

Best of WCLC Early-Stage NSCLC Radiotherapy

Megan E. Daly MD Professor of Clinical Radiation Oncology Interim Associate Director of Clinical Research University of California Davis Comprehensive Cancer Center

Disclosure

Research Funding: Genentech, EMD Serono, Merck Consulting: Novocure, Boston Scientific, Astra Zeneca Speakers' Bureau: Curio Science, Dava Oncology

I will discuss off label use of immune checkpoint inhibitors

Themes

Toxicity of SABR

<u>MA 03.09</u>: Real World Acute Toxicity in Patients with Stage I NSCLC Treated with SBRT <u>OA 14.04</u>: Chest Wall Toxicity after Individualized Stereotactic Ablative Radiotherapy for Lung Tumors

Use of SABR and Disparities in Lung Cancer Treatment

<u>EP 02.02-002</u>: Increased Utilization of Stereotactic Body Radiotherapy in the United States has Decreased Treatment Disparities for Early-Stage Lung Cancer

Immunotherapy with SABR in Early-Stage NSCLC

<u>P1.05-01</u>: Phase II Study of ctDNA Directed Consolidation Durvalumab after Induction and Concurrent Durvalumab with SABR for Stage I NSCLC

Real-world acute toxicity in patients with stage I NSCLC treated with SBRT

Peter S.N. van Rossum, <u>Nienke Wolfhagen</u>, Antoinet M. van der Wel, Liselotte W. van Bockel, Ida E.M. Coremans, André L.A.J. Dekker, Corine A. van Es, Katrien E.A. de Jaeger, Hans P. Knol, M. Willemijn Kolff, Friederike L.A. Koppe, Jacqueline Pomp, Dominic A.X. Schinagl, Femke O.B. Spoelstra, Caroline J.A. Tissing-Tan, J. Fred Ubbels, Ernest J.A. Vonk, Noëlle C.M.G. van der Voort van Zijp, Erwin M. Wiegman, A.M. van der Geest, Bart J.T. Reymen, Daphne van Kampen, Ronald A.M. Damhuis, José S.A. Belderbos.

DLCA DUTCH LUNG CANCER AUDIT

METHODS

Nationwide population-based study:

• Data from DLCA-R (all 19 Rad Onc departments in The Netherlands)

Inclusion:

- Patients with primary cT1-2aN0M0 (stage I) NSCLC
- Either pathologic or clinical evidence
- SBRT with curative intent between 2017 and 2020

Outcome = Acute toxicity:

- Radiation-pneumonitis grade ≥ 2 or other non-hematologic toxicity grade ≥ 3
- <90 days after start of SBRT

<u>Analysis:</u>

- Multiple imputation of missing data
- Logistic regression prediction models

RESULTS

Total:

n=5,285

• Acute toxicity: n=218 (4.1%)

Univariable analysis:

Associated with acute toxicity

- WHO performance status, pulmonary co-morbidity
- FEV1, DLCO
- Clinical (vs. histologic) evidence, middle/lower (vs. upper) lobe
- cT-stage, GTV, tumor BED, mean lung dose, lung V20Gy

Not associated with acute toxicity

- Age (linear or categorical)
- Gender, CCI, smoking, weight loss
- Tumor lateralization

4%

DLCA

DUTCH LUNG CANCER AUDIT

0.15

AUGUST 6-9, 2022 | VIENNA, AUSTRIA

RESULTS: Prediction model

Predictor	OR (95% CI)	
WHO performance status 0 1 ≥2	<i>Ref</i> 1.13 (0.72-1.75) 1.88 (1.15-3.07)	0.15 0.8- 0.8- 0.6- 0.6- 0.6- 0.10- 0.05- 0.05-
Log(DLCO), % of predicted	0.30 (0.12-0.74)	
Pathologic confirmation	0.62 (0.44-0.88)	→ 0.6- vitiginal dataset Original dataset Apparent c-statistic = ba
Tumor location Upper lobe Middle/lower lobe	<i>Ref</i> 1.54 (1.10-2.15)	0.4- 0.2- 0.2-
Clinical T-stage cT1a cT1b cT1c cT2a	<i>Ref</i> 1.59 (1.01-2.51) 2.15 (1.30-3.55) 2.21 (1.22-3.99)	0.68 (95%Cl: 0.65-0.72) 0.00 0.2 0.4 0.6 0.8 1.0 1 - Specificity 0.00 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 Predicted risk of acute toxicity
Log(Mean Lung Dose), Gy	1.44 (0.86-2.42)	

Van Rossum et al. Real-world acute toxicity in patients with Stage I NSCLC treated with SBRT. WCLC 2022.

