Life-threatening prolonged seizure (> 5 min); or Repetitive clinical or electrical seizures without return to baseline in between
Motor findings‡	N/A	N/A	N/A	Deep focal motor weakness such as hemiparesis or paraparesis
Elevated ICP/ cerebral edema	N/A	N/A	Focal/local edema on neuroimaging^	Diffuse cerebral edema on neuroimaging; decerebrate or decorticate posturing; or cranial nerve VI palsy; or papilledema; or Cushing's triad

DUAL-TARGETING MOLECULES HAVE THE POTENTIAL TO INCREASE THERAPEUTIC INDEX

Simultaneous binding to two tumor-associated antigens and CD3 required for potent activity

IRB 23240: Phase 1 First-In-Human Study to Explore the Safety, Tolerability, and Pharmacokinetics of AMG 305 in Subjects With Advanced Solid Tumors. NCT05800964

Outline

- Other Immune Checkpoint Inhibitors
- TIGIT-PVR-NECTIN family axis
- Bispecific T Cell Engagers
- Cellular Therapies
 - CAR-T
 - Natural Killer Cells
 - Tumor Reactive And Cytokine-induced Killer (TRACK)-NK cells

Cellular Therapies: T cells with Chimeric Antigen Receptor (CAR-T)

Natural Killer Cells

NK cells are a subset of immune cells that can target malignancies without the necessity of chimeric antigen receptors or prior antigen exposure and do not require matching to recipient's human leukocyte antigen for potential activity.

NK cells can be generated from cord-blood to be used as off-the-shelf allogeneic therapy without gene modifications such as HLA knockdown, considerably reducing the cost of manufacturing with increased availability of dosing product. Natural Killer Cell Therapy Manufacturing Process Pipeline

Lamers-Kok et al. Journal of Hematology & Oncology (2022) 15:164

Challenges for NKC therapeutic impact

- Limited in vivo persistence
- Treatment of solid tumors is restricted by limited infiltration and by the escape of the immune suppressive microenvironment.
- NK cell engineering with CARs improves tumor infiltration and targeting.
- Expression of cytokines by combination of priming agents or genetic engineering can improve persistence and function.
- Combination with tumor targeting antibodies and immune checkpoint inhibitors might increase efficacy.
- NK cell engagers, migration enhancers and immunomodulators targeting the microenvironment and tumor immune escape are being explored.

Lamers-Kok et al. Journal of Hematology & Oncology (2022) 15:164

Engineering Methods

Engineered NK Cell Products

Fig. 4 Overview of engineered NK cell therapies. From left to right: different NK cell sources (PB-NK, UCB-NK, HSC-derived NK, iPSC-derived NK, NK-92) are engineered to express the desired surface protein(s) by means of non-viral electroporation with mRNA (left) or of transduction with γ-retro or lentiviral vectors and stable integration in the host genome (right). Engineered NK cell therapies can be divided in categories, according to the targeting molecule: (1) antibody-derived single-chain variable fragment (scFv-engineered) for tumor antigen binding, (2) NK cell receptor (receptor-engineered) for ligand binding, and (3) Fc receptor CD16 (158 V) high-affinity non-cleavable hnCD16 variant (CD16-engineered) to enhance antibody-dependent cell cytotoxicity (ADCC). Co-expression of scFv and hnCD16 is also reported. Additional modifications of engineered NK cell products under clinical evaluation enhance NK cell persistence in vivo by expression of membrane-bound IL-15 or of IL-15/IL-15 receptor fusion protein IL-15/IL-15Ra, prevent fratricide by CD38 KO, or increase safety through induction of apoptosis by administration of Rimiducid

NKC Selected recent/ongoing trials

FT516 – iPS <u>CD16-eng</u> allo NK (enhanced ADCC) explored in combination with rituximab or avelumab; Doses of 9 x10⁷ (n=4), 3x 10⁸ (n=7), or 9 x 10⁸ (n=7) FT516 cells/dose were administered. No DLT, ICANS or GVHD. 11/18 resp, 5CR

FT538 - is a multiplexed-engineered NK that incorporates 3 synthetic elements including <u>CD16, IL15R, KOCD38</u> showed very favorable safety profile without achieving good clinical benefit

FT596 – co-expressing **hmCD16 and a CD19-scFv-CAR**, tested combined with rituximab/Obinutuzumab. 18/24 resp, 12 CR

FT576 – carries a BCMA-scFv-CAR

GDA-201 – PBNK combined with rituximab 13/19 CR. Retreatment without LD converted 1 PR in CR

PBNK HANK - Combined with pembro. OS 15.5 m vs 13.3 m pembro alone

ACE1702 (anti-HER2 oNK cells). Repeat dosing 9 x 10⁹ cells /cycle (14 days) Dose escalation continues to 15 x 10⁹ NK cells/cycle

NKX 019 - engineered anti CD19 CAR and mIL15. 7/10 patients treated at 1 x 10⁹/1.5 x 10⁹ had CR

Umbilical cord blood derived tumor-reactive PD-L1+ natural killer cells engineered to express soluble IL-15 (TRACK-NK) as a treatment strategy for non-small cell lung cancer patients

IND-Enabling Study: Combination Therapy

0.0048

Day34

Study Schema

Trial Design

- Phase 1 (Cycle: 28 Days/ Course: 6 Weeks)
- Goal: Determine the OBD of COH06 Not an MTD seeking trial
- Utility Based Bayesian Optimal Interval Design
- Stage 1: Toxicity (3+3)
- Stage 2: Toxicity and Persistence
 - $Pr(Tox \le .25)$ $Pr(Per \ge .75)$
- Persistence is defined as any evidence of detectable COH06 cells by ddPCR measurement on day 28
- Relationship between detectable cells and activity

Dose Level (DL)	Transduced Cells/ kg ^ł	Atezolizumab Dose	
-2	4.0 x 10 ⁵		
-1	7.0 x 10⁵		
1 (starting dose)	1.50 x 10 ⁶		
2	4.0 x 10 ⁶		
3	7.5 x 10 ⁶		
4	7.5 x 10 ^{6*} 840 mg IV		
*: The expected COH06 dose for combination treatment. Note: The starting dose of COH06, as part of the combination therapy, may be less based on adverse events observed on DLs 1-3 -either the highest monotherapy dose tested where no more than 1/6 DLTs are observed, or one dose level below the highest tested safe dose.			
ITransduced cells are tEGFR+ cells as determined by flow cytometry			

- Significant Advances had occurred in the understanding of Immune anti tumor response and mechanisms curtailing its action.
- This has resulted in several therapeutics strategies some with already proven benefits while others undergoing adjustments and further evaluation.
- Although significant challenges remain, the outlook is promising and suggest that a significant proportion of patients will derive profound long term benefits.