



# Pulmonary – From Diagnostics to Therapeutics

## Best of WCLC 2022

Nicholas Stollenwerk, MD University of California, Davis





# **Presenter Disclosures**

I do not have any relevant financial relationships to disclose





### Overview

- 1) Lung Cancer Screening and Imaging
- 2) Bronchoscopy diagnostics and therapeutics





# Lung Cancer Screening

### Take home messages:

- There is no one-size-fits-all in LCS.
- Lung Cancer Screening rates are low, for many reasons.
- Non-radiographic screening tests are needed and will add to current image-based screening.
- Machine learning will likely help us screen in the future.



AUGUST 6-9, 2022 | VIENNA, AUSTRIA



#### Lung cancer screening patient experiences and satisfaction: Quantitative and qualitative findings from a survey study

Jaileene Pérez-Morales', Jarred Miller', Haley Tolbert', Rashmi Pathak', Monica Reyes', Jhanelle E. Gray', Vani N. Simmons', Gwendolyn P. Quinn', and Matthew B. Schabath'

<sup>1</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; <sup>2</sup>New York University Grossman School of Medicine and Perlmutter Cancer Center, New York, NY, USA

#### Figure 5: Theme and subthemes of patient's response to open-ended questions

#### **Positive Experiences**

- Always treated very well by radiation staff
- I received a level of comfort to find out that I have probably no long-term issues as a result of my smoking
- The medical staff and administrative staff consistently deliver the highest level of care and attention to myself and other family members at Moffitt's facilities
- All went well as advertised. Appointment was met by hospital staff in timely manner and all were efficient at their jobs

#### Negative Experiences

- Occasional difficulty in scheduling appointment
- Distance from Sarasota and lack Of 2-way communication with radiologists/screening doctors.
- No return calls and no offer to review results.
- Charges that continue after I pay my \$150 each year.
- No follow up, lack of understanding of results
- Billing issues

### This all makes a lot of sense!



AUGUST 6-9, 2022 | VIENNA, AUSTRIA





### AUGUST 6-9, 2022 | VIENNA, AUSTRIA

#### The Correlation Between Exhaled Volatile Organic Compounds Using Breath Analyzer with Interleukin-23 (IL-23) in Lung Cancer

Raden Dicky Wirawan Listiandoko\*, Ungky Agus Setyawan, Triwahju Astuti Department of Pulmonology and Respiratory Medicine Medical Faculty of Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, Indonesia

- Why measure eVOCs? Non-invasive, repeatable over time, and possibly less expensive.
- IL23-producing human lung cancer cells promote tumor growth. Serum levels are associated with lung cancer.

Very interesting. Not sure how I would use this yet. Even eNO in asthma is not consistently helpful.

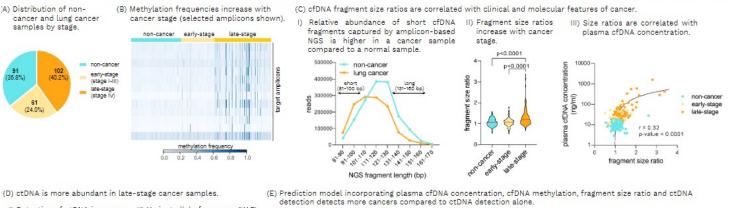


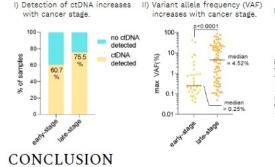


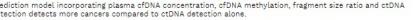
#### Common MicroRNAs in Pre-diagnostic Serum Associated with Lung Cancer in Two Cohorts up to Eight Years Before Diagnosis: A HUNT Study

O.D. Røe1,2,3,4, I. Fotopoulos5, O.T.D. Nguyen1,2, T.H. Nøst6,7, M. Markaki5, V. Lagani8,9, R. Mjelle1,7, T.M. Sandanger6, P. Sætrom1,7, I. Tsamardinos5 1Norwegian University of Science and Technology, Trondheim/NO ,2Levanger Hospital, Nord-Trøndelag Health Trust, Levanger/NO ,3Aalborg University Hospital, Aalborg/DK ,4Aalborg University Hospital, Aalborg/DK ,5FORTH, Heraklion/GR ,6UiT The Arctic University of Norway, Tromsø/NO ,7NTNU – Norwegian University of Science and Technology, Trondheim/NO ,8Ilia State University, Tblisi/GE ,9King Abdullah University of Science and Technology KAUST, Tuwal/SA

