

Pharmacotherapy Management in Chronic Lymphocytic Leukemia (CLL)

Tiba Al Sagheer, PharmD, BCOP, BCACP HCT/BMT & Malignant Hematology Clinical Pharmacy Specialist Miami Cancer Institute | Baptist Health South Florida Miami, FL

Pharmacotherapy Lecture Series September 15th, 2022

Learning Objectives

- Describe CLL pharmaceutical treatment options and place in therapy
- Summarize new evidence-based approaches in CLL treatment
- Discuss drugs pharmacology and monitoring considerations
- Review relevant pharmacotherapy considerations for optimal patient care monitoring and adverse effect management

Chronic Lymphocytic Leukemia

- Chronic Lymphocytic Leukemia (CLL) is a disorder of morphologically mature but immunologically less mature lymphocytes and is manifested by progressive accumulation of these cells in the blood, bone marrow, and lymphatic tissues
- CLL and small lymphocytic lymphoma (SLL) are different manifestations of the same disease, managed similarly
- Major difference is abnormal lymphocyte location
 - CLL: found in blood, bone marrow, and lymphoid tissue
 - SLL: bulk of disease is in lymph nodes, lymphoid tissue, spleen , and bone marrow

Chronic Lymphocytic Leukemia

- ×.
- Most prevalent adult leukemia in Western counties
- 20,160 estimated new cases in 2022
- 1.1% of all new cancer cases

Clinical Presentation

- The clinical course of this disease progresses from an indolent lymphocytosis without other evident disease to one of generalized lymphatic enlargement with concomitant pancytopenia
- Complications of pancytopenia, including hemorrhage and infection, represent a major cause of death in these patients
- Diagnosis
 - ≥5 x10⁹/L monoclonal B lymphocytes in peripheral blood and B-cell clonality confirmed by flow cytometry

Prognostic Markers for CLL/SLL

Test	Favorable	Intermediate	Unfavorable
Interphase cytogenetics (FISH)	Del(13q) as a sole abnormality	Trisomy 12 Normal	Del(17p) Del(11q) ≥ 3 unrelated chromosomal abnormalities
DNA sequencing	TP53 – Wild type <i>IGHV</i> >2% mutation		TP53 – mutated <i>IGHV</i> ≤2% mutation
Surface markers- Flow cytometry	CD49d ≥30%		CD38 expression ≥30% ZAP-70 ≥20%

Prognostic Value of FISH

 Cytogenetic abnormalities detected by FISH are present in more than 80% of patients with previously untreated CLL. The most common mutations at diagnosis are:

FISH Abnormalities Present in 268/325 Patients (82%)									
Lesion	Patients (%)	Median OS (Mo)*							
del(13q)	55	133							
del(11q)	18	79							
Trisomy 12	16	114							
del(17p)	7	32							
del(6q)	6	NR							
Normal	18	111							

Döhner. N Engl J Med 2000 Dec 28;343(26):1910-6

*Prior to Novel Targeted Therapies

DNA Sequencing - IGHV Status

- *IGHV* status is necessary when considering treatment with chemo-immunotherapy
- Patients with *IGHV* mutated CLL can have long term PFS following FCR therapy (54% at 13 years)

Treatment Considerations

First-Line Therapy for CLL/SLL WITHOUT del(17p)/TP53 Mutation

Preferred regimens

- Acalabrutinib ± Obinutuzumab (category 1)
- Venetoclax + Obinutuzumab (category 1)
- Zanubrutinib (category 1)

Other recommended regimens

- Ibrutinib (category 1)
- Bendamustine + anti-CD20 mAB
- Chlorambucil + Obinutuzumab
- Obinutuzumab
- High-dose methylprednisolone (HDMP) + rituximab or Obinutuzumab (category 2B; category 3 for patients <65 y without significant comorbidities)
- Ibrutinib + Obinutuzumab (category 2B)
- Ibrutinib + rituximab (category 2B)
- Ibrutinib + venetoclax (category 2B)

Useful in certain circumstances

(consider for *IGHV*-mutated CLL in patients <65 y without significant comorbidities)

FCR (fludarabine, cyclophosphamide, rituximab)

