

Stage III NSCLC Surgical/Combined Modality

Douglas Liou, MD Stanford University Dept of Cardiothoracic Surgery Stanford CA, USA

DISCLOSURES

Has no relevant financial relationships

IMpower010: Overall survival interim analysis of a phase III study of atezolizumab vs best supportive care in resected NSCLC

Enriqueta Felip,¹ Nasser Altorki,² Eric Vallieres,³ Ihor O. Vynnychenko,⁴ Andrey Akopov,⁵ Alex Martinez-Marti,¹ Antonio Chella,⁶ Igor Bondarenko,⁷ Shunichi Sugawara,⁸ Yun Fan,⁹ Hirotsugu Kenmotsu,¹⁰ Yuh-Min Chen,¹¹ Yu Deng,¹² Meilin Huang,¹² Virginia McNally,¹³ Elizabeth Bennett,¹² Barbara J. Gitlitz,¹² Caicun Zhou,¹⁴ Heather A. Wakelee¹⁵

¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ²NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA; ³Swedish Cancer Institute, Seattle, WA, USA; ⁴Regional Municipal Institution Sumy Regional Clinical Oncology Dispensary, Sumy State University, Sumy, Ukraine; ⁵Pavlov State Medical University, Saint Petersburg, Russia; ⁶Pneumology Unit, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy; ⁷Dnipro State Medical University, Dnipro, Ukraine; ⁶Sendai Kousei Hospital, Miyagi, Japan; ⁹Zhejiang Cancer Hospital, Hanzhou, China; ¹⁰Shizuoka Cancer Center, Shizuoka, Japan; ¹¹Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, Taipei, Taiwan; ¹²Genentech Inc, South San Francisco, CA, USA; ¹³Roche Products Ltd, Welwyn Garden City, United Kingdom; ¹⁴Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China; ¹⁵Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA.

Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial

THE LANCET

Enriqueta Felip, Nasser Altorki, Caicun Zhou, Tibor Csőszi, Ihor Vynnychenko, Oleksandr Goloborodko, Alexander Luft, Andrey Akopov, Alex Martinez-Marti, Hirotsugu Kenmotsu, Yuh-Min Chen, Antonio Chella, Shunichi Sugawara, David Voong, Fan Wu, Jing Yi, Yu Deng, Mark McCleland, Elizabeth Bennett, Barbara Gitlitz, Heather Wakelee, for the IMpower010 Investigators* Lancet 2021; 398: 1344-57

(data cutoff: 21 Jan '21, median follow-up: 32 months)

Presented by Dr Enriqueta Felip, Vall d'Hebron University Hospital, Spain

Stratification factors

• Sex | Stage | Histology | PD-L1 status

Primary endpoint

Investigator-assessed DFS tested hierarchically

Key secondary endpoints

• OS in ITT | DFS in PD-L1 TC ≥50% | 3-yr and 5-year DFS

Key exploratory endpoints

OS biomarker analyses

Clinical cutoff: 18 April 2022. Both arms included observation and regular scans for disease recurrence on the same schedule. ECOG, Eastern Cooperative Oncology Group, q21d, every 21 days. ^a Per UICC/AJCC staging system, 7th edition. ^b Two-sided α =0.05.

Hierarchical statistical testing of endpoints DFS in PD-L1 TC ≥1% stage II-IIIA population^b If positive: **DFS** in all-randomized stage II-IIIA population^b If positive: DFS in ITT population (stage IB-IIIA)^b If positive: OS in ITT population^b

Endpoint was met at DFS IA

Endpoint was not met at DFS IA and follow up is ongoing

Endpoint was not formally tested

mOS, median overall survival; NR, not reached. aBy SP263 assay. bStratified.

Presented by Dr Enriqueta Felip, Vall d'Hebron University Hospital, Spain

Results of OS IA: other primary populations

(data cutoff: 18 Apr '22, median follow-up: 45 months)

^c Descriptive purposes only.

Presented by Dr Enriqueta Felip, Vall d'Hebron University Hospital, Spain

Subgroup analysis of OS in PD-L1 TC ≥1%^a (stage II-IIIA)

(data cutoff: 18 Apr '22, median follow-up: 46 months)

