

T-cell Lymphomas Novel approaches and challenges

Francine Foss, M.D. Professor of Medicine and Dermatology Yale University School of Medicine New Haven, CT, USA

18th Annual New Orleans Summer Cancer Meeting

Legend: Most common Less common Rare

Leukemic

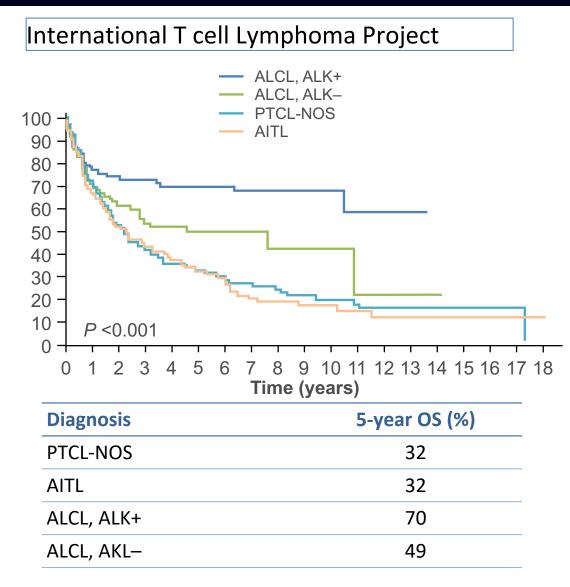
- ■T-cell PLL
- T-cell LGL leukemia
- Chronic LPDs of NK cells
- Aggressive NK-cell leukemia

•ATLL

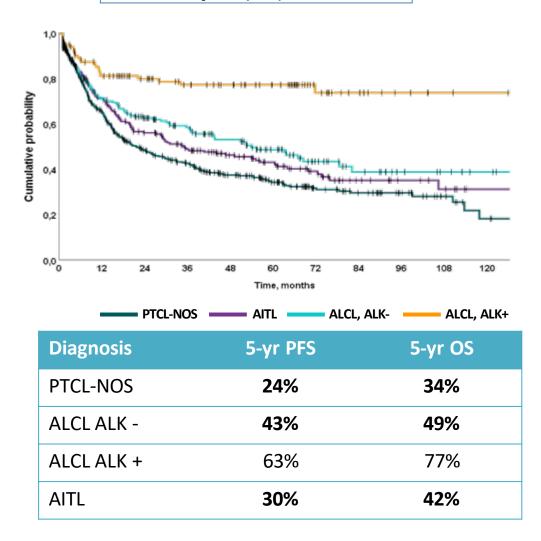
Systemic EBV+ T-cell lymphoma of childhood
Hydroa vacciniforme-like lymphoproliferative disorder

Nodal

- PTCL-NOS
- AITL (angioimmunoblastic)
- Follicular T-cell lymphoma
- Nodal PTCL with TFH phenotype
- ALCL, ALK-positive
- ALCL, ALK-negative

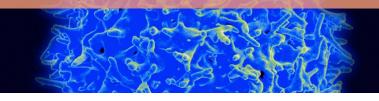

Cutaneous

- MF/Sezary Syndrome
- Primary cutaneous CD30+ LPD
- LyP, pcALCL
- Primary cutaneous $\gamma\delta$ TCL
- Primary cutaneous CD8+ aggressive epidermotropic cytotoxic TCL
- Primary cutaneous acral CD8+ TCL
- Primary cutaneous CD4+ small/medium T-cell LPD


Extranodal

- Extranodal NK/TCL, nasal type
- Enteropathy-associated TCL
- Monomorphic epitheliotropic intestinal T-cell lymphoma
- Indolent T-cell proliferative disorder of the GI tract
- Subcut. panniculitis-like TCL
- Hepatosplenic TCL
- Breast implant-associated ALCL

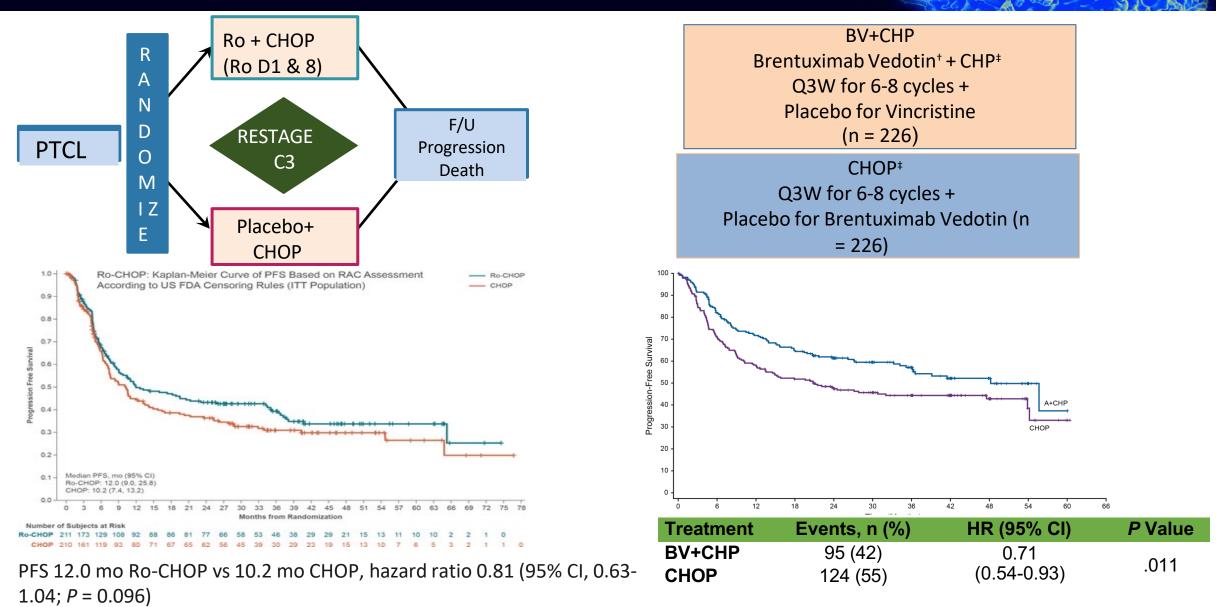
Outcomes for PTCL-then and now



T Cell Project(T1)