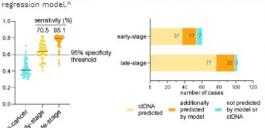
**Conclusions**: There were a few significantly differential expressed microRNAs in serum up to eight years before diagnosis. These promising microRNAs alone, or in concert, may serve as early diagnostic or prognostic lung cancer biomarkers. These findings need to be validated in a larger prospective serum dataset.


Exciting, however, I agree, these findings will need to be validated in larger prospective serum data sets.




### Sensitive Detection of Lung Cancer Using A Multiomic Plasma Cell-Free DNA (cfDNA) Sequencing Assay


Jing Shan Lim<sup>1</sup>, Jia Min Ho<sup>2</sup>, Hao Chen<sup>2</sup>, Aravind Madan Mohan<sup>2</sup>, Yee Fang Hum<sup>2</sup>, Ankit Das<sup>2</sup>, Jin Wee Lee<sup>2</sup>, Min-Han Tan<sup>1</sup>, Yukti Choudhury<sup>2</sup> <sup>1</sup>Lucence Health Inc, Palo Alto, CA, USA, <sup>2</sup>Lucence Diagnostics Pte Ltd, Singapore







) Prediction probabilities II) At 95% specificity, the prediction model provides an additional diagnostic sensitivity generated by logistic



of 23.9% for overall lung cancer detection compared to ctDNA detection alone.

Lung Cancer

Stage

Early-stage

Late-stage 75.5 21.6 All lung 69.9 85.9 23.9 cancer cases unhers represent sensitivity from averaged oredicted probabilities, and thus differ from the abstract in which average sensitivity from each cross-validation fold was reported. Cancer samples with no otDNA detected, but were accurately predicted by the model. Numbers updated from abstract.

Sensitivity

by ctDNA

60.7

Sensitivity

by

prediction

model^ (%)

70.5

Additional

diagnostic

vield by

model\* (%)

27.9

Exciting, but there is still overlap in the groups. We will still need imaging and tissue.





#### Abstract Title: Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results

<u>A. Rosell<sup>1</sup></u>, S. Baeza<sup>2</sup>, S. Garcia-Reina<sup>2</sup>, J. L. Mate<sup>2</sup>, I. Guasch<sup>2</sup>, I. Nogueira<sup>2</sup>, I. Garcia-Olivé<sup>2</sup>, G. Torres<sup>3</sup>, C. Sànchez-Ramos<sup>3</sup>, D. Gil<sup>3</sup> <sup>1</sup>Hospital Germans Trias i Pujol; UAB, BRN - Barcelona, <sup>2</sup>Hospital Germans Trias i Pujol - Barcelona , <sup>3</sup>Computer Vision Centre, UAB - Barcelona (Spain)

#### **Conclusions**

In our sample, the application of a hybrid radiomic system achieves high diagnostic accuracy (96.3%) to detect malignant nodules on chest CT. External validation in a lung cancer screening program is needed. Funded by: ACMCiB, BRN, Fundació Ramon Pla, Lung Ambition Alliance

> \*\*\*Radiomics is the high-throughput mining of quantitative image features from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy.

Currently, the field of radiomics lacks standardization. More data on clinical relevance and scientific integrity is needed.





### The National Lung Screening Trial (NLST) vs Nederlands–Leuvens Longkanker Screenings Onderzoek Trial (NELSON)

### <u>NLST:</u>

- Ages 55-74.
- >30 pack years.
- Active smoker or quit within last 15 years.
- 3 annual scans
- 20.0% LC mortality reduction.
- Current Lung-RADS guidelines have adapted the diameter-based NLST protocol.