Note: Zanubrutinib not FDA approved for this indication

Adapted with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) for Chronic lymphocytic leukemia / small cell lymphoma V.1.2023. © 2022 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines[®] and illustrations herein may not be reproduced in any form for any purpose without the express written permission of NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. The NCCN Guidelines are a work in progress that may be refined as often as new significant data becomes available. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Second or third-Line Therapy for CLL/SLL <u>WITHOUT</u> del(17p)/TP53 Mutation

Preferred regimens

BTKi

- Acalabrutinib (category 1)
- Zanubrutinib

BCL-2 inhibitor

• Venetoclax + rituximab (category 1)

Other recommended regimens

- Ibrutinib (category 1)
- Venetoclax

Useful in certain circumstances

(for relapse after a period of remission if previously used as first line therapy)

Retreatment with venetoclax + Obinutuzumab

Note: Zanubrutinib not FDA approved for this indication

Adapted with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) for Chronic lymphocytic leukemia / small cell lymphoma V.1.2023. © 2022 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines[®] and illustrations herein may not be reproduced in any form for any purpose without the express written permission of NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. The NCCN Guidelines are a work in progress that may be refined as often as new significant data becomes available. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

First-Line Therapy for CLL/SLL WITH del(17p)/TP53 Mutation

Preferred regimens

- Acalabrutinib ± Obinutuzumab
- Venetoclax + Obinutuzumab
- Zanubrutinib

Other recommended regimens

- Alemtuzumab ± rituximab
- HDMP + rituximab
- Ibrutinib
- Obinutuzumab
- Ibrutinib + venetoclax (category 2B)

Second-Line Therapy for CLL/SLL <u>WITH</u> del(17p)/TP53 Mutation

Preferred regimens

- Acalabrutinib (category 1)
- Venetoclax + rituximab (category 1)
- Venetoclax
- Zanubrutinib

Other recommended regimens

- Ibrutinib (category 1)
- Alemtuzumab ± rituximab
- Duvelisib
- HDMP + rituximab
- Idelalisib ± rituximab
- Lenalidomide ± rituximab

Notes:

- Chemoimmunotherapy (CIT) is not recommended since del(17p)/TP53 mutation is associated with low response rates
- Zanubrutinib not FDA approved for this indication

Adapted with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) for Chronic lymphocytic leukemia / small cell lymphoma V.1.2023. © 2022 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines[®] and illustrations herein may not be reproduced in any form for any purpose without the express written permission of NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. The NCCN Guidelines are a work in progress that may be refined as often as new significant data becomes available. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Key Clinical Trials in Front Line

• Ibrutinib:

- Alliance North American Intergroup Study (A041202)
 - First line BR vs ibrutinib ± rituximab
- E1912 study: ibrutinib vs FCR in patients ≤ 70 years
- iLLUMINATE: ibrutinib + obinutuzumab vs chlorambucil + obinutuzumab
- RESONATE-2: ibrutinib vs chlorambucil in older patients ≥ 65
- Acalabrutinib
 - ELEVATE-TN: Acalabrutinib + Obinutuzumab vs acalabrutinib monotherapy vs obinutuzumab and oral chlorambucil
- Zanubrutinib
 - SEQUOIA: zanubrutinib vs bendamustine + rituximab
- Venetoclax
 - CLL14 study: venetoclax + obinutuzumab vs chlorambucil + obinutuzumab

Woyach. N Engl J Med 2018; 379:2517-2528 | Shanafelt N Engl J Med 2019;381:432-43. | Moreno. Lancet Oncol. 2019;20:43. | Burger JA et al. N Engl J Med. 2015;373(25):2425-2437.Sharman. Lancet 2020; 395: 1278–91 | Shadman et al. Transplantation & Cellular Therapy Meetings of ASTCT and CIBMTR, Poster LBA5 | Al-Sawaf et al. Lancet Oncol 2020;21: 1188–200 | Al-Sawaf et al. HemaSphere: June 2022 - Volume 6 - Issue - p 49-50