	Δ	tezolizumab better BSC bet	ter		A	Atezolizumab better	BSC better
Subgroup	<u>N</u>	← HR	HR (95% CI)	Subgroup	<u>N</u>	HR H	HR (95% CI)
All patients ^b	476	⊢	0.71 (0.49, 1.03)	All patients ^b	476	<u>н н</u>	0.71 (0.49, 1.03)
Age				Regional lymph node stage (pN	4)		
<65 years	287	⊢ I	0.65 (0.40, 1.07)	NO	106	H	0.70 (0.28, 1.72)
≥65 years	189	⊢	0.78 (0.45, 1.35)	N1	194	HH	0.57 (0.30, 1.08)
Sex				N2	176	⊢	0.84 (0.50, 1.40)
Male	318	F	0.67 (0.43, 1.04)	Type of surgery			
Female	158	F	0.73 (0.38, 1.40)	Lobectomy	358	⊢ −−−	0.63 (0.40, 0.99)
Race				Bilobectomy	24 🗲		0.29 (0.05, 1.74)
White	328	⊢	0.72 (0.48, 1.09)	Pneumonectomy	85	F	H 1.02 (0.52, 1.97)
Asian	134	F	0.66 (0.27, 1.58)	Chemotherapy regimen			
ECOG PS				Cisplatin + docetaxel	71	⊢−−−− − ∤	0.47 (0.21, 1.04)
0	265	⊢−−−− 4	0.51 (0.30, 0.87)	Cisplatin + gemcitabine	75	F	1.08 (0.43, 2.70)
1	209	F	0.96 (0.58, 1.59)	Cisplatin + pemetrexed	169	F	0.88 (0.45, 1.72)
Tobacco use history				Cisplatin + vinorelbine	161	HH	0.55 (0.28, 1.10)
Never	91	F4	0.69 (0.29, 1.61)	EGFR mutation status			
Previous	310	⊢	0.64 (0.40, 1.02)	Yes	43	H	0.77 (0.22, 2.67)
Current	75		1.01 (0.45, 2.25)	No	248	F	0.71 (0.42, 1.21)
Histology				Unknown	185	⊢−−− +1	0.65 (0.37, 1.13)
Squamous	181	⊢ 4	0.85 (0.48, 1.50)	ALK rearrangement status			
Non-squamous	295		0.61 (0.38, 0.99)	Yes	23	H	1.87 (0.17, 20.65)
Stage				No	254	⊢−−− +	0.66 (0.40, 1.09)
IIA	161	F	0.75 (0.38, 1.51)	Unknown ^c	199	F	0.71 (0.41, 1.24)
IIB	83	►	0.64 (0.23, 1.77)			1 10	
IIIA	232		0.71 (0.44, 1.15)		υ.		10.0
	0.4	1	10.0	Clinical cutoff: 18 April 2022	2 (event to p	patient ratio, 25% [ITT]). ^a By SP263 assay. ^b Stratified.

Presented I

OS by biomarker status (stage II-IIIA)

^a 23 patients had unknown PD-L1 status. ^b Stratified for PD-L1 TC ≥1%; unstratified for all other subgroups. ^c 21 patients had unknown PD-L1 status. ^d Unstratified.

• Overall safety profile was consistent with previous analysis; no new safety signals were seen

	IMpower010 DFS IA (21 Jan '21)	IMpower010 OS IA (18 Apr '22)	
	Atezo (n=495)	Atezo (n=495)	BSC (n=495)
All-grade AE	92.7%	92.5%	70.9%
Treatment-related AE	67.7%	67.9%	0%
Grade 3-4 AE	21.8%	22.0%	11.5%
Treatment-related Grade 3-4 AE	10.7%	10.7%	0%
Serious Adverse Event	17.6%	17.8%	8.5%
Treatment-related SAE	7.5%	7.5%	0%
Grade 5 AE	1.6%	1.8% ^a	0.6%
Treatment-related Grade 5 AE	0.8%	0.8%	0%
AE leading to dose interruption of atezolizumab	28.7%	28.7%	0%
AE leading to any treatment withdrawal	18.2%	18.2%	0%
All-grade Atezo AESI ^b	51.7%	52.1%	9.5%
Grade 3-4 Atezo AESI	7.9%	7.9%	0.6%
All-grade atezo AESI requiring use of corticosteroids	12.1%	12.3%	0.8%

AESI, AE of special interest; SAE, serious AE. ^a No new deaths due to AEs occurred since the DFS IA clinical cutoff date; a previous 'other' death was updated to a Grade 5 AE. ^b No new AESI medical concepts noted at OS IA vs DFS IA.