NELSON:

- Ages 50-74. Mostly men.
- >15 cigarettes a day for >25 years or >10 cigarettes a day for >30 years.
- Active smoker or quit within last 10 years.
- CT at 1, 2, and 2.5 years
- Semiautomated software determination of the nodule volume.
- 24.0% LC mortality reduction (men).
- BTS guidelines recommend a volumebased NELSON protocol.



### A COMPARISON OF STAGE- AND HISTOLOGY-SPECIFIC CT SENSITIVITY IN THE NELSON TRIAL AND THE NLST

Koen de Nijs<sup>1</sup>, Kevin ten Haaf<sup>1</sup>, Carlijn M. van der Aalst<sup>1</sup>, Matthijs Oudkerk<sup>2</sup>, Harry J. de Koning<sup>1</sup>, on behalf of the NELSON study consortium

 Erasmus University Medical Center, department of Public Health – Rotterdam, the Netherlands
University Medical Center Groningen – Groningen, the Netherlands



### Take home messages from this group:

- Higher sensitivity in NELSON for early-stage adenocarcinoma and stage 2 squamous cell carcinoma.
- This higher CT sensitivity partially explains the favorable stage-shift and efficacy of the NELSON trial.
- Volume-based nodule management may improve the potential for lung cancer mortality reduction in population-based screening programs.



### Early Diagnosis of Lung Cancer Among Younger vs. Older Adults: Widening Differences in the Era of Lung Cancer

Screening

Alexandra L. Potter Massachusetts General Hospital United States



Take home messages from this group:

- Younger adults (20-49 years) diagnosed with lung cancer are identified late in their disease course (>64%).
  - > 80% of age 20-29 presents with stage IV lung cancer.
  - Compared to 40% in patients older than 70.
- Early diagnosis stage shift ahs been demonstrated in patients over 50 (2018 compared to 2010), but not in younger patients.
- Different tumor biology, delays in diagnosis, and the absence of early detection methods, likely contribute to the high rate of stage IV disease among young adults.
- Although there was no improvement in early diagnosis among young adults. Median survival of young adults diagnosed with lung cancer increased by 14 months from 2010-2018, largely due to improvements in survival for patients with advanced disease.
- Identifying cancer in non-screening eligible groups poses a major challenge. Strategies to increase the early detection of lung cancer among patients currently ineligible for lung cancer screening (younger patients and older patients without sufficient risk factors) are urgently needed.





### The Granularity of Lung Cancer Screening Implementation

Anand Devaraj Royal Brompton Hospital Imperial College London UK

### Take home messages from this group:

- Both NELSON and NLST have demonstrated that lung cancer screening reduced lung cancer mortality
- Comparison of CT sensitivity between NELSON and NLST using MISCAN model showed higher CT sensitivity for NELSON
- The computer program MISCAN is developed for use in evaluation of mass screening for disease

\*\*The computer program MISCAN is developed for use in evaluation of mass screening for disease.





### US Preventative Services Task Force Recommendations 2021 vs 2013

- Ages 50-80
- >20 pack years.
- Active smoker or quit within last 15 years.
- 3 annual scans
- Additionally, clinicians can consider discontinuing screening when a person has either not smoked for 15 years or has developed a health problem that significantly limits life expectancy or the ability or willingness to undergo curative long surgery.





# **Bronchoscopy: Diagnosis and Therapeutics**

## Take home messages:

- The diagnostic accuracy of bronchoscopy has continued to improve over the past 20 years.
- With robotic-assisted bronchoscopy (RAB) and cone-beam CT (CBCT), diagnostic yield is similar to transthoracic needle aspiration.
- With this increased accuracy, therapeutics are becoming a more realistic possibility. \*\*The following 2 presentations from the 2022 WCLC from Desi ter

Woerds and Daniela Gompelmann have excellent images. I am using this images for this presentation. These are not my personal images.