RESONATE-2 Trial

- Phase 3, randomized, multicenter, open-label
- Previously untreated CLL/SLL age ≥65 yr without del(17p) N=269
 - Ibrutinib vs chlorambucil
- Endpoints:
 - PFS, OS, ORR, improvement in hematologic parameters, patient-reported outcomes, and safety
- Results:
 - Ibrutinib resulted in higher rates of improvements in disease-related symptoms
 - Significantly more ibrutinib-treated patients with baseline anemia had sustained improvement in hemoglobin levels compared with chlorambucil

Up to 8-year follow-up from RESONATE-2

	Ibrutinib	chlorambucil		100	.															
ORR	92%	37%		90 -	17	***	+-	4												
Median PFS	NE	15 months		% ⁸⁰ 1977 - 10	1 5	L.						~+	****	_						
PFS at 5 years	70%	12%	HR= 0.146 (95%Cl, 0.098–0.218)	on-free survi		۲ ۰	L							Chio	rambucil	•-•	lbi brutinib	rutinib Hillon	4	
PFS at 7 years	59%	9%		issa 40 30	1			L,			Me	dian PFS, n (95% CI)	no		15.0 0.154 (0	0.108-0.220	NE D)			
OS at 5 years	83%	68%	HR= 0.450 (95%Cl, 0.266–0.761)	م 20 - 10 -							••••	++++	~~~	~.,	••		Chlo	oramb	ucil	
OS at 7 years	78%			0 -	0 6	6 12	18	24	30	36	42	48	54	60	66	72	78	84	90	
			Patients	at risk								Mont	ths							

Ibrutinib: Chlorambucil:

133 88

69 57

41

33

 PFS benefit seen across all subgroups, with and without Del (11q) and mutated vs unmutated *IGHV*

ORR: overall response rate NE: not estimable

25

30

19

16 12

6 5 5

Burger JA et al. N Leukemia (2020) 34:787–798 | Barr et al. Blood Adv (2022) 6 (11): 3440–3450.

Up to 8-year follow-up from RESONATE-2

Barr et al. Blood Adv (2022) 6 (11): 3440–3450.

- Phase 3 trial, randomized, multicenter, open label
- Previously untreated CLL/SLL age ≤ 70 years without del(17p) N=529
 - Ibrutinib–Rituximab or CIT for CLL (FCR)
- Endpoints:
 - Primary: PFS
 - Secondary: OS
- Results:
 - Median follow-up of 33.6 months, PFS favored ibrutinib—rituximab over CIT (89.4% vs. 72.9% at 3 years; HR, 0.35; 95%[CI], 0.22 to 0.56; P<0.001)
 - Subgroup analysis patients without *IGHV* mutation, ibrutinib–rituximab resulted in better PFS than CIT (90.7% vs. 62.5% at 3 years; HR, 0.26; 95% CI, 0.14 to 0.50)
 - OS (98.8% vs. 91.5% at 3 years; HR, 0.17; 95% CI, 0.05 to 0.54; P<0.001)

Shanafelt N Engl J Med 2019;381:432-43.

ILLUMINATE Trial

- Phase 3, randomized, multicenter, open-label
- Previously untreated CLL/SLL age ≥65 years or < 65 years with coexisting conditions N=229
 - Ibrutinib + Obinutuzumab (I+O) vs chlorambucil + Obinutuzumab (C+O)
- Endpoints:
 - PFS
- Results:
 - PFS at 30 months 79% for I+O vs 31% C+O HR=0.23 (95% Cl 0.15–0.37),p<0.0001
 - Benefit seen across all high-risk groups

Moreno. Lancet Oncol. 2019;20:43.

Alliance North American Intergroup Study (A041202)

- Phase 3, randomized, multicenter, open-label
- Previously untreated CLL/SLL age ≥65 years N=547
 - Ibrutinib vs Ibrutinib + rituximab vs BR
- Endpoint:
 - PFS

Alliance North American Intergroup Study (A041202)

BR: bendamustine + rituximab

Woyach. N Engl J Med 2018;379:2517-28.

