## Antibody Drug Conjugates (ADCs) for Cancer Therapy

Millie Das, MD

Clinical Associate Professor, Stanford University

Chief, Oncology, VA Palo Alto Health Care System

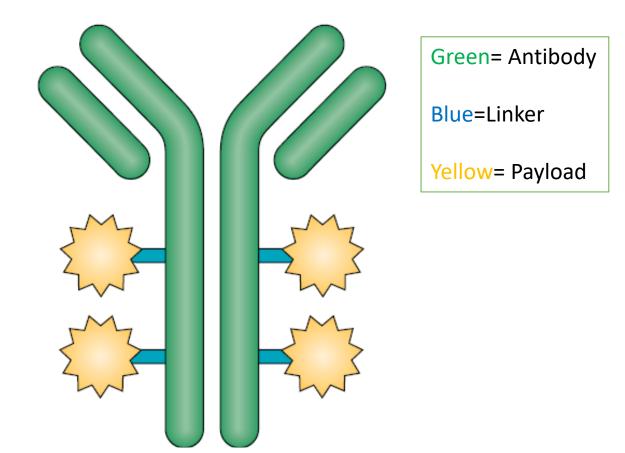
#### ADCs as a Concept



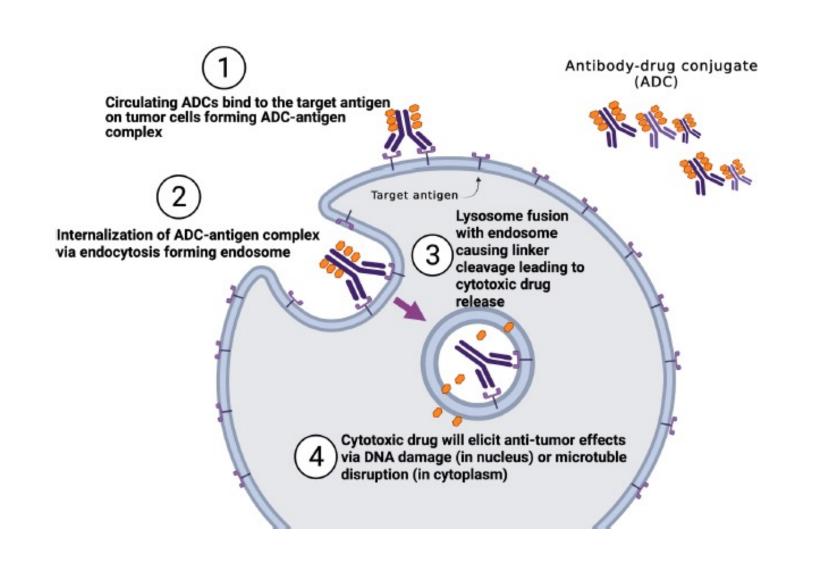
Drug-to-antibody ratio (DAR): median number of payload moieties linked to each mAb (range 2-8);

Improve therapeutic window of conventional chemotherapy through selective delivery to tumor cells expressing the mAb target antigen

Limit potential offtarget systemic toxicities


ked to each mAb (range 2-8 reflects drug potency and cytotoxicity

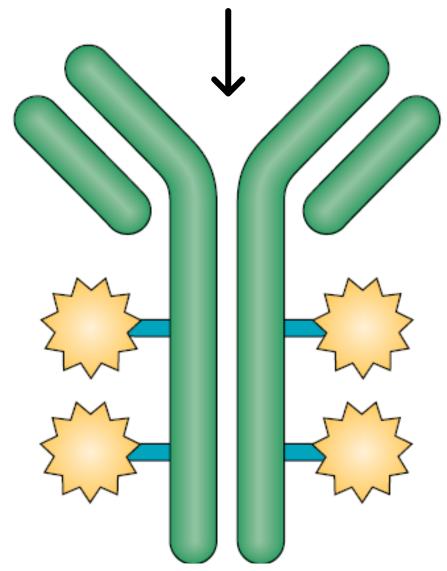
# Key determinants of safety and clinical activity of ADCs


- Molecular/chemical structure
  - Structure of cytotoxic payload should allow conjugation to linker
  - Sufficient water solubility
  - Prolonged stability in blood
  - Stable linker minimizes non-specific systemic release of cytotoxic drug

