
Sequencing Endocrine Therapy and Targeted Agents for the Treatment of Metastatic HR+/HER2- Breast Cancer

Neelima Vidula, MD Assistant Professor of Medicine, Harvard Medical School

Attending Physician, Medical Oncology, Massachusetts General Hospital

Targets in hormone receptor positive (HR+)/HER2- metastatic breast cancer (MBC)

Activation of many growth factor receptor and estrogen receptor signaling pathways can promote growth of HR+/HER2-MBC.

 However, steps in these pathways can be inhibited by endocrine therapies and targeted agents.

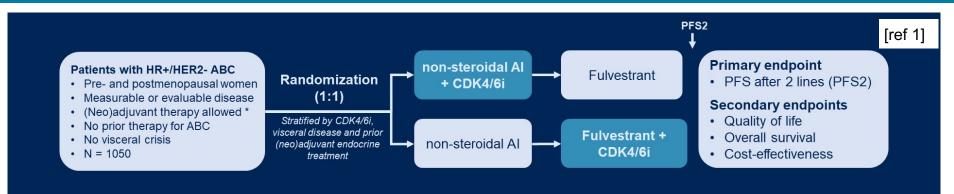
¹Image credit and reference: Adapted from Schmid, touchOncology, 2017.

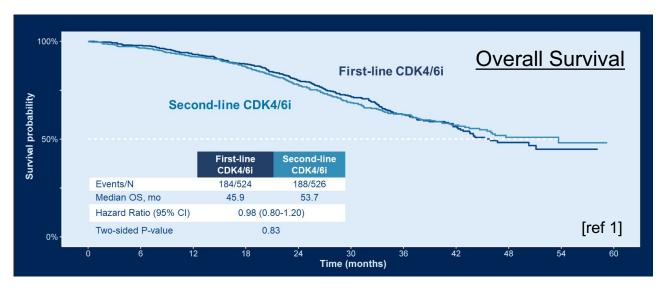
Endocrine therapy with CDK 4/6 inhibitor as 1st line therapy for HR+/HER2- MBC

Study	PALOMA-2	MONALEESA-2	MONARCH-3	MONALEESA-7
Design	Phase III First- line (Post- menopausal)	Phase III First-line (Post- menopausal)	Phase III First- line (Post- menopausal)	Phase III First-line (Premenopausal)
Therapies	Letrozole + Palbociclib vs. Letrozole	Letrozole + Ribociclib vs. Letrozole	Non steroidal AI + Abemaciclib vs. non steroidal AI	Endocrine therapy/LHRH agonist + Ribociclib vs. endocrine therapy/LHRH agonist
Median PFS	24.8 vs. 14.5 mo, HR 0.58	25.3 vs 16.0 mo, HR 0.57	28.1 vs 14.7 mo, HR 0.54	23.8 vs. 13.0 mo, HR 0.55
Median OS	53.9 vs 51.2 mo, HR 0.96 (NS)	63.9 vs 51.4 mo, HR 0.76 *	67.1 vs. 54.4 mo, HR 0.75 (interim analysis)	58.7 vs. 48 mo, HR 0.76 *

mo: months, HR: hazard ratio, *statistically significant. AI: aromatase inhibitor. NS: non-significant.

¹Finn, NEJM, 2016. ²Finn, JCO, 2022. ³Hortobagyi, NEJM, 2016. ⁴Hortobagyi, Ann Onc, 2018. ⁵Hortobagyi, Ann Onc, 2021. ⁶Goetz, JCO, 2017. ⁷Goetz, Ann Onc, 2022. ⁸Tripathy, Cancer, 2021.