In Context

- 4.1% rate of acute toxicity in a large, real-world dataset is largely consistent with prior studies demonstrating low rates of acute and overall toxicity following lung SABR
- Many prospective SABR trials report acute and late toxicity in aggregate, thus direct comparison is challenging

Reported Toxicity in Prospective Trials

Trial	N=	Pneumonitis	All grade 3+ toxicity (acute+late)
RTOG 0236 (JAMA 2010)	55 evaluable	2 (3.6%) grade 3 No grade 4-5	15 (27%)
RTOG 0813 (JCO 2019)	92 evaluable for toxicity	2 (2%) grade 3 No grade 4-5	8 (9%)
RTOG 0618 (JAMA Onc 2018)	26 evaluable	No grade 3+ Grade 2 not reported	None
RTOG 0915 (IJROBP 2015)	84 evaluable	2 grade 3 pneumonitis Grade 2 not reported	10 (12%) (protocol specified AEs)
Baumann et al (JCO 2009)	57	10 (18%) grade 1-2 No grade 3+	16 (28%) first 18 months
Bral et al (JROBP 2011)	40	2 (12%)grade 3	5 (30%) grade 3 No grade 4-5
Current Report	5285	NR	4.1% acute toxicity

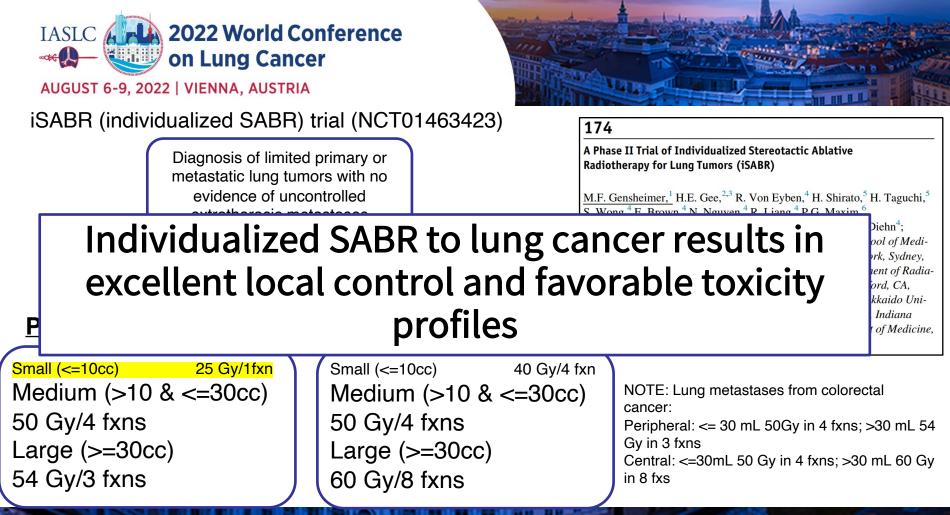
Age was **<u>not</u>** a predictor of acute toxicity

Consistent with prior studies, lung SBRT is safe in the elderly

Study	Ν	Median Age	Pneumonitis	Other Toxicity
Bei Y et al (J Radiat Res 2020) PMID 32383730	153	85 (range: 80-94)	8.5% grade 2 2.6% grade 3 0.6% grade 4	No grade 3+
Cassidy RJ et al (Clin Lung Cancer 2017) PMID 28373068	58	84.9 (range: 80.1- 95.2)	31% grade 2 3.5% grade 3	5% grade 3
Sanndhu AP et al (Clin Lung Cancer 2014) PMID 24157245	24	85 (range:80-89)	No grade 3+	No grade 3+
Van der Voort van Zyp et al, Lung Cancer 2010 PMID 20060195	38	82 (range: 80-90)	2.6% grade 3	5% acute grade 3 16% late grade 3
Videtic GMM et al. PRO 2017. PMID 28867545	19	91.6 (range: 90-97)	No grade 3+	No grade 3+