#### Antibody Drug Conjugate Components

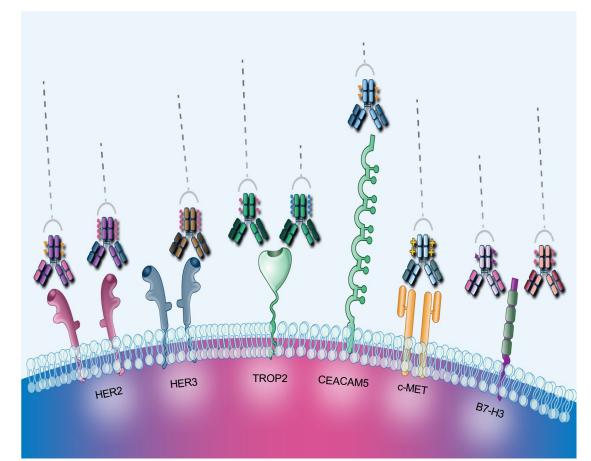
- Monoclonal antibodies conjugated to cytotoxic agents or bacterial/plant toxins
- Antibody binding and internalization→ cell death
- Antibodies are specific to tumor cell-surface proteins




# Mechanism of Action



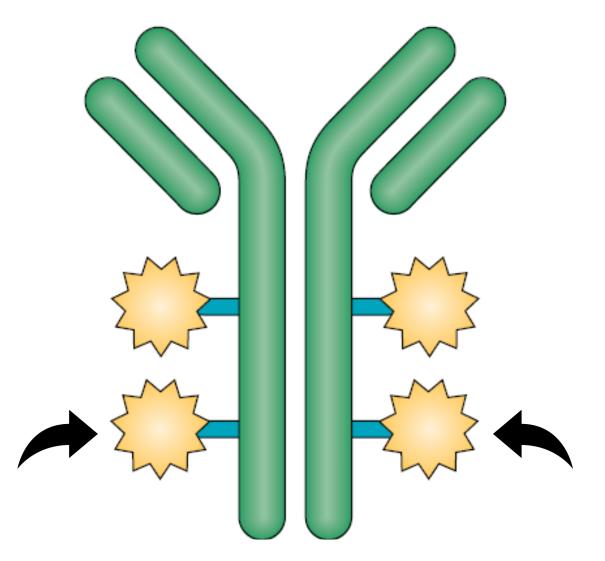
Abuhelwa Z, Alloghbi A, Nagasaka M. Cancer Treat Rev. 2022 May;106:102393 Fu Z, Li S, Han S. Signal Transduction and Targeted Therapy. 20227:93


#### Antibody

- Predominantly based on immunoglobulin G (IgG)
- IgG1 associated with long serum halflife and strong Fc-mediated immune functions
  - Antibody-dependent cell-mediated cytotoxicity (ADCC)
  - Antibody-dependent cellular phagocytosis
  - Complement-dependent cytotoxicity
- Murine Abs in early ADCs now replaced with chimeric or humanized Abs to minimize immunogenic side effects

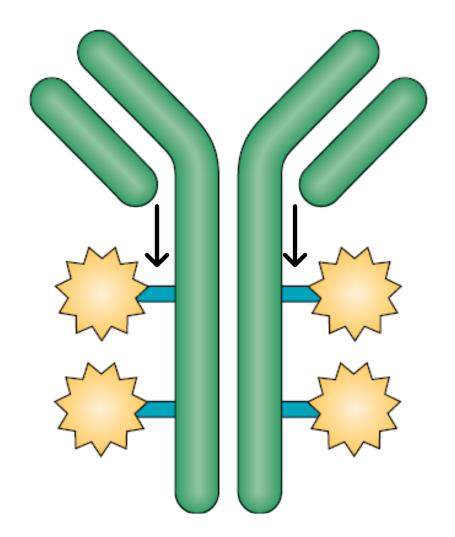


#### Antigen Target for ADCs


- Most important contributor to anti-tumor activity and tolerability
- Can be present on tumor cells, tumor-associated cells (tumor endothelial cells), or in tumor microenvironment
- Should be expressed preferentially on surface of tumor compared with normal cells (HER2, TROP2)