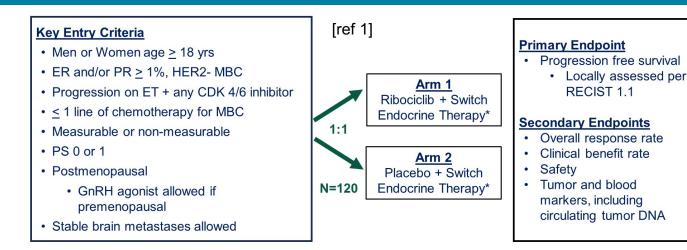

Endocrine therapy with CDK 4/6 inhibitor as 2nd line therapy for HR+/HER2- MBC


Study	PALOMA-3	MONARCH-2	MONALEESA-3
Design	Phase III Second-line (Pre & Post- menopausal)	Phase III Second- line (Pre- & Post- menopausal)	Phase III First and second-line (Post- menopausal)
Therapies	Fulvestrant +	Fulvestrant +	Fulvestrant +
	Palbociclib vs.	Abemaciclib vs.	Ribociclib vs.
	Fulvestrant	Fulvestrant	Fulvestrant
Median PFS	9.5 vs. 4.6 mo,	16.4 vs 9.3 mo,	20.5 vs 12.8 mo,
	HR 0.46	HR 0.55	HR 0.59
Median OS	34.8 vs. 28 mo,	46.7 vs 37.3 mo,	53.7 vs. 41.5 mo,
	HR 0.81	HR 0.75	HR 0.73

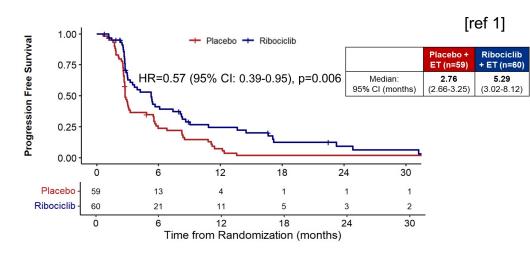
mo: months, HR: hazard ratio

¹Cristofanalli, Lancet Oncology, 2016. ²Sledge, Jama Oncol, 2020. ³Slamon, NEJM, 2020. ⁴Slamon, JCO, 2018.

Phase III study comparing CDK 4/6 inhibitor in 1st or 2nd line setting: SONIA trial



 PFS in first line setting (PFS1) longer with CDK 4/6 inhibitor (24.7 vs. 16.1 months)¹.


- No difference in PFS2 between arms (first line CDK 4/6 inhibitor 31 vs. second line CDK 4/6 inhibitor 26.8 months)¹.
- No difference in overall survival¹.

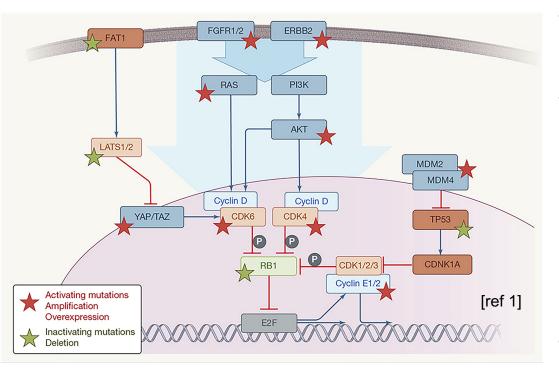
¹Image credit and reference: Sonke, ASCO, 2023.

Potential role for CDK 4/6 inhibitor after CDK 4/6 inhibitor: MAINTAIN trial

Primary Endpoint: Progression Free Survival (PFS)

 Phase II study noted improved PFS with switching to ribociclib based therapy¹.

 Notably patients had mainly received palbociclib as 1st CDK 4/6 inhibitor¹.

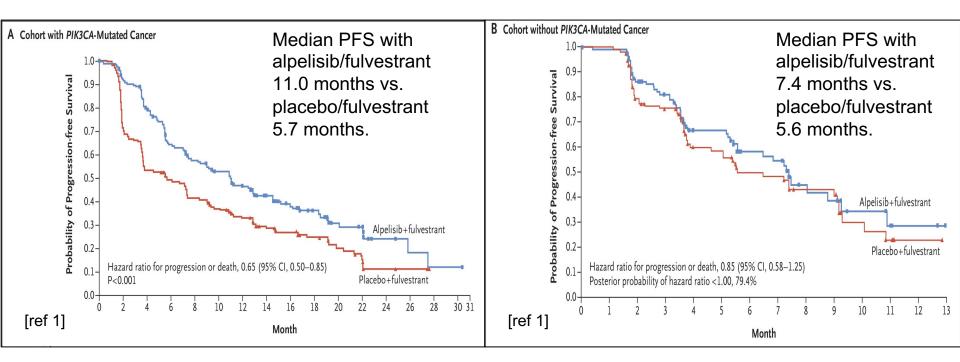

¹Image credit and reference: Kalinsky, ASCO, 2022.