Navigation Bronchoscopy Mediated Sentinel Lymph Node Procedure: an Explorative Study in Ex-vivo Lung Cancer Specimens

Desi (K.M.) ter Woerds, Roel (L.J.) Verhoeven, Erik (H.F.M.) van der Heijden



Radboudumc



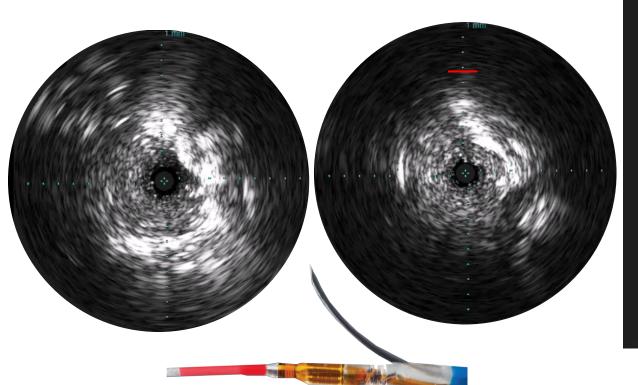


# Take home messages:

- The pioneer plus catheter is an IVUS-guided catheter used in the treatment of chronic total occlusion of blood vessels.
- This group at Radbound UMC was able demonstrate (ex-vivo) that peripheral lymph nodes (or nodules) could be injected realtime. Isotope injection was verified using SPECT.
- This offers the possibility of real time guidance, hence verification of biopsy or injection.
- This is one of many possible tools. In-vivo feasibility to needs be determined.

### From Desi (K.M.) ter Woerds, Roel (L.J.) Verhoeven, Erik (H.F.M.) van der Heijden




From Desi (K.M.) ter Woerds, Roel (L.J.) Verhoeven, Erik (H.F.M.) van der Heijden

# **US-images**

# **SPECT/CT-images**

Tumor visibility

### Injection visibility



Intratumoral injections

### **Peritumoral injections**





### Radboudumc





# Diagnostic and Interventional Bronchoscopy: Updates and Futures

Daniela Gompelmann

Medical University of Vienna Austria





### Take home messages:

- Standard bronchoscopy using fluoroscopic guidance does not perform well for small nodules.
  - ~60% sensitivity for nodules >2 cm diameter and <20% for nodules less than 2 cm diameter.
  - Peripheral location, ground glass density, and lack of an air-bronchogram decrease yield.
  - Yield depends significantly on bronchoscopist skill.
- In skilled operators using radial EBUS and/or electromagnetic navigation, bronchoscopy yield has been >70%.



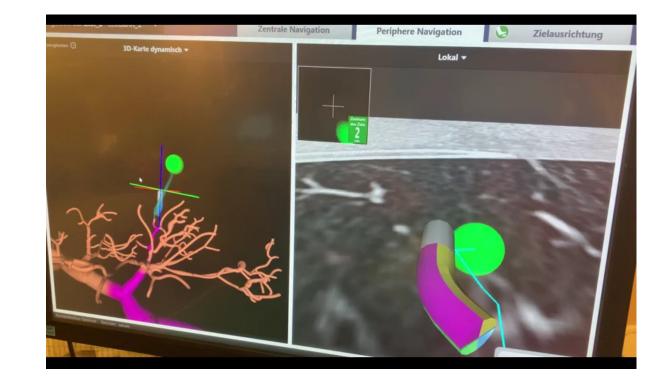
### Take home messages:

 More recent studies using robotic-assisted bronchoscopy and cone-beam CT have show yields of ~90%.

| Study                  | Number of patients/lesions | Mean diameter mm | Navigate and assistant techniques | Diagnostic yield % |
|------------------------|----------------------------|------------------|-----------------------------------|--------------------|
| Makris, 2007 (55)      | 40/40                      | 23.5             | ENB                               | 62.5               |
| Eberhardt, 2007 (18)   | 39/39                      | 28.0             | ENB                               | 59.0               |
| Bertoletti, 2009 (56)  | 54/54                      | 31.2             | ENB                               | 61.1               |
| Al-Jaghbeer, 2016 (15) | 92/98                      | 26.0             | ENB                               | 60.0               |
| Eberhardt, 2007 (18)   | 40/40                      | 24.0             | ENB+RP-EBUS                       | 87.5               |
| Lamprecht, 2009 (57)   | 13/13                      | 30.0             | ENB+ROSE                          | 76.9               |
| Lamprecht, 2012 (58)   | 112/112                    | 27.1             | ENB+ROSE                          | 83.9               |
| Karnak, 2013 (25)      | 54/103                     | 16.5             | ENB+ROSE                          | 83.3               |
| Pritchett, 2018 (19)   | 75/93                      | 16.0             | ENB+CBCT                          | 93.5               |
| He, 2019 (22)          | 37/37                      | 21.0             | ENBCB                             | 89.2               |