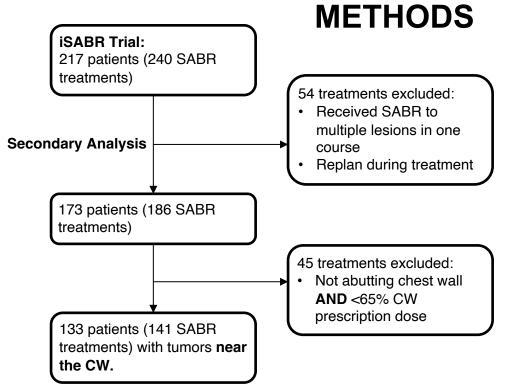
Limitations

- Authors define acute toxicity as grade 2+ pneumonitis or grade 3+ nonhematologic toxicity within 90 days of SBRT
- Window for development of pneumonitis extends to ~6 months in many studies and risk of pneumonitis may be underestimated by this window
- Majority of serious toxicity following lung SABR is late, not acute
 - Hemoptysis, strictures, fibrosis
- Nonetheless, these data provide an excellent real-world estimate of acute toxicity following lung SABR



Chest wall toxicity after individualized stereotactic ablative radiotherapy for lung tumors

Brianna Lau, Yufan (Fred) Wu, Jie Fu, Sunan Cui, Daniel Pham, Lawrie Skinner, Hiroki Shirato, Hiroshi Taguchi, Michael Gensheimer, Harriet Gee, Alexander Chin, Maximillian Diehn, Billy Loo, Lucas Vitzthum


> Stanford University, School of Medicine Palo Alto, CA, USA

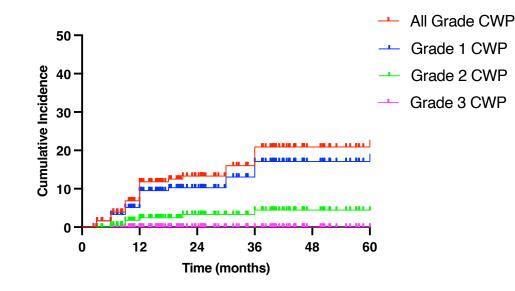
Lau B et al. Chest wall Toxicity after individualized stereotactic ablative radiotherapy for lung tumors. WCLC 2022

Lau B et al. Chest wall Toxicity after individualized stereotactic ablative radiotherapy for lung tumors. WCLC 2022

- Tumor location relative to the chest wall (i.e abutting vs. not abutting), treatment plan parameters and toxicity profiles were collected.
- Toxicity was graded per the National Cancer Institute Common Toxicity Criteria for Adverse Events (CTCAE) Version 4.
- Evaluated the potential association using Log-rank analysis.