Additional studies investigating sequential CDK 4/6 inhibitor use

- PACE study¹: randomized phase II study comparing fulvestrant, fulvestrant and palbociclib, and fulvestrant, palbociclib, and avelumab in patients with HR+/HER2- MBC who had prior AI + CDK 4/6 inhibitor.
 - PFS not improved with addition of palbociclib to fulvestrant¹.
 - PFS fulvestrant + palbociclib 4.6 mo vs. fulvestrant 4.8 mo, HR 1.11, p=0.62.
 - PFS fulvestrant + palbociclib + avelumab 8.1 mo.
- postMONARCH study²: phase III study of abemaciclib + fulvestrant vs. fulvestrant in HR+/HER2- MBC after progression on prior CDK 4/6 inhibitor and endocrine therapy.

¹Mayer, SABCS, 2022. ²NCT05169567.

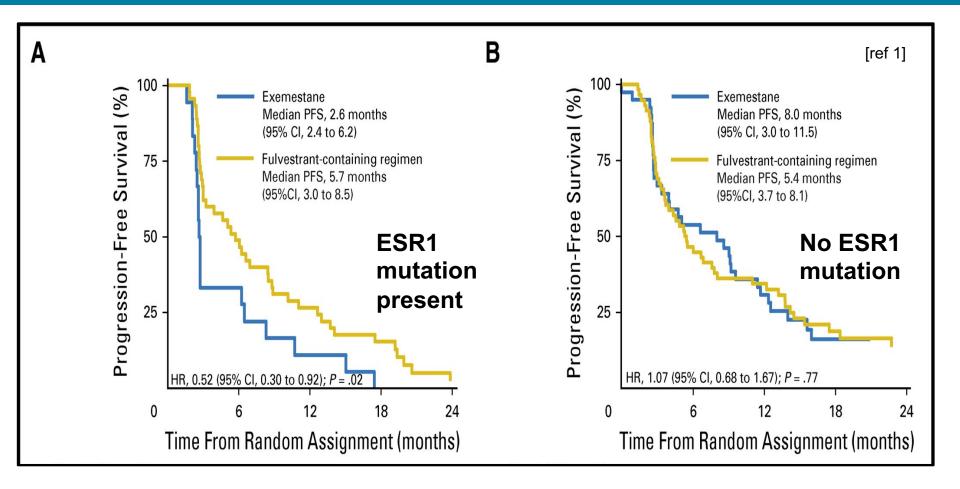
Genotype directed therapy for HR+/HER2- MBC



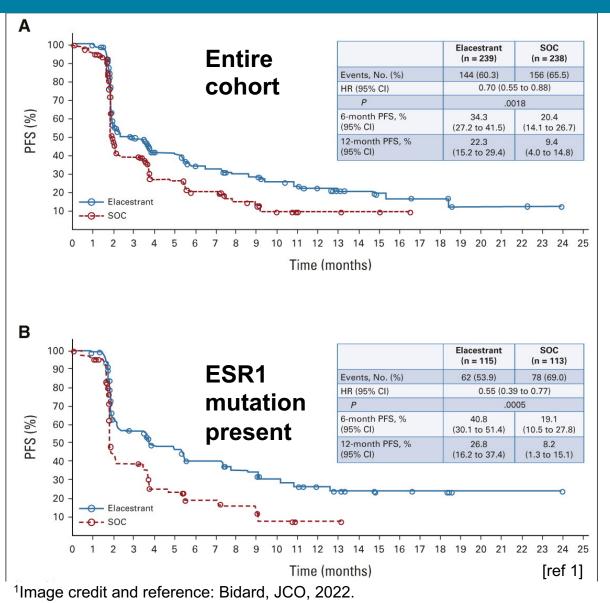
Major drivers of resistance to CDK 4/6 inhibitors¹.