• This increased accuracy now makes the development of therapies using bronchoscopic guidance for treatment of early-stage lung cancer a possibility.

### Yang, et al. Transl Cancer Res. 2021




AUGUST 6-9, 2022 | VIENNA, AUSTRIA



From Daniela Gompelmann (Electromagnetic Navigation Bronchoscopy)



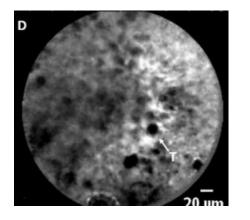




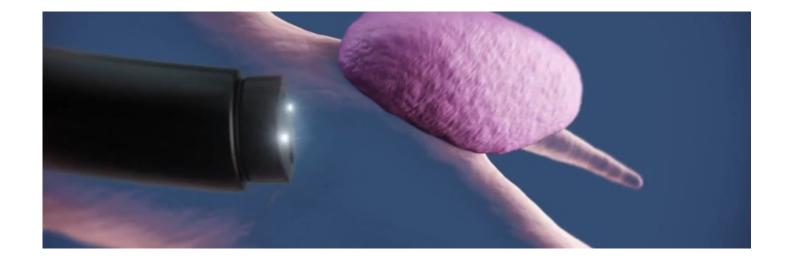
AUGUST 6-9, 2022 | VIENNA, AUSTRIA

### From Daniela Gompelmann (Radial EBUS)










# \*



From Daniela Gompelmann (Needle-based confocal laser endomicroscopy - nCLE)



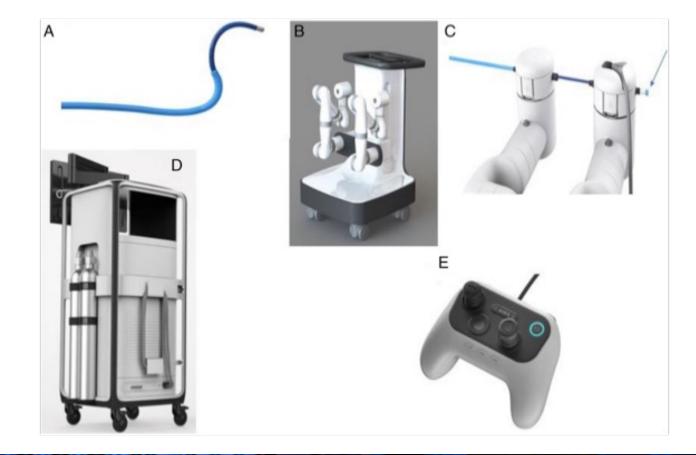
Kramer T et al. Thorax 2021 Manley et al. Presentation ID 232. ERS 2021