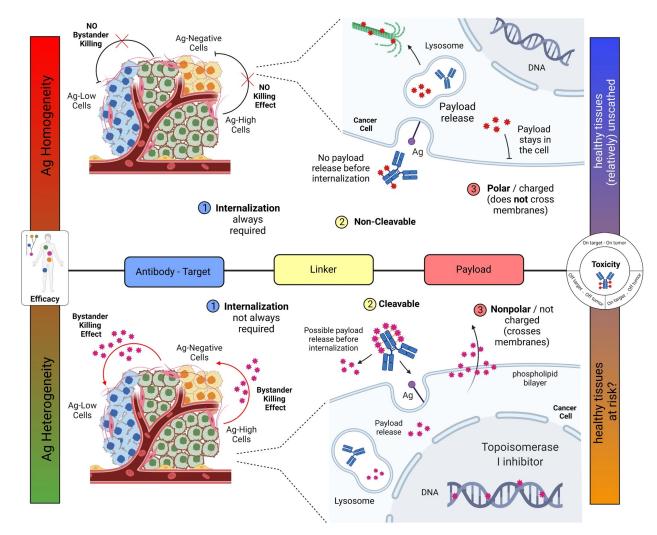


Sievers EL, Sentner PD. Annu Rev Med 2013;64:15-29 Passaro A, Janne P, Peters S. J Clin Oncol 2023 May 24:JCO2300013


#### Cytotoxic Agents of ADCs (Payload)

- Most are highly potent agents targeting tubulin or DNA
  - Microtubule-disrupting drugs
    - Aurastatins (MMAE, MMAF)
    - Maytansinoid derivatives (DM2, DM4)
    - Tubulin inhibitors (paclitaxel, vincristine)
  - DNA targeting drugs
    - DNA damaging (calicheamicin, PBD)
    - Topoisomerase I inhibitors (camptothecin analogs: SN38, Dxd)
- Though ADCs are highly selective, only a small fraction of the drug reaches the intracellular target
- Need to be careful of toxic effects on non-malignant tissue




#### Linker

- Ensures that payload remains bound to antibody during circulation but is released at tumor site
- Cleavable: release payload on reduction, proteolysis, or hydrolysis because of tumor-cell associated factors (pH, proteases)
  - Bystander effect
- Non-cleavable: require complete lysosomal degradation for payload release
  - Provides stability to ADC during circulation, better safety profile



#### Bystander Anti-Tumor Effect

- Membrane-permeable payloads enter neighboring cells regardless of target expression and can also kill these cells
  - Payload passive diffusion across cell membrane
  - Payload release in tumor microenvironment
- High bystander effect
  - Higher DAR
  - Cleavable linkers



Giugliano F, Corti C, Tarantino P. Curr Oncol Rep. 2022 Jul;24(7):809-817

#### 13 FDA Approved ADCs in clinical use

| ADC                         | Target        | Indication                                                                           | Year approved                                |
|-----------------------------|---------------|--------------------------------------------------------------------------------------|----------------------------------------------|
| Gemtuzumab ozogamicin       | CD33          | Relapsed AML                                                                         | 2000; withdrawn 2010;<br>approved again 2018 |
| Brentuximab vedotin         | CD30          | R/R Hodgkin lymphoma                                                                 | 2011                                         |
| Trastuzumab emtansine       | HER2          | Relapsed HER2+ met breast CA                                                         | 2013                                         |
| Inotuzumab ozagamicin       | CD22          | R/R ALL                                                                              | 2017                                         |
| Moxetumomab pasudotox       | CD22          | R/R hairy cell leukemia                                                              | 2018                                         |
| Polatuzumab vedotin         | CD79B         | R/R DLBCL                                                                            | 2019                                         |
| Enfortumab vedotin          | Nectin4       | Relapsed urothelial CA                                                               | 2019                                         |
| Sacituzumab govitecan       | TROP2         | R/R triple neg breast CA                                                             | 2020                                         |
| Belantamab mafodotin-blmf   | BCMA          | R/R multiple myeloma                                                                 | 2020; withdrawn Nov 2022                     |
| Loncastuximab tesirine-lpyl | CD19          | R/R DLBCL                                                                            | 2021                                         |
| Tisotumab vedotin-tftv      | Tissue factor | Recurrent/met cervical CA                                                            | 2021                                         |
| Trastuzumab deruxtecan      | HER2          | Relapsed HER2+ breast/gastric CA2021Relapsed HER2+ lung CA/HER2-low2022breast CA2022 |                                              |
| Mirvetuximab soravtansine   | FR-alpha      | Plat-resistant ovarian CA                                                            | 2022                                         |