Vose JM, et al. J Clin Oncol. 2008

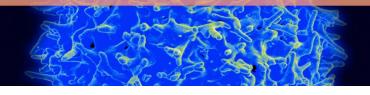
Bellei et al, Hematologica 2019

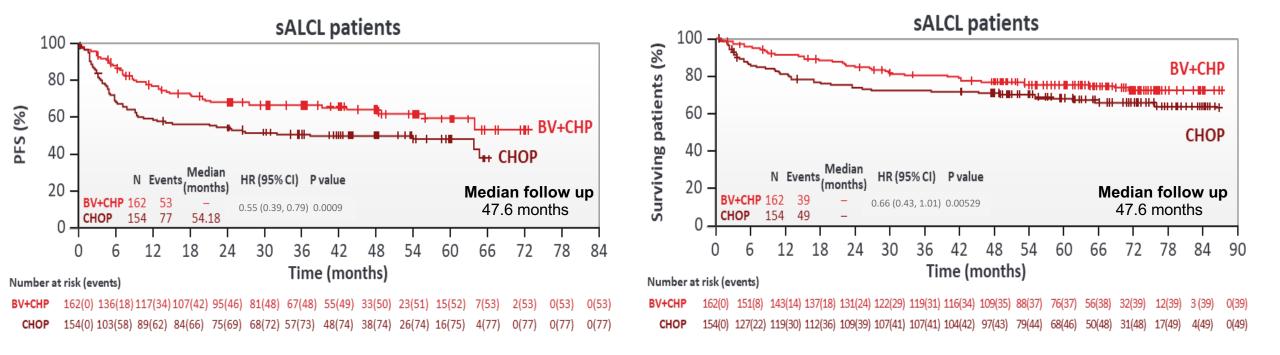

NCCN Guidelines for PTCL

	First-line Therapy*	ALCL [†]
Preferred regimens	 PTCL-NOS, AITL; EATL; MEITL; Nodal PTCL, TFH; FTCL Brentuximab-CHP can be considered for CD30+ histologies Anthracycline-based combination chemotherapy 	 CD30-directed ADC in combination with anthracycline-based combination chemotherapy (Category 1)
Other recommended regimens	 Newcastle regimen[‡] (CHOP followed by IVE/MTX and ASCT for EATL) Asparaginase regimen for NK/T cell- R-GemOX, SMILE,etc 	
First-line consolidation	 In patients with ALK-positive ALCL, HDT/ASCR should b patients For other histologies (i.e., PTCL-NOS, ALCL, ALK–, and A and FTCL), consider HDT with ASCR 	
	 Role of alloBMT upfront not defined 	

^{*}Although anthracycline-based regimens confer a favorable prognosis in ALK+ ALCL, these regimens have not provided the same favorable results for other PTCL histologies; clinical trial is therefore preferred for the management of these other histologies; [†]ALK– ALCL with a *DUSP22* rearrangement has been variably associated with a prognosis more similar to ALK+ ALCL disease, and treatment according to the ALK+ ALCL algorithm may be considered. [‡]Studied only in patients with EATL.

Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) for T-Cell Lymphomas V.2.2022. © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. Accessed March 9, 2022. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