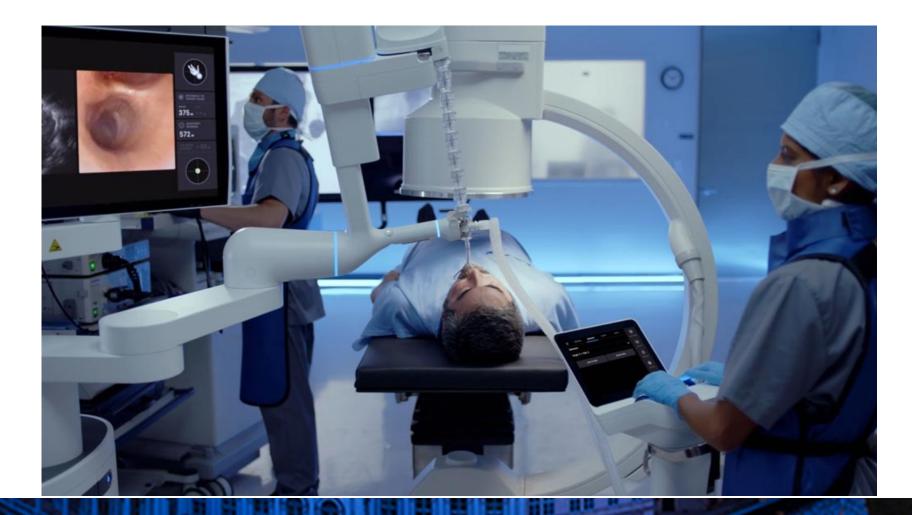
### Robotic-assisted bronchoscopy (RAB)

2 systems currently available


- One system uses virtual bronchoscopy, electromagnetic navigation, and robotic bronchoscopy.
- Visualization all the way to the biopsy site.
- The other system combines visual and virtual bronchoscopy with shapesensor technology to determine location relative to the airways.
- Avoids the problems of electromagnetic navigation.



### AUGUST 6-9, 2022 | VIENNA, AUSTRIA

















AUGUST 6-9, 2022 | VIENNA, AUSTRIA









### Cone-beam CT systems



floor mounted (A); ceiling (B); biplane (C); CBCT-enabled mobile (D); robotic (E).

Setser et al. J Thorac Dis 2020.





### Bronchoscopy directed therapeutics for early stage lung cancer.

From Daniela Gompelmann

- Radiofrequency ablation
- Microwave ablation
- Photodynamic therapy
- Brachytherapy
- Cryotherapy
- Vapor ablation

| Trials                            |      | Tumour         | Technique                            | Outcome                                           |
|-----------------------------------|------|----------------|--------------------------------------|---------------------------------------------------|
| Tanabe et al.<br>Chest 2010       | n=10 | NSCLC T1N0M0   | Endoscopic RFA under CT-<br>guidance | safe and feasible                                 |
| Koizumi et al<br>Respiration 2015 | n=20 | NSCLC T1-2N0M0 | Endoscopic RFA under CT-<br>guidance | local control in 82.6%                            |
| Xie F et al.<br>Respiration 2017  | n=3  | NSCLC stage IA | Endoscopic RFA under CT-<br>guidance | partial response (n=2)<br>complete response (n=1) |

| Trial                                          |      | Tumour                         | Technique                         | Outcome                                                                        |
|------------------------------------------------|------|--------------------------------|-----------------------------------|--------------------------------------------------------------------------------|
| Lau et al.<br>Abstract. J Thorac Oncol<br>2018 | n=3  | metastases                     | MWA under EMN and CT-<br>guidance | Safe and feasible                                                              |
| Pritchett et al.<br>Abstract. Chest 2020.      | n=10 | Tumour < 2 cm                  | MWA under EMN and CT-<br>guidance | Complete tumor ablation in 100%                                                |
| Chan et al.<br>Trans Lung Cancer res.<br>2021  | n=25 | 30 pulmonary nodules < 3<br>cm | MWA under EMN and CT-<br>guidance | 1-Year-FU: stable disease in 100%                                              |
| Lau et al.<br>Abstract. ERS 2021.              | n=30 | 39 pulmonary nodules < 3<br>cm | MWA under EMN and CT-<br>guidance | Successful ablation in<br>100%;<br>successful outcome after 1<br>month in 100% |





# **Take Home Messages**

- ✓ Lung Cancer Screening has room for improvement.
- $\checkmark$  There is no one-size-fits-all in LCS.
- ✓ Technology (Artificial Intelligence/Machine Learning) may help.
- Lung cancer screening and radiographic imaging have not replaced the need for diagnostic procedures and tissue.
- $\checkmark$  The diagnostic accuracy of bronchoscopy continues to improve.
- ✓ With this increased accuracy, therapeutics are becoming a more realistic possibility.