Summary

- An OS trend in favor of atezolizumab was seen in the PD-L1 TC ≥1% stage II-IIIA population (OS HR, 0.71 [95% CI: 0.49, 1.03]) at the time of this first pre-specified IA OS analysis
 - In the PD-L1 TC ≥50% stage II-IIIA subpopulation, a clinically meaningful OS trend in favor of atezolizumab was observed (OS HR, 0.43 [95% CI: 0.24, 0.78])
- OS benefit favouring atezolizumab was not seen in the all-randomised stage II-IIIA or ITT populations
- After an additional 13 months of follow-up, the safety profile remains broadly unchanged, with no new or unexpected safety signals, and is consistent with the known safety profile of atezolizumab
- These data support the previously reported positive benefit-risk profile of adjuvant atezolizumab in PD-L1+ resected NSCLC and contribute to evidence supporting standard of care use
- IMpower010 will continue to the final DFS analysis, with further OS follow-up and analyses

NIVOLUMAB + CHEMOTHERAPY vs CHEMOTHERAPY AS NEOADJUVANT TREATMENT FOR RESECTABLE IIIA-B NSCLC

Progression-free survival and overall survival results from the phase 2 NADIM II trial

Dr. Mariano Provencio

Hospital Universitario Puerta de Hierro-Majadahonda, Madrid

SPAIN

INTRODUCTION

- Results from the single-arm, phase 2 NADIM trial (NCT03081689), evaluating neoadjuvant nivolumab plus chemotherapy, showed unprecedentedly high survival rates in patients with resectable stage IIIA NSCLC —with an OS almost three times that reported in the historical series —, and improved percentage of patients with pCR^{1,2}.
- In the randomized phase 3 CheckMate 816 trial (NCT02998528), neoadjuvant nivolumab plus CT significantly improved the median event-free survival (HR 0.63 [97.38% CI, 0.43-0.91]; p=0.0052) and the pCR rate (OR 13.94 [99% CI, 3.49-55.75]; p<0.0001) versus CT alone in patients with resectable NSCLC³.
- In the randomized phase 2 NADIM II study, neoadjuvant nivolumab plus chemotherapy significantly improved the primary endpoint of pCR vs Chemo in patients with resectable stage IIIA-B NSCLC (36.8% vs 6.9%, OR 7.88 [95% CI 1.70-36.51]; p = 0.0068)⁴.
- Here we present the results of the secondary endpoints of PFS and OS rates at 24 months.

OR = 7.88 (95% CI 1.70-36.51); p = 0.0068

Presented by Dr Mariano Provencio, Hospital Universitario Puerta de Hierro-Majadahonda, Spain

1. Provencio M. et al. Lancet Oncol 2020;21:1413-22; 2. Provencio M, et al. J Clin Oncol 2022; doi: 10.1200/JCO.21.02660; 3. Forde P, et al. Clinical Trial NEJM 2022;386:1973-1985; Provencio M, et al. J Clin Oncol 40, 2022 (suppl 16; abstr 8501)

Presented by Dr Mariano Provencio, Hospital Universitario Puerta de Hierro-Majadahonda, Spain

ENDPOINTS

Primary endpoint

• Pathological complete response in the ITT population

Secondary endpoints

- Major pathological response (MPR)
- Portion of delayed/canceled surgeries, length of hospital stays, surgical approach, incidence of AE/SAE related to surgery
- Safety and tolerability: Adverse events graded according to CTCAE v5.0
- OS at 12, 18 and 24 months
- PFS at 12, 18 and 24 months
- Potential predictive biomarkers (ctDNA, TCR)
- **Other:** (i) Downstaging; (ii) Mortality at 90 days after surgery; (iii) Association between clinical baseline characteristics and ORR, pathological response, adverse events, PFS and OS; (iv) Association between pathological response and PFS or OS; (v) Association between MPR and histology; (vi) Association between histology and PFS at 18 months.

CTCAE, Common Terminology Criteria for Adverse Events; ctDNA, circulating tumor DNA; ORR, objective response rate; TCR, T-cell receptor

STATISTICAL ANALYSIS PLAN

- The analysis was conducted according to the intention-to-treat (ITT) principle: patients who did not undergo surgery were considered as non-responders for final analysis
- The ITT population was the primary population for efficacy analysis, which included those patients who had received at least one dose of study treatment
- Pathological complete response was defined as the absence of any viable tumor cell in the resected lung specimen and all regional lymph nodes
- Referring to the results of previous phase 2 NADIM trial (NCT03081689)¹, we assumed a proportion of pCR of 10% in the Control Arm (chemotherapy [CT] + surgery) and 40% in the Experimental Arm (CT+ immunotherapy + surgery + immunotherapy)
- An alpha level of 5%, a statistical power of 80%, and a drop-out rate of 15% was set
- A sample size of 90 patients (60 in the Experimental Arm and 30 in the Control Arm) was estimated to show the difference between both groups
- An independent data monitoring committee evaluated the superiority of nivolumab + CT vs CT for pCR at the preplanned analysis

1. Provencio M, et al. Lancet Oncol 2020;21:1413–1422

BASELINE CHARACTERISTICS (ITT)