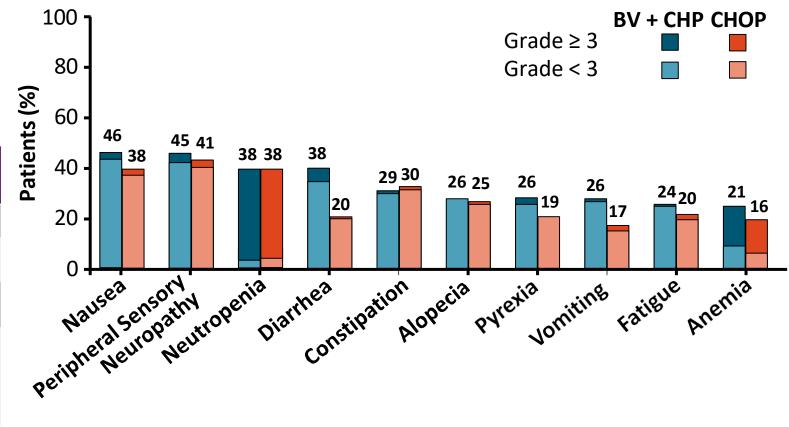

Front line randomized trials in PTCL



Bachy et al, JCO 2022

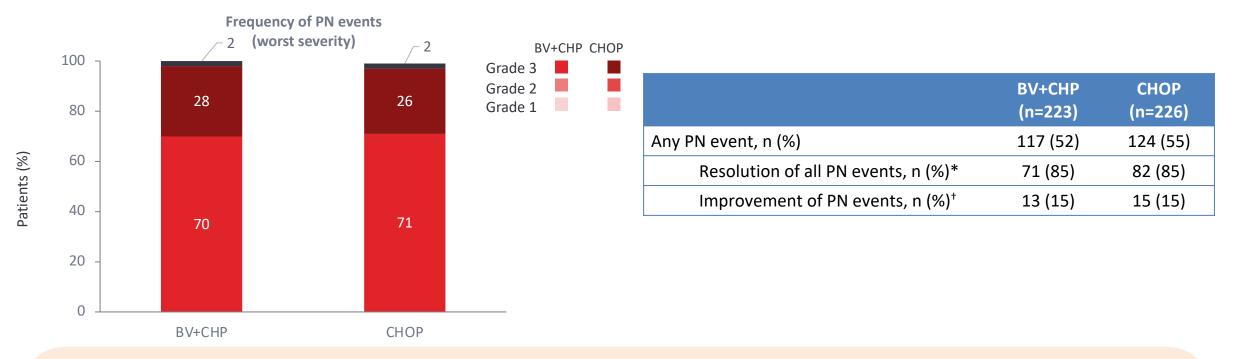
Horwitz et al, Lancet 2019

Echelon-2: outcomes in ALCL- 5 year update



Echelon-2: adverse events

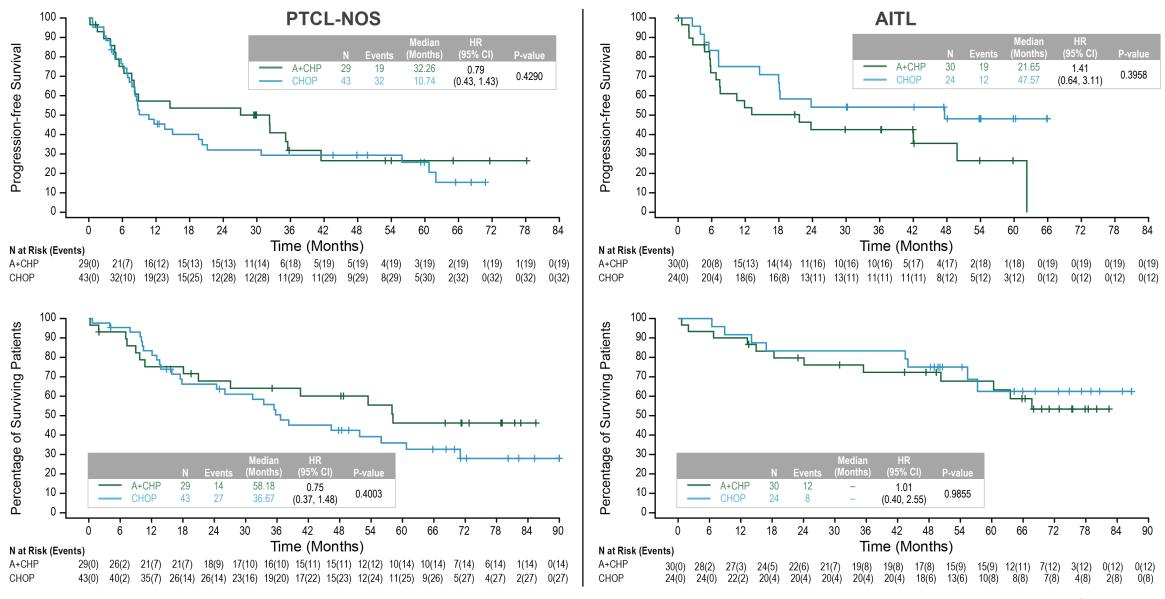
AE, n (%)	BV+CHP (n = 223)	CHOP (n = 226)	
Any AE	221 (99)	221 (98)	
Grade ≥ 3 AEs	147 (66)	146 (65)	
Serious AEs	87 (39)	87 (38)	
Death due to AEs	7 (3)	9 (4)	


Subjects, n (%)	BV+CHP (n=223)	CHOP (n=226)
Treatment-emergent PN	117 (52)	124 (55)
Resolution of all PN events	58 (50)	79 (64)
Ongoing PN at last follow up	61 (52)	45 (36)
Grade 1	44 (72)	32 (71)
Grade 2	15 (25)	12 (27)
Grade 3	2 (1)	1 (1)

AEs Occurring in \geq 20% of Patients

Horwitz S, et al. Lancet 2019. Horwitz S, et al. ASH 2018. Abstract 997.

Echelon-2: incidence and severity of neuropathy



At 5-year follow-up, BV+CHP continues to have a manageable safety profile: Similar resolution or improvement of PN events was seen for BV+CHP (n (%), 84 [72]) vs CHOP (97 [78]). For ongoing PN events, BV+CHP 98% vs CHOP 98% were Grade 1 or 2

*Resolution was defined as resolved/recovered with or without sequelae; or return to baseline or lower severity as of the latest assessment for pre-existing events. [†]Improvement was defined as decrease by at least 1 grade from the worst grade with no higher grade thereafter. Patients with improvement in any event at last follow up were those with at least one improved event and the date of improvement was before last follow up date. Patients with all events resolved were excluded.

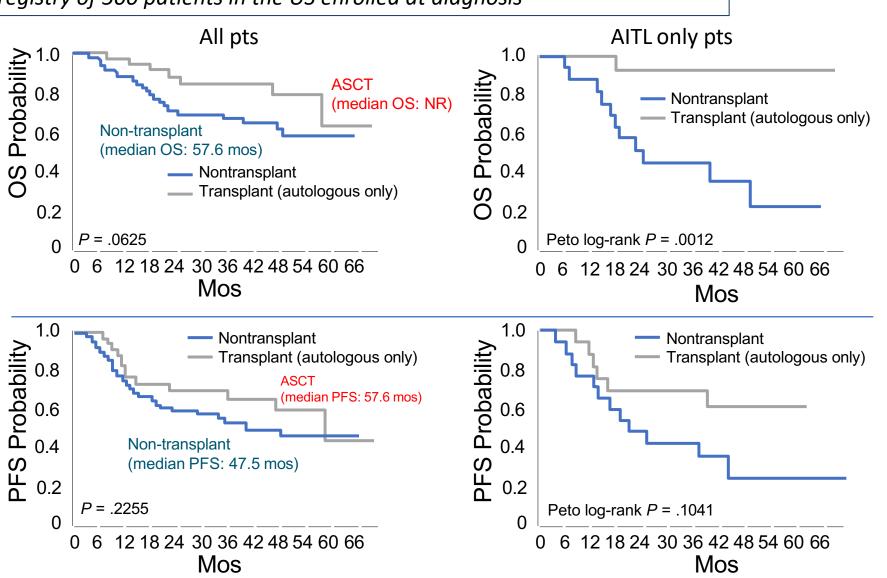
BV+CHP, brentuximab vedotin plus cyclophosphamide, doxorubicin, prednisone; CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; PN, peripheral neuropathy.

Echelon-2: 5 year outcomes for PFS and OS

Horwitz et al ASH 2021 a1150

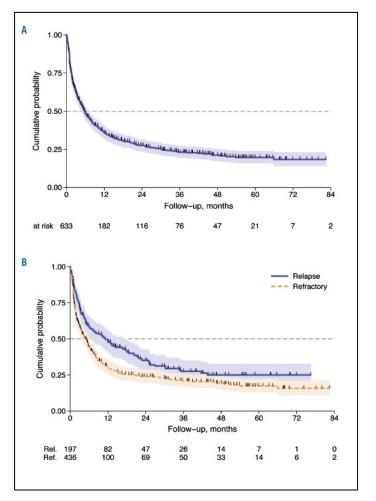
CHOP ± alemtuzumab CHOP+/- romidepsin CHOP vs BV-CHP CHOP vs GEM-P

CHOP followed by ± pralatrexate


CEOP/pralatrexate CHOP + everolimus CHOP + lenalidomide CHOP + denileukin diftitox

Transplant in first remission: COMPLETE STUDY

COMPLETE is a prospective registry of 500 patients in the US enrolled at diagnosis


- 119 pts with nodal PTCL had CR
- 36 of those underwent ASCT
- ASCT was associated with superior survival for stage III–IV and intermediate-to-high IPI
- ASCT improved OS and PFS with AITL but not other PTCL subtypes
- Multivariate analysis, ASCT was independently associated with improved survival (HR: 0.37; 95% CI 0.15, 0.89)

Park. Cancer 2019; 125:1507.