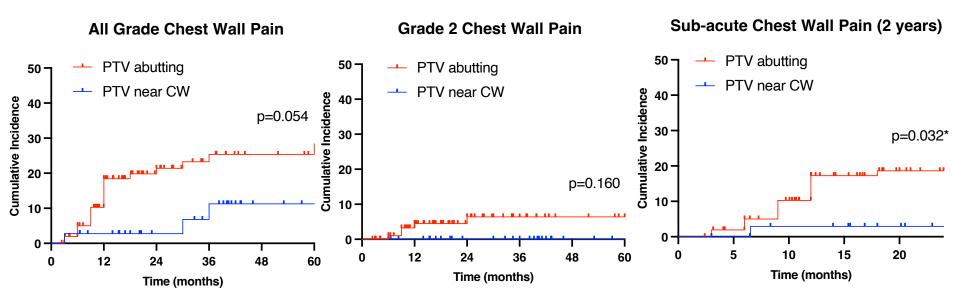
BASELINE CHARACTERISTICS

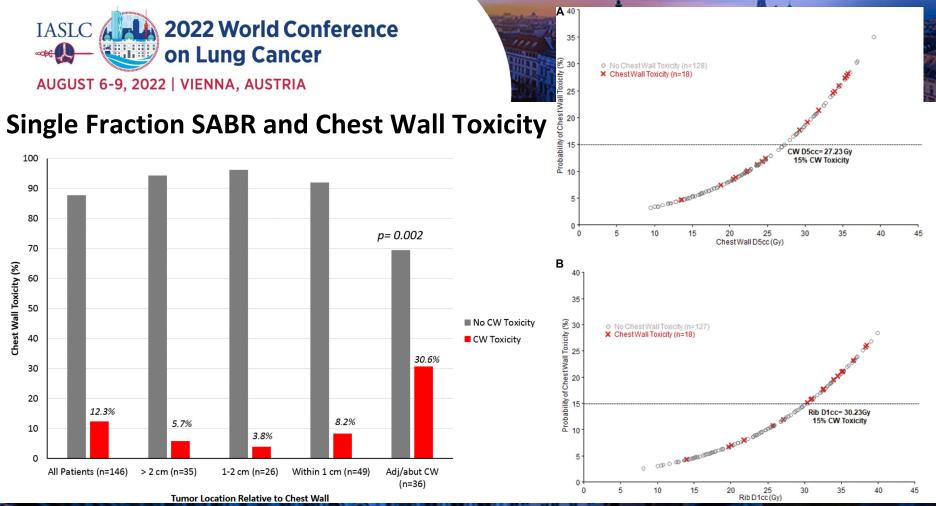
Total (n)	186
Peripheral	71%
Central	29%
Primary	76%
Metastatic	24%
Adenocarcinoma	60%
Squamous cell	17%
Other	21%
≤10 cc	74%
10-30 cc	20%
>30 cc	7%
Abutting CW	46%
Not Abutting/Close	30%
Not Close	24%


Lau B et al. Chest wall Toxicity after individualized stereotactic ablative radiotherapy for lung tumors. WCLC 2022

RESULTS

Thirty-one patients (16.8%) developed chest wall pain. There was no Grade 3+ toxicity.



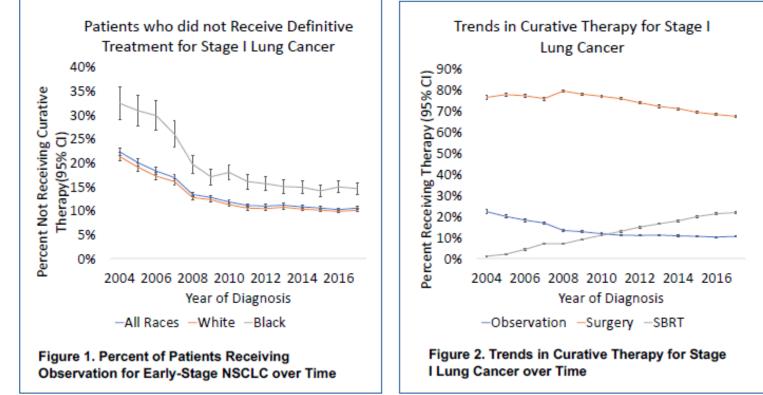


RESULTS

Cumulative Incidence of Chest Wall Pain by location

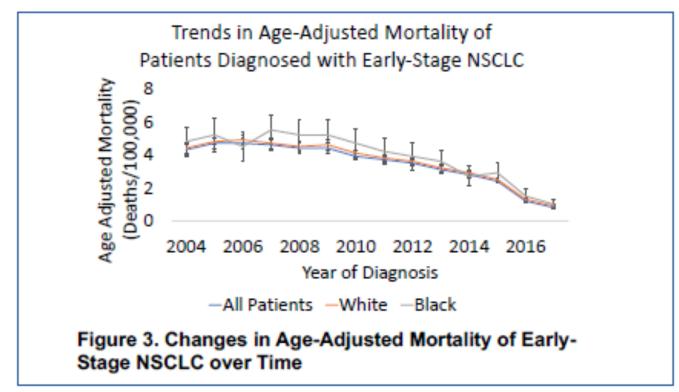
Lau B et al. Chest wall Toxicity after individualized stereotactic ablative radiotherapy for lung tumors. WCLC 2022