- Phase 3, randomized, multicenter, open-label
- Previously untreated CLL ≥65 yr or <65 yr with CIRS score >6 or CrCl 30-69 mL/min N=535
 - Acalabrutinib + Obinutuzumab vs acalabrutinib monotherapy vs obinutuzumab and oral chlorambucil
- Endpoints:
 - Primary: PFS between the two combination groups
 - Secondary: PFS between acalabrutinib vs obinutuzumab + chlorambucil,
 ORR by IRC and investigators, time to next treatment, OS, safety

ELEVATE-TN

PFS at 24 months:

- Acala+obinu 93%
- Acala monotherapy 87%
- Obinu +chlorambucil 47%

Median OS not reached and 2 year OS:

- Acala+obinu 95 %
- Acala monotherapy 95 %
- Obinu +chlorambucil 92%

SEQUOIA

• Phase 3, randomized, multicenter, open-label

- Endpoints for cohort 1: PFS
- Endpoints for cohort 2- Arm C : ORR, OS, DoR, safety

Tam CS et al. Lancet Oncol. 2022;23(8):1031-1043. | Tam C et al. 63rd American Society of Hematology Annual Meeting and Exposition (ASH 2021). Abstract 396. | Brown. ASH 2020. Abstr 1306. Tam. Haematologica. 2020; [Epub] | Shadman et al. Transplantation & Cellular Therapy Meetings of ASTCT and CIBMTR, Poster LBA5

Cohort 1: PFS

Zanubrutinib treatment benefit was observed for patients with unmutated *IGHV* (HR 0.24; 2-sided *P*<.0001), but not for mutated *IGHV* (HR 0.67; 2-sided *P*=.1858; **Figure 1C**)

Figure 1C. PFS by IGHV Status

B+R, bendamustine + rituximab; IGHV, gene encoding the immunoglobulin heavy chain variable region; IRC, independent review committee.

Cohort 2: PFS

Figure 3. Cohort 2: PFS in Patients with del(17p)

del(17p), chromosome 17p deletion; PFS, progression-free survival.

ORR: 94.5%, median PFS, OS, DoR, were not reached²

1. Shadman et al. Transplantation & Cellular Therapy Meetings of ASTCT and CIBMTR, 2022 Poster LBA5 / 2. Tam et al. Haematologica | 2021; 106(9)

CLL14

- Phase 3, randomized, multicenter, open-label study
- Previously untreated CLL patients ≥18 yr with CIRS score >6 and/or CrCl 30-69 mL/min N = 432
 - Ven-Obi vs Clb-Obi
- Endpoints:
 - Primary: investigator assessed PFS
 - Secondary: PFS by IRC, ORR, CR, rates of MRD response, TTNT, OS, and safety

Ven-Obi: venetoclax-obinutuzumab Clb-Obi: Chlorambucil-Obinutuzumab TTNT: time to next treatment

CLL14 PFS & OS

	Ven-Obi N=216	Clb-Obi N=216	
3-year PFS	81.9%	62.6%	
5-year PFS	62.6%	27%	
Median PFS at 5 years	NR	36.4 months	HR=0.35 (95% CI 0.26-0.46), p<0.0001
5-year TTNT	72.1%	42.8%	HR=0.42, (95% CI 0.31-0.57), p<0.0001
5-year OS	81.9%	77%	HR=0.72, (95% CI 0.48-1.09), p=0.12)
4 years after treatment con	npletion		
• uMRD <10 ⁻⁴	39 (18.1%)	4 (1.9%)	
• Low MRD $\ge 10^{-4}$ and $< 10^{-2}$	27 (12.5%)	13 (6.0%)	
• High MRD (≥ 10 ⁻²)	41 (19.0%)	24 (11.1%)	

Al-Sawaf et al. Lancet Oncol 2020;21: 1188–200 | Al-Sawaf et al. HemaSphere, 2022;6:(S3):pages 100-10

NR: not reached

Minimal Residual Disease Assessment

- uMRD in CLL is defined as <1 CLL cell in 10,000 leukocytes (0.01% or <10⁻⁴)
- Methods of detection:
 - Flow cytometry (sensitivity to 10^{-4 to -5})
 - Allele- specific oligonucleotide IGHV real time quantitative PCR (ASO IGH RQ-PCR) (sensitivity to 10⁻⁵)
 - NGS assay (sensitivity to 10⁻⁶)
 - August 2020: clonoSEQ NGS assay FDA-cleared to detect MRD in CLL

CLL14 study:

- Figure: PFS landmark analyses by MRD status in peripheral blood at EOT
- uMRD associated with longer PFS compared with low MRD or high MRD (HR 0·10, 95% CI 0·06–0·15)

Months to Ever

Patients at risk								
VEN-OBI & uMRD	163	161	156	150	91	34	5	0
VEN-OBI & L-MRD	11	11	8	7	4	1	0	0
VEN-OBI & H-MRD	9	6	4	3	2	0	0	0
CLB-OBI & uMRD	76	76	75	71	56	18	6	0
CLB-OBI & L-MRD	47	43	37	33	23	5	0	0
CLB-OBI & H-MRD	56	32	16	8	7	3	0	0

MURANO study:

- Figure: PFS from EOT in patients in the venetoclax plus rituximab (VenR) arm who completed 2 years of venetoclax, based on MRD status at EOT
- uMRD is associated with longer PFS

ASO-PCR MRD status is defined as uMRD (MRD level< 10-4)
 L-MRD (10-4≤ MRD level< 10-2), H-MRD (MRD level ≥ 10-2)

Al-Sawat et al. Lancet Oncol 2020;21: 1188–200 | Kater et al. J Clin Oncol 2020 Dec 1;38(34):4042-4054.

EOT: end of treatment

Key Clinical Trials in Second-Line & Subsequent Therapy

- Ibrutinib:
 - RESONATE: ibrutinib vs ofatumumab
- Acalabrutinib
 - ASCEND: acalabrutinib vs investigators choice
 - ELEVATE-RR: acalabrutinib vs ibrutinib
- Zanubrutinib
 - ALPINE: zanubrutinib vs ibrutinib
- Venetoclax
 - MURANO: venetoclax + rituximab vs BR

Byrd et al. N Engl J Med 2014;371:213-23. | Munir Am J Hematol. 2019;94:1353–1363. | Ghia P et al. J Clin Oncol. 2020: JCO1903355 | Hillmen. 62nd Annual Scientific Meeting of the British Society for Haematology, 3-5 April, 2022, Ma. PO52. |Seymour. NEJM 2018; 378:1107.

RESONATE

- Phase 3, randomized, multicenter, open-label ٠
- R/R CLL/SLL N=391 patients •
 - Ibrutinib vs ofatumumab
- Endpoints:
 - Primary: PFS —
 - Secondary: OS and ORR
- Roculte

	Ibrutinib	Ofatumumab	
Median PFS	44.1 months	8.1 months	P<0.001
Median OS	67.7 months	65.1 months	HR= 0.810 (95% CI, 0.602-1.091)
ORR	42.6%	4.1%	P<0.001
PFS at 5 years	40%	3%	

Ibrutinib 195189 179171161 154149146138123 115110 105 Ofatumumab 196159 120 67 34 22 19 14 10 9 6 5 5 4 4 3 3 4 4 4 2 2

ASCEND

- Phase 3, randomized, multicenter, openlabel
- R/R CLL/SLL N=310 patients
 - Acalabrutinib vs investigator's choice of therapy
 - Idelalisib + rituximab or BR
 - Primary endpoint: PFS by independent review committee
 - Results:
 - Acalabrutinib significantly prolonged PFS
 - Median follow-up of 16.1 months, median PFS acalabrutinib (not reached) vs 16.5 month investigators choice HR = 0.31 (95% CI, 0.20-0.49) p < 0.0001
 - PFS benefits seen across subgroups

(0) (4) (4) (7) (8) (8) (10) (14) (15) (18) (19) (20) (29) (32) (46) (54) (57) (73) (79) (80) (87)

ALPINE

- ×.
- Phase 3, randomized, multicenter, open-label Figure 3. PFS by Investigator Assessment
- R/R CLL/SLL N=415 patients
 - Zanubrutinib vs ibrutinib
- Primary endpoint was ORR
- The key secondary endpoint: PFS
- Results:*
 - Median follow-up time of 14 months, the investigator-assessed 12-month PFS was 94.9% for the zanubrutinib arm and 84% for the ibrutinib arm (2-sided P=.0007)
 - Median follow-up of 15 months, ORR was significantly higher with zanubrutinib (78.3%) versus ibrutinib (62.5%; 2-sided P=.0006, prespecified α=.0099)

"Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events are reached. Median PFS follow-up was 14.0 months for both zanubrutinib and ibrutinib arms by reverse KM method. PFS, progression-free survival.