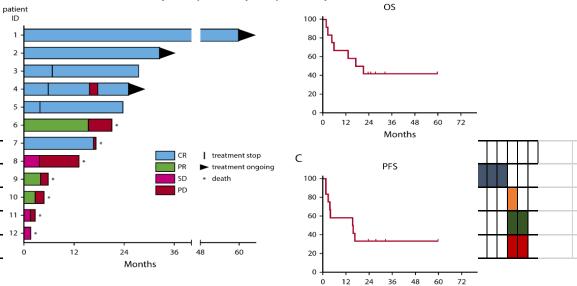
Relapsed/refractory PTCL

Outcomes for relapsed/refractory patients from the T Cell Project

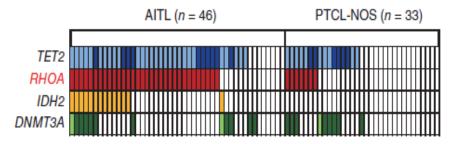
Approved drugs for relapsed/refractory PTCL

Drugs	Class	Indications
Pralatrexate	Antifolate	US FDA: PTCL (2009)
Romidepsin	HDAC inhibitor	US FDA: CTCL (2009) and PTCL (2011)
Brentuximab vedotin	Anti-CD30 ADC	US FDA: ALCL (2011)
Belinostat	HDAC inhibitor	US FDA: PTCL (2014)
Mogamulizumab	Anti-CCR4 mAb	Japan: ATLL (2012), PTCL and CTCL (both 2014)
Chidamide	HDAC inhibitor	China: PTCL (2014)
Forodesine	PNP inhibitor	Japan: PTCL (2017)
E7777 (Ontak)	IL2 Fusion Toxin	Japan: PTCL, CTCL (2021)

Bellei et al Hematologica 2018, Bachy E, Coiffier B. Blood 2014;


		Overall Response Rate	Complete Remission Rate	ORR PTCL- NOS	orr Aitl	ORR ALCL
	Histone Deacetylase Inhibitors					
σ	Romidepsin	25%	15%	29%	30%	24%
OVe	Belinostat ¹⁵	26%	11%	23%	<mark>54%</mark>	15%
opro	Anti-Folate					
A A	Pralatrexate ¹⁴	29%	15%	32%	8%	29%
FDA Approved	CD30 Targeted Approaches					
	Brentuximab vedotin ^{26,44}			33%	<mark>54%</mark>	<mark>86%</mark>

Mutations of DNA methylation genes in PTCL


Recurrent mutations of genes involved in DNA methylation regulation have been described in PTCL and in angioimmunoblastic T cell lymphoma

Phase II study of 5-azacitidine in AITL

- N = 12 patients with stage III/IV AITL
- **5-azacytidine** (median of 5.5 cycles), plus rituximab in 6/12 patients
- ORR 75%: CR 6/12 ; PR 3/12; SD 3/12

Months

Phase I study of oral 5-azacitidine and romidepsin

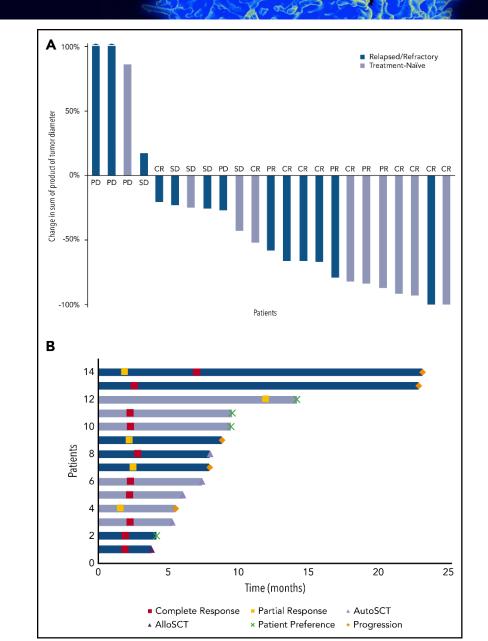
5-azacitidine: 100 mg/day d1-14, to 300

mg/day, d1-21

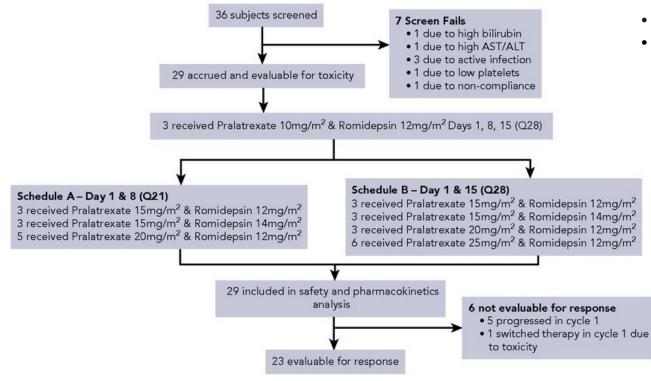
Romidepsin 10 mg/m², d8,15,to 14 mg/m²,d8,15,22,21-35 day cycles

Response, n (%)	All Patients (N = 31)	T-cell Lymphoma (n = 11)
ORR	10 (32)	8 (73)
CR	7 (23)	6 (55)
PR	3 (10)	2 (18)
SD	7 (23)	0
PD	11 (35)	2 (18)
Not evaluable	3 (10)	1 (9)

Falchi et al, Blood 2021

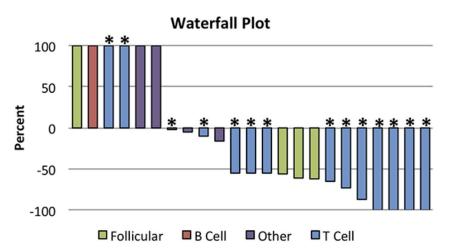

Sakata-Yanagimoto et al. Nat Gen 2014; Courtesy of Dr. F. Lemonnier & Pr. Ph. Gaulard

Multicenter phase II study of romdepsin and 5-azacytidine


- Front line or R/R PTCL pts eligible
- Azacytidine 300 mg days 1 to 14, Romidepsin 14 mg/m² on days 8, 15, and 22 every 35 days.
- ORR 61% , CR 48%
- T-follicular helper cell (tTFH) higher ORR
- Gr 3 to 4 AEs were thrombocytopenia (48%), neutropenia (40%), lymphopenia (32%), and anemia (16%)
- Median PFS 8 mo, median OS not reached , median DOS 20.3 months
- Responders had higher average number of mutations in genes involved in DNA methylation and histone deacetylation

	Overall response	Complete response	Partial response
All pts (23)	61%	43%	17%
Front line (10)	70%	50%	20%
R/R disease (13)	54%	38%	15%
tFH (15)	80%	60%	20%