- HR+/HER2- MBC is a heterogeneous disease entity with varying genomic alterations.
- New mutations may be acquired under the pressure of treatment.
 - ESR1 mutations may be found in 20-40% of patients who received a prior aromatase inhibitor².
 - *PIK3CA/AKT/mTOR* mutations may be found in 40% of HR+/HER2- MBC³.
- Cell-free DNA and/or tumor tissue genotyping can identify actionable mutations such as *PIK3CA* and *ESR1*.
- Germline genetic testing can identify actionable mutations such as *BRCA1/2*.

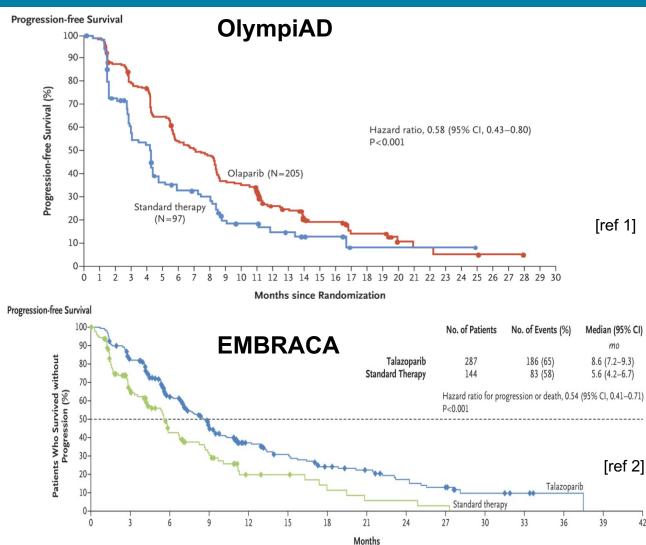
¹Image credit and reference: Alvarez-Fernandez, Cancer Cell, 2020. ²Brett, Breast Cancer Research, 2021. ³Fusco, Frontiers Oncology, 2021.


Alpelisib for *PIK3CA* Mutated HR+/HER2-MBC: SOLAR-1 trial

- Current clinical SOC to evaluate for *PIK3CA* mutations for HR+/HER2- MBC.
- BYLeive study: alpelisib and fulvestrant in *PIK3CA* HR+/HER2- MBC after CDK 4/6 inhibitor with 50% of patients alive without progressive disease at 6 months².


¹Image credit and reference: Andre, NEJM, 2019. ²Rugo, Lancet Oncology, 2021.

Fulvestrant for *ESR1* Mutant HR+/HER2-MBC: SoFEA study

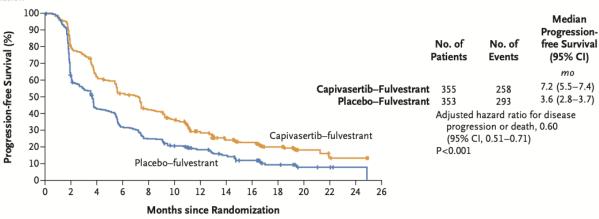

¹Image credit and reference: Fribbens. J Clin Oncol, 2016.

Elacestrant (oral SERD) for *ESR1* Mutant HR+/HER2- MBC: EMERALD study

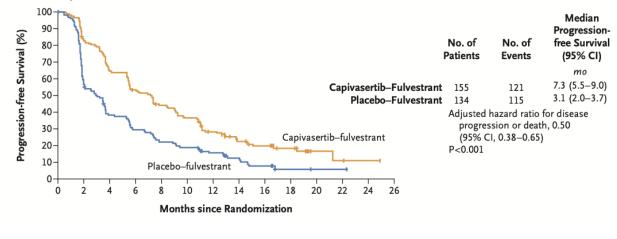
- Phase III study comparing elacestrant vs. standard endocrine therapy¹.
- ESR1 mutations present in 47.8% of patients¹.
- Improved PFS with elacestrant in ESR1 mutant MBC¹.
- Elacestrant vs. fulvestrant in ESR1 mutant MBC PFS: 3.8 vs 1.9 months¹.