#### ADCs in Ongoing Clinical Trials



#### 2022

57 new ADCs entered phase I clinical trials

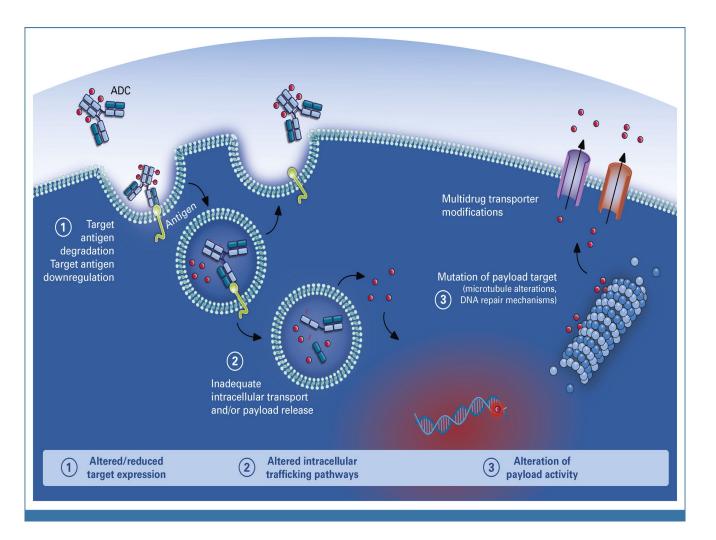
(90% increase from 2021) 249 ADC clinical trials initiated (35% increase from 2021) 20% of all ADC programs: HER2 and TROP2 Investments in every component of ADC

#### (antibody, conjugation, linker, payload)

Novel payloads (>60 distinct)

- Tubulin inhibitor
- DNA damaging agent
- Topoisomerase I/II inhibitors
- RNA polymerase II inhibitor

### ADC Toxicities


- Potential for debilitating and fatal adverse events
  - Pulmonary, hepatic, neurologic, ophthalmic
- Due to off-target effects
  - Payload related: premature release of ADC payload in circulation or TME
  - Target related: binding of ADC to noncancerous cells expressing target antigen
- Hematologic toxicities common
- Toxicity profiles vary among different ADCs, even with similar payloads and linkers
  - T-Dxd, patritumab-DXd, Dato-DXd

## Unique and Specific Toxicities of Interest

| Toxicity                                                                                    | Agent                                                  | Target                      | ADC characteristics<br>promoting toxicity                                                            |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------|
| Interstitial lung disease                                                                   | Trastuzumab<br>deruxtecan (T-DXd)*                     | HER2                        | Target expression in normal<br>tissue<br>Intrinsic payload toxicity<br>High DAR                      |
| Liver (veno-occlusive<br>disease)                                                           | Gemtuzumab<br>ozogamicin*<br>Inotuzumab<br>ozogamicin* | CD33<br>CD22                | Target expression and function in normal tissue                                                      |
| Ocular toxicity<br>(conjunctival/corneal<br>adverse reactions,<br>keratopathy, blepharitis) | Tisolumab vedotin*<br>Tusamitamab<br>ravtansine        | Tissue<br>factor<br>CEACAM5 | Target expression and<br>function in normal tissue<br>Cleavable linker<br>Intrinsic payload toxicity |
| Rash<br>(Stevens Johnson, toxic<br>epidermal necrolysis)                                    | Enfortumab vedotin*                                    | Nectin-4                    | Target expression in normal<br>tissue                                                                |
| Neurologic<br>(sensory neuropathy,<br>progressive multifocal<br>leukoencephalopathy)        | Brentuximab<br>vedotin*                                | CD30                        | Intrinsic payload toxicity                                                                           |

\*Black box warning

#### Proposed Mechanisms of ADC Resistance



- Target expression
- Intracellular trafficking
- Payload related

### Future directions

- First line indications, including combinations with IO
- Is there an advantage for biomarker selection?
- Optimizing design to minimize toxicities
- Better understanding of toxicities and management
- Overcoming resistance