Falchi et al, Blood 2022



Phase I study of romdepsin and pralatrexate

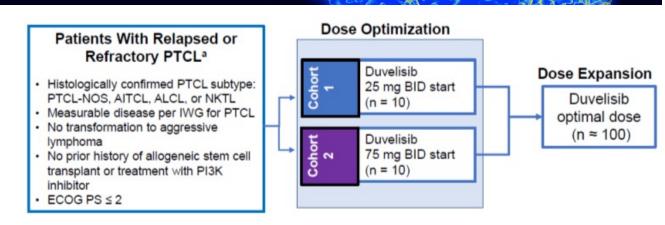
- Twenty-three patients were evaluable for response.
- In 23 pts, ORR 57% , 71% (10/14) in PTCL
- Gr ¾ adverse events included anemia (29%), oral mucositis (14%), thrombocytopenia (28%), and neutropenia (20%), sepsis (7%), fever (3%), and pneumonia (3%)

Pralatrexate and Romidepsin are Highly Effective in T-Cell Lymphoma

12/14 T-Cell Lymphoma Derived Benefit: 2 SD, 6 PR, 4 CR (ORR=71%)

Amengual et al, Blood 2018

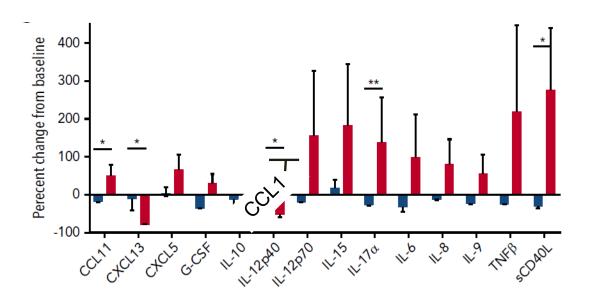
PI3Kinase as a target: Duvelisib

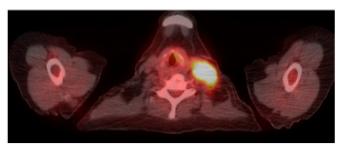

- Studied in single agent phase II study (PRIMO) n=78
 - 75mg BID x 2 cycles → 25mg BID unless progression/intolerance
 - ORR 50%, CR 32%
 - Grade ≥3 transaminitis 24%
- In combination study of duvelisib 75mg BID and romidepsin (n=66):
 - ORR 55%, CR 34%
 - Grade ≥3 transaminitis 14%

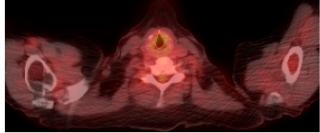
Safety:

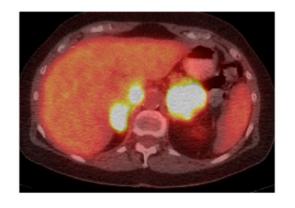
Treatment interruptions and/or dose reductions most commonly required for AST/ALT elevation, rash, diarrhea, and pyrexia.

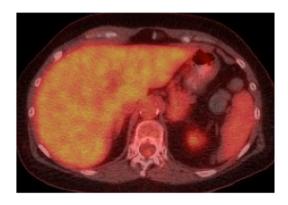
Neutropenia in 20%. Grade \geq 3 infections in 29%.


Duvelisib NCCN Compendium listed for PTCL 2021



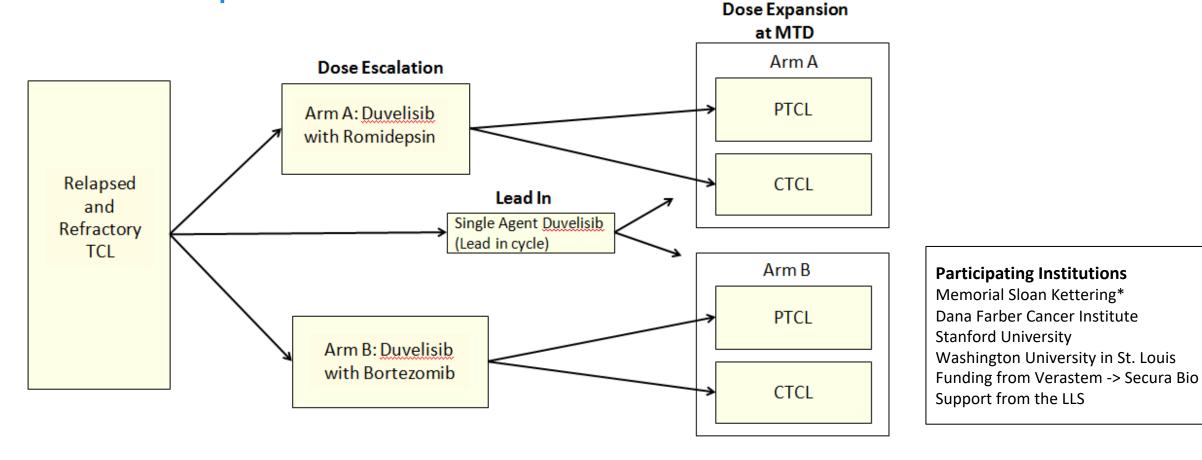

	Cohort 1 25 mg BID (N=20)	Cohort 2 75 mg BID (N=13)	Dose Expansion 75mg BID x 2 cycles→ 25mg BID (n=78)	
ORR (%)	35%	54%	50%	
CR (%)	25%	31%	32%	


Duvelisib biomarkers predictive of response

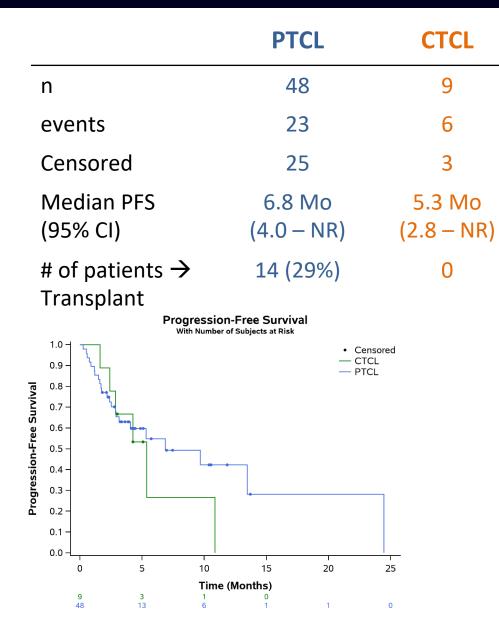

- Serum cytokines measured at baseline and at cycle 1 day 8.
- Changes observed in responding patients:
 - Increases in CCL1, IL-17α, and sCD40L
 - Decreases in CXCL13 and IL-12p40.