PARP inhibitors for germline BRCA1/2 mutant HR+/HER2- MBC

- OlympiAD study: 2:1 randomization to olaparib vs. treatment of physician's choice [TPC] (capecitabine, vinorelbine, eribulin)¹.
- EMBRACA study: 2:1 randomization to talazoparib vs. TPC (eribulin, vinorelbine, gemcitabine, capecitabine)².
- PARP inhibitors are also being evaluated in somatic BRCA1/2 mutant metastatic breast cancer^{3,4}.

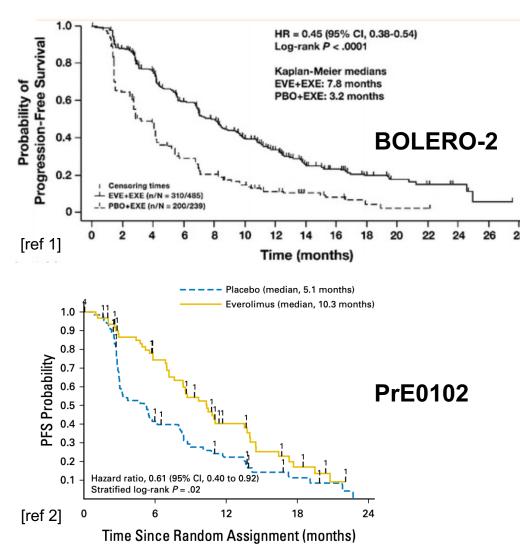

42

¹Image credit and reference: Robson, NEJM, 2017. ²Image credit and reference: Litton, NEJM, 2018. ³Tung, NCT03344965. ⁴Vidula, NCT03990896.


Capivasertib for HR+/HER2- advanced breast cancer: CAPItello-291 trial

A Overall Population

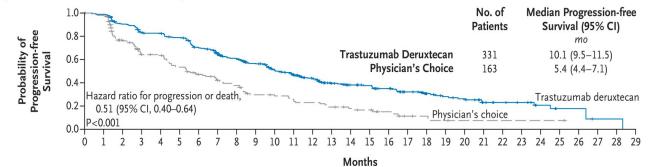
[ref 1]


B Patients with AKT Pathway-Altered Tumors

- Capivasertib is an AKT inhibitor¹.
- Phase III study comparing capivasertib and fulvestrant vs. fulvestrant in patients who had received prior AI +/-CDK 4/6 inhibitor¹.
- 40.8% of patients
 had AKT pathway
 alterations¹.
- 69.1% had received prior CDK 4/6 inhibitor¹.
- Improved PFS with addition of capivasertib¹.
- Undergoing FDA review.

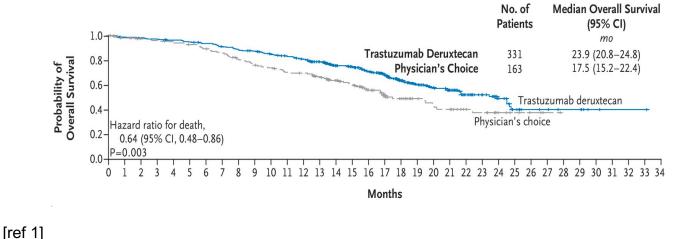
¹Image credit and reference: Turner, NEJM, 2023.

Everolimus combinations in HR+/HER2-MBC



- Everolimus is an mTOR inhibitor.
- BOLERO-2 Phase III study compared everolimus and exemestane vs. exemestane in patients who received a prior non-steroidal AI, demonstrating improvement in PFS with addition of everolimus¹.
- PrE0102 Phase II study compared everolimus and fulvestrant vs. fulvestrant in patients who received prior AI, demonstrating improved PFS with addition of everolimus².