Characteristic	NIVO + Chemo (n = 57)	Chemo (n = 29)	Characteristic	NIVO + Chemo (n = 57)	Chemo (n = 29)
Age – median (range), years	63 (58-70)	62 (57-66)	TNM classification (AJCC 8th Ed.)		
Female – No. (%)	21 (36.8)	13 (44.8)		12 (211)	4 (13.8)
History of tobacco use – No. (%)				12 (21.1)	7 (13.0)
Never smoker	5 (8.7)	0 (0.0)	T2N2M0	16 (28.1)	7 (24.1)
Former smoker	23 (40.4)	10 (34.5)	T3N1M0	2 (3.5)	1 (3.5)
Current smoker	29 (50.9)	19 (65.5)	T3N2M0	13(22.8)	5 (19.3)
ECOG PS – No. (%)			T4N0M0	6 (10,5)	9 (310)
0	31 (54.4)	16 (55.2)	T 4N 11N 4O	0 (14 0)	7 (10 7)
1	26 (45.6)	13 (44.8)	14IN IIMU	8 (14.0)	5 (10.5)
Histology – No. (%)			Tumor size – Median (range), mm	43 (29-54)	52 (39-75)
Adenocarcinoma	25 (43.9)	11 (37.9)	Nodal stage – No. (%)		
Adenosquamous	1 (1.8)	0 (0.0)	NO	6 (10.5)	9 (31.0)
Squamous	21 (36.8)	14 (48.3)	NI	10 (17 5)	4 (13.8)
Large Cell Carcinoma	2 (3.5)	1 (3.5)		10 (17.5)	1 (13.0)
NOS / Undifferentiated	7 (12.3)	2 (6.9)	N2	41 (71.9)	16 (55.2)
Other	1 (1.8)	1 (3.5)	N2 multiple station	21 (36.8)	10 (34.5)

FLOW DIAGRAM

Presented by Dr Mariano Provencio, Hospital Universitario Puerta de Hierro-Majadahonda, Spain

SURGERY SUMMARY

Type of surgery, No. (%)	NIVO + Chemo (n = 53)	Chemo (n = 20)	Total (n = 73)
Pneumonectomy	6 (11.3)	2 (10.0)	8 (11.0)
Lobectomy	40 (75.5)	17 (85.0)	57 (78.1)
Bilobectomy	4 (7.5)	1 (5.0)	5 (6.8)
Segmentectomy	2 (3.8)	0 (0.0)	2 (2.7)
Right Lower Lobectomy + Segmentectomy	1 (1.9)	0 (0.0)	1 (1.4)

Resection degree, No (%)	NIVO + Chemo (n = 57)	Chemo (n = 29)		
RO	49 (92.5)	13 (65.0)		
Odds Ratio: 6.60 (95% Cl 1.67-26.02); p = 0.007				

SECONDARY ENDPOINTS – Downstaging

Downstaging, No. (%)	Yes	No	Total
Nivolumab + chemotherapy	37 (69.8)	16 (30.2)	53
Chemotherapy	8 (40.0)	12 (60.0)	20
Total	45 (61.6)	28 (38.4)	73

SECONDARY ENDPOINTS – Progression-free survival

Progression-free survival was defined as the time from randomization to any of the following events: progression of disease, recurrence disease, or death due to any cause. Progression/recurrence will have determined by RECIST 1.1

SECONDARY ENDPOINTS – PFS by pCR status

Progression-free survival was defined as the time from randomization to any of the following events: progression of disease, recurrence disease, or death due to any cause. Progression/recurrence will have determined by RECIST 1.1

Presented by Dr Mariano Provencio, Hospital Universitario Puerta de Hierro-Majadahonda, Spain

SECONDARY ENDPOINTS – Overall survival

Overall survival was defined as the time from randomization to death. OS was censored on the last date a participant was known to be alive

SECONDARY ENDPOINTS – OS by pCR status

Overall survival was defined as the time from randomization to death. OS was censored on the last date a participant was known to be alive

CONCLUSIONS

- NADIM II confirms superiority of neoadjuvant nivolumab plus chemotherapy combination in patients with resectable stage IIIA-B NSCLC
- The addition of neoadjuvant nivolumab to chemotherapy:
 - → Significantly improved pCR (OR = 7.88 [95% CI 1.70-36.51]) (Chi-squared test: p=0.0068)
 - \rightarrow Significantly improved PFS rate at 12 (89.3% vs 60.7%, p=0.001) and 24 months (66.6% vs 42.3%, p=0.012)
 - \rightarrow Significantly improved OS rate at 12 (98.2% vs 82.1%, p=0.007) and 24 months (84.7% vs 63.4%, p=0.014)
 - ightarrow Maintained a tolerable safety profile, with a moderate increase in grade 3-4 toxicity
 - \rightarrow Did not impede the feasibility of surgery
- NADIM II is the first clinical trial with a neoadjuvant immunotherapy-based combination (nivolumab + chemotherapy) for resectable stage IIIA-B NSCLC to show improved OS