Predose

Cycle 1 Post


CT scans from a 71-year-old woman with relapsed AITL. Prior therapies- CHOP, pralatrexate, vorinostat, brentuximab vedotin

Horwitz et al. 2018. Blood 131(8).


Duvelisib combination studies

Parallel Phase I: 3+3 Design with Dose Expansion at MTD

MTD was determined to be Dose Level 3 (Romidepsin-10mg/m2 IV and Duvelisib-75mg PO, BID)

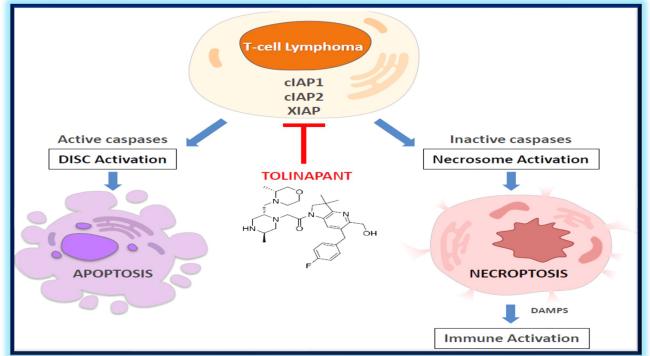
Duvelisib and romidepsin- a novel combination

Fewer immune mediated side effects of duvelisib when given with romidepsin

Event	initiated with single agent lead in cycle n=10	initiated with combination at MTD n=49
Transaminase	4 (40%)	4 (8%)
ALT	3 (30%)	4 (8%)
AST	1 (10%)	2 (4%)
Diarrhea	२ (२०%)	6 (12%)
Neutrophil count decreased	2 (20%)	19 (39%)
Platelet count decreased	1 (10%)	5 (10%)
Infections	0	6 (12%)
Rash	2 (20%)	4 (8%)

ASTX660- a novel XIAP inhibitor

(ASTX660) in Relapsed/Refractory PTCL and CTCL


<u>ASTX660</u>

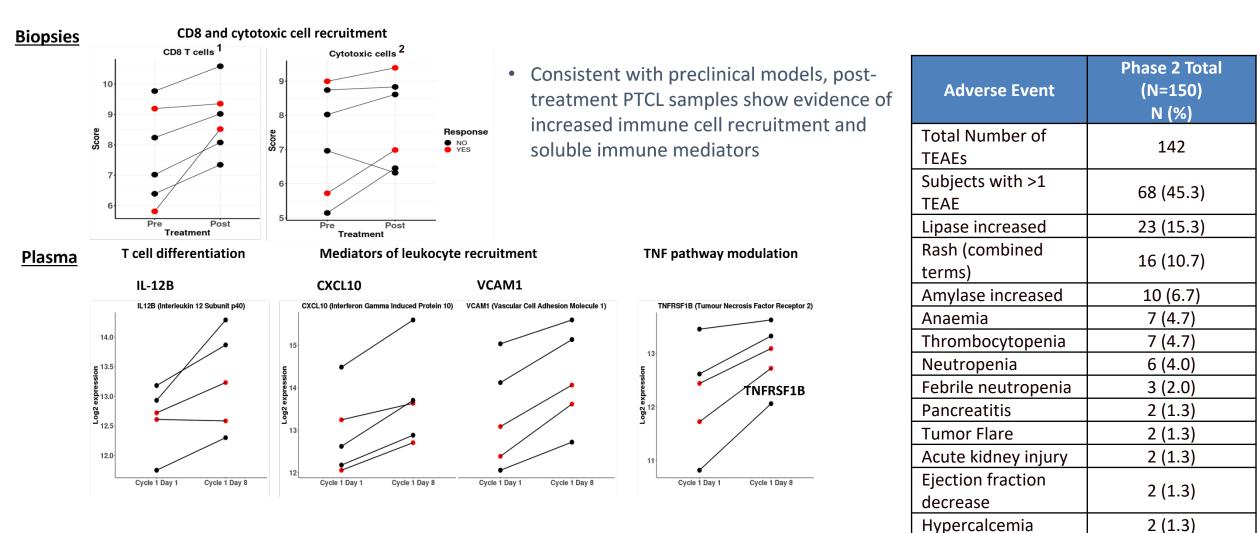
Novel Mechanism of Action¹

<u>Oral</u> non-peptidomimetic antagonist of inhibitor of apoptosis proteins (IAPs), cIAP1, cIAP2 and XIAP

Recent data demonstrates both apoptosis and immunomodulation

Phase 1: low efficacy in other tumour types, recommended phase 2 dosing (RP2D) achieved >250 subjects dosed with tolinapant to date Manageable safety profile Minimal myelosuppression

1: Ferrari N *et al*, *Blood Advances*, *2021;* Johnson C *et al*, J Med Chem 2018; Ward G *et al*, Mol Cancer Ther 2018


and the second s

Phase 2: Open Label Non-Randomized Basket Trial, PTCL and CTCL cohorts

	PTCL(n=99)	CTCL (n=51)
ORR	22% (22 pt)	28% (14 pt)
PFS median	1.8 mo	5.5 mo
DOR median	6.5 mo	8.8 mo
Best overall re	sponse PTCL	N = 96
Best overall re	sponse PTCL	N = 96 9 (9.4%)
	sponse PTCL	
CR	sponse PTCL	9 (9.4%)
	CR PR	PR SD

Michot et al, EHA 2022

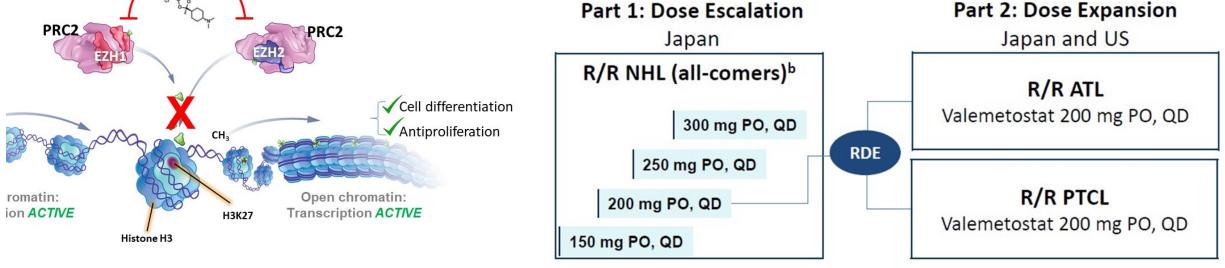
ASTX660 in Relapsed/Refractory PTCL and CTCL

2 (1.3)