Manyam BV et al. Effect of Tumor Location and Dosimetric Predictors for Chest Wall Toxicity in Single-Fraction Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer, PRO 2019

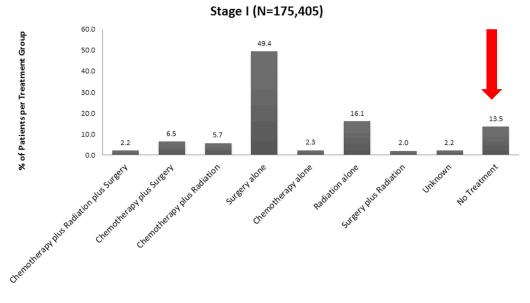

Increased Utilization of Stereotactic Body Radiotherapy in the United States has Decreased Treatment Disparities for Early-Stage Lung Cancer Ashwin Ganesh, BS, Mark Korpics, MD, Mary Pasquinelli, DNP, Lawrence Feldman, MD, Matthew Koshy, MD Department of Radiation Oncology University of Illinois Hospital and Health Sciences System

THE UNIVERSITYOF ILLINOIS COLLEGE OF MEDICINE CHICAGO PEORIA ROCKFORD URBANA

- The National Cancer Database (NCDB) was utilized to determine the proportion of patients with NSCLC receiving surgical treatment, SBRT, or no definitive treatment (observation) for clinical stage I-IIA NOMO NSCLC from 2004-2017 (n=337794).
- The receipt of treatment for NSCLC was evaluated in terms of the overall population and by race.
- Univariable and multivariable logistic regressions were used to determine factors associated with the likelihood of receiving definitive treatment.
- Subsequently, we evaluated changes in ageadjusted mortality using the Surveillance, Epidemiology, and End Result (SEER) database.



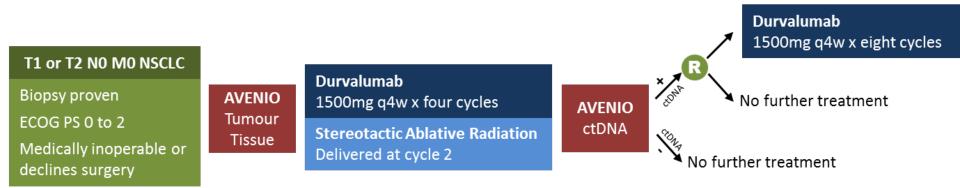
Ganesh A et al. Increased Utilization of Stereotactic Body Radiotherapy in the United States has Decreased Treatment Disparities for Early-Stage Lung Cancer. WCLC 2022



No treatment is common in NSCLC Supplementary Figure 1.

Prior NCDB study evaluating era from 1998-2012 found a **13.5%** rate of no treatment for Stage I NSCLC

Regardless of stage, untreated patients had significantly shorter overall survival (OS) (p < 0.0001).


WCLC 2022 study highlights how SABR has changed these patterns and improved survival in early-stage NSCLC

Trial in Progress: IO in Early Stage, Medically Inoperable NSCLC

Mohamed I et al. Phase II Study of ctDNA Directed Consolidation Durvalumab after Induction and Concurrent Durvalumab with SABR for Stage INSCLC

Ongoing Randomized Trials with SABR + ICI for Early-Stage NSCLC

Study	Drug	Timing	Duration Checkpoint Inhibitor	Primary Endpoint	Ν
PACIFIC 4	Durvalumab	Adjuvant	Up to 24 months	PFS	630
SWOG/NRG S1914	Atezolizumab	Neoadjuvant, concurrent and adjuvant	Up to 6 months	OS	480
KEYNOTE 867	Pembrolizumab	Concurrent and Adjuvant	Up to 12 months	OS and EFS	530

Thank you!