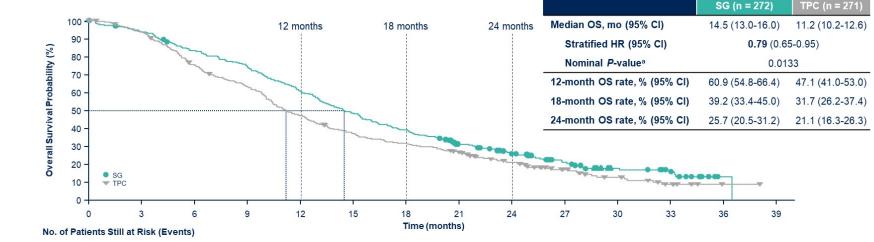
¹Image credit and reference: Yardley, Adv Therapy, 2013. ²Image credit and reference: Kornblum, JCO, 2018.


Trastuzumab Deruxtecan (T-DXd) for HER2-low advanced breast cancer: DESTINY-Breast04 HR+ cohort

Progression-free Survival in Hormone Receptor-Positive Cohort

- Randomized phase III study of T-DXd vs. TPC in HER2- low advanced breast cancer including HR+ after 1-2 prior lines of chemotherapy¹.
- Improvement in PFS and OS were seen across all cohorts with T-DXd vs. TPC, and in HR+ breast cancer¹.
- FDA approved T-DXd for HER2 low, HR+ advanced breast cancer after 1 prior chemotherapy.

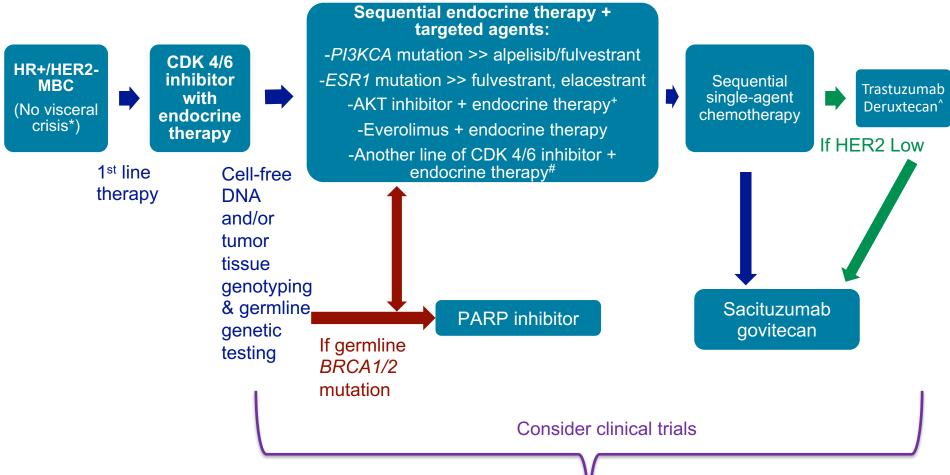
Overall Survival in Hormone Receptor-Positive Cohort



¹Image credit and reference: Modi, NEJM. 2022.

Sacituzumab Govitecan for HR+/HER2advanced breast cancer: TROPiCS-02 study

Overall Survival


[ref 1]

- Randomized phase III study of sacituzumab govitecan vs. TPC (capecitabine, vinorelbine, gemcitabine, or eribulin) in advanced HR+/HER2- breast cancer after 2-4 prior lines of chemotherapy and at least 1 prior endocrine therapy, taxane, and CDK 4/6 inhibitor¹.
- Significant improvement in PFS (SG: 5.5 months vs. TPC: 4.0 months)^{1,2} and OS with sacituzumab govitecan vs. TPC¹.
- Now FDA approved for HR+/HER2- advanced breast cancer.

¹Image credit and reference: Tolaney, ASCO, 2023. ²Rugo, JCO, 2022.

Sequencing endocrine and targeted therapies for HR+/HER2- MBC

*If visceral crisis, consider up-front chemotherapy.

⁺Capivasertib undergoing FDA review.

[^]Consider after 1-2 prior chemotherapy regimens.

[#]Phase III post-MONARCH study ongoing.

Thank you!

Contact Information: nvidula@mgh.harvard.edu