Pruritis

Ferrari N et al., Blood Advances, 2021

Valemetostat Tosylate: inibiitor of EZH1/EZH2

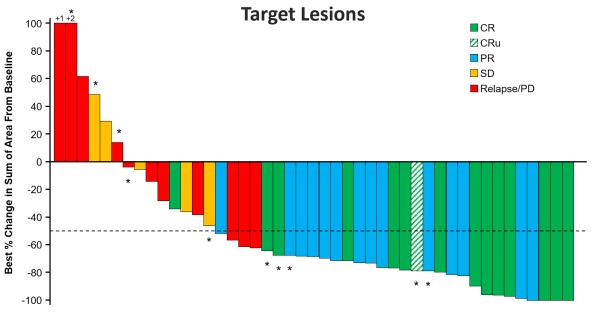

- Prevents trimethylation of H3K27
- Increases expression of genes silenced by H3K27me3, including those associated with the regulation of cell proliferation and differentiation¹⁻⁴

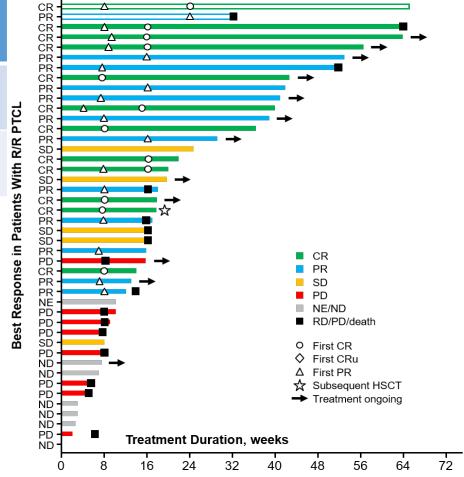
📡 Valemetostat

 EZH2 is overexpressed in PTCLs and significantly overexpressed in ATL cells^{1,2}

Phase I/II study of valemetostat in PTCL

Patients with R/R NHL • Age ≥20 (Japan) or ≥18 (US) years • ECOG PS 0 or 1 • Patients with ATL: positive test result for HTLV-1 ose Escalation Part 2: Dose Expanded Panane


1. Honma D, et al. Cancer Sci. 2017;108(10):2069-2078. 2. Yamagishi M, et al. Cell Rep. 2019;29


2017. Abstract 4670. 4. Nakagawa M, et al. ASH 2017. Abstract 590. 5. Juan AH, et al. Cell Rep. 2016;17(5):1369-1382. 6. Peirs S. Immunol Rev. 2015;263:50-67.

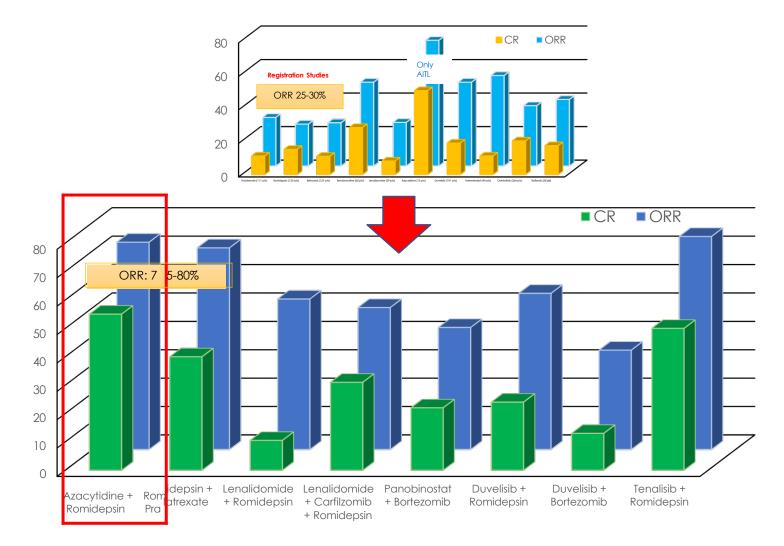
Phase I/II study of Valemetostat: results

	All PTCL (n=44)	AITL (n=17)	PTCL-NOS (n=20)	ALCL (n=2)	ATLL (N=14)	
ORR (%)	54.5%	65%	50%	50%	57%	PTCL
CR (%)	27.3%	47%	20%	50%	28%	Vith R/R P

Best Percent Change From Baseline in Sum of Area in

- Ongoing international single arm phase II study (VALENTINE (NCT 04703192)

Foss et al, Blood 2021


Phase I/II study of valemetostat: adverse events

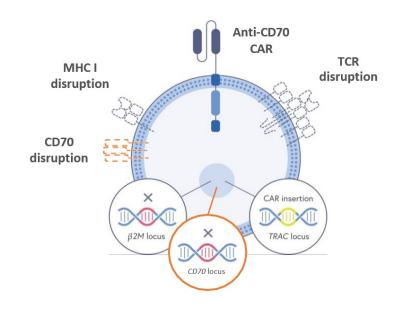
 Grade ≥3 platelet count decreased and thrombocytopenia^a occurred in 13 (16.9%) and 2 (2.6%) patients with all histologies, respectively

Most Common TEAEs (occurring in ≥20% of patients	All Histo (N=7	<u> </u>	PTCL (N=44)		ATL (N=14)	
with TCL) ^b	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Platelet count decreased ^d	47 (61.0)	13 (16.9)	21 (47.7)	5 (11.4)	9 (64.3)	3 (21.4)
Dysgeusia	40 (51.9)	0	20 (45.5)	0	8 (57.1)	0
Anemia	31 (40.3)	9 (11.7)	15 (34.1)	6 (13.6)	5 (35.7)	1 (7.1)
Neutrophil count decreased	27 (35.1)	18 (23.4)	13 (29.5)	8 (18.2)	6 (42.9)	5 (35.7)
Alopecia	26 (33.8)	0	12 (27.3)	0	6 (42.9)	0
WBC count decreased	23 (29.9)	12 (15.6)	10 (22.7)	6 (13.6)	4 (28.6)	3 (21.4)
Diarrhea	22 (28.6)	1 (1.3)	13 (29.5)	0	3 (21.4)	0
Lymphocyte count decreased	22 (28.6)	17 (22.1)	7 (15.9)	6 (13.6)	2 (14.3)	2 (14.3)
ALT increased	16 (20.8)	1 (1.3)	7 (15.9)	0	3 (21.4)	1 (7.1)
Nausea	16 (20.8)	0	11 (25.0)	0	3 (21.4)	0

Foss et al, Blood 2021

Novel/Novel drug development in PTCL

Drug Combination	ORR (%)	CR (%)
Azacytidine + Romidepsin O'Connor et al; Blood 2019 Falchi & Ma et al; Blood 2021	73	55
Pralatrexate + Romidepsin Amengual et al; Blood 2017	71	40
Lenalidomide + Romidepsin Mehta-Shah et al; JCO 2015	53	10.5
Lenalidomide + Carfilzomib + Romidepsin Mehta-Shah et al; Blood 2016	50	31
Panobinostat + Bortezomib Tan et al; Lancet Hem 2015	43	22
Duvelisib + Romidepsin Horwitz et al; Blood 2018	55	24
Duvelisb + Bortezomib Horwitz et al; Blood 2018	35	13
Tenalisib + Romidepsin Iyer et al; ASH 2021	75	50

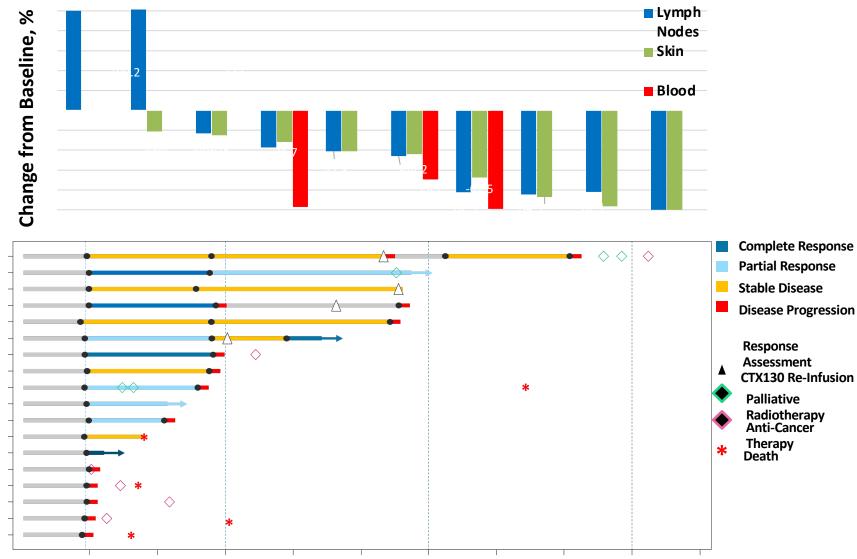

Immunotherapy in PTCL

- Allogeneic SCT is potentially curative in relapsed setting
- T-cell Checkpoint inhibitors
 - Subtype specific responses
 - NK, MF/SS
 - Risk of hyper-progression and lack of predictors precludes wider use
- CD47 Strategies
 - Combination Studies ongoing (Magrolimab + Mogamulizumab in CTCL)
- CAR
 - CART-Early studies CD5, 7, 30, 37, 4, CCR4, TCRB1, others
 - ? Need for allo backup
 - Other cell types/sources
 - Allo-T, NK, Myeloid
- Bi-specifics
 - CD30, PD-1

CD70 Allogeneic CAR T

•CTX130 is an investigational allogeneic, CRISPR/Cas9 gene-edited, anti-CD70 CAR-T cell therapy with TRAC, β2M, and CD70 disruptions

•CTX130 is manufactured starting with T cells collected from a healthy donor, which are then selected and edited before expansion and cryopreservation for offthe-shelf treatment of patients


Cell dose (CAR+ T cells)	D L1 3x10 ⁷ N=4	DL2 1x10 ⁸ N=4	DL3 3x10 ⁸ N=5	DL4 9x10 ⁸ N=5	DL≥3 N=10
ORR	2 (50)	0	3 (60)	3 (60)	6 (60)
CRR	1 (25)	0	3 (60)*	1 (20)	4 (40)
CR + PR + SD	3 (75)	1 (25)	5 (100)	4 (80)	9 (90)

 β 2M, β 2-microglobulin; CAR, chimeric antigen receptor; MHC, major histocompatibility complex; TCR, T-cell receptor; TRAC, T-cell receptor alpha constant.

Reference: Dequeant M-L, et al. CD70 knockout: A novel approach to augment CAR-T cell function. Poster presented at American Association for Cancer Research 2021. April 10-15 and May 17-21, 2021.

COBALT-LYM (NCT04502446) STUDY

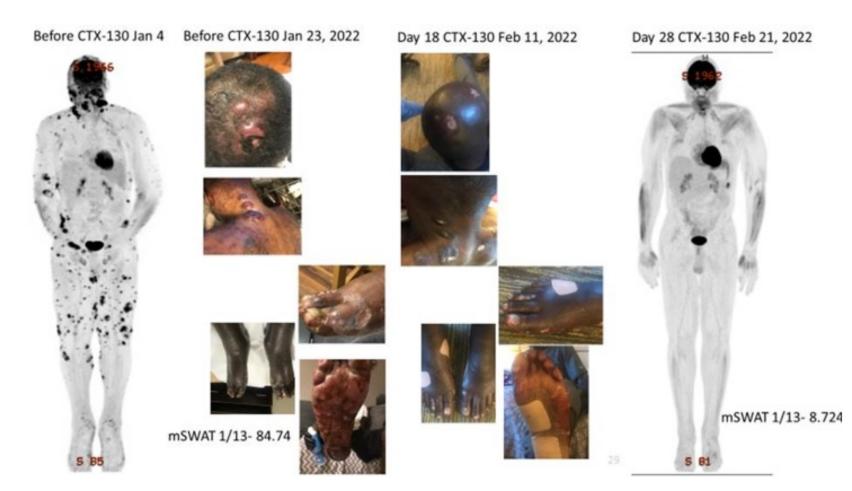
Responses were observed across compartments (lymph nodes, skin, blood) in patients with CTCL

- Median CD70+ expression amongst patients with relapsed / refractory T cell lymphoma was 90%
- CTX130 has demonstrated an acceptable safety profile in heavily pretreated patients with relapsed / refractory T cell lymphomas
- We have observed clinically meaningful responses with CTX130, including a 40% CR rate at DL ≥3

Case Study | Single-Dose Complete Response With CTX130

Subject Overview

Patient profile


- 47-year-old male with stage IVA2 transformed mycosis fungoides (tMF)
- 5 prior lines of therapy
- Refractory after last treatment with brentuximab vedotin
- CD70+ expression was 100% at baseline

Efficacy

- CR at D28 after a single infusion of 9 x 10⁸ CAR+ T cells
- Remains in CR at M3

Safety

- Gr 3 anemia (D3) & Gr 3 neutropenia (D4)
- All other AEs were Gr 1

Responses