*Interim analysis data

Hillmen. 62nd Annual Scientific Meeting of the British Society for Haematology, 3-5 April, 2022, Ma . PO52.

ORR: overall response rate

MURANO

- Phase 3, randomized, multicenter, open-label
- R/R CLL/SLL N=389 patients
 - Venetoclax + rituximab vs BR
- Primary endpoint: PFS by investigator
- Results:
 - Median PFS: 53.6 months for venetoclax + rituximab (95% CI: 48.4-57.0) and 17 months for BR (95% CI: 15.5-21.7)

Treatment Considerations

Treatment Considerations

Continuous

- BTK Inhibitors
 - Oral therapy
 - Cardiac risk
 - Mutation status considerations

Fixed duration*

- Venetoclax + anti-CD20 or CIT
 - Requires multiple infusion unit visits initially
 - Risk for TLS
 - Close monitoring
 - Mutation status considerations

*other options including BTKi combination in studies | CIT: chemoimmunotherapy
Managing Toxicities of Bruton Tyrosine Kinase Inhibitors in CLL

BTK Inhibitor Toxicity

- Mediated by both on-target inhibition of BTK and variable off-target inhibition of other kinases the toxicity profile of BTKis is closely linked to their pattern of kinase binding Off target
 - TEC: bleeding, cardiotoxicity
 - EGFR: rash, diarrhea
 - ITK: infection, pneumonitis/inflammation
- Impairment of macrophages: infection

ITK: interleukin-2–inducible T-cell kinase TEC: tyrosine-protein kinase EGFR: endothelial growth factor receptor

Stephens.Blood (2019) 133 (12): 1298–1307. | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336.

Figure 1. Kinome profiling at a single dose of 1 µM (KINOMEscan, Eurofins DiscoverX)

Torgot	IC ₅₀ /EC ₅₀ (nM)					
larget	Acalabrutinib	Ibrutinib	Zanubrutinib			
ВТК	5.1 ± 1.0	1.5 ± 1.0	0.5 ± 0.0			
TEC	126 ± 11	10 ± 12	44 ± 19			
EGFR	>1000	5.3 ± 1.3	21 ± 1			
ІТК	>1000	4.9 ± 1.2	50 ± 5			

Kaptein et al. Blood (2018) 132 (Supplement 1): 1871.

Pharmacology

Figure: Free-drug concentration-time profiles relative to IC50 for zanubrutinib, ibrutinib and acalabrutinib

Acala = acalabrutinib; ACP = active metabolite of acala; BID = twice daily; BTK = Bruton's tyrosine kinase; Ctrough = trough concentration; Ibr = ibrutinib; IC50 = concentration for

50% inhibition; QD = once daily; Zanu = zanubrutinib.

Tam et al.Expert Rev Clin Pharmacol. 2021;14:1329-44.

Table 1. Approved dose regimens and key clinical pharmacology properties of zanubrutinib relative to those of ibrutinib and acalabrutinib (Table view)

	Zanubrutinib	Ibrutinib	Acalabrutinib
Approved indications	MCL, WM*	MCL, CLL, and WM. MZL chronic graft versus host disease (cGVHD)	MCL, CLL
FDA approved dose	160 mg BID or 320 mg QD	420 or 560 mg QD	100 mg BID
IC ₅₀ against BTK (nM) [24]	0.5	1.5	5.1
Potency of major active metabolite against BTK	NA	~15-fold less potent compared to the parent molecule [15]	~2-fold less potent compared to the parent molecule [24]
Half-life (hr)	~2 to 4	~4 to 6	~0.6 to 2.8
Plasma protein binding (%)	~94%	97.3% – 97.7% [15]	97.4% – 97.5% [57]
AUC _{0-24hr} (CV%) ng·hr/mL	160 mg BID: 2295 (37%) 320 mg QD: 2180 (41%)	420 mg QD: 707–1159 (50%-72%) 560 mg QD: 865–978 (69%-82%)	100 mg BID∶ 1843- (38%) −1850 (72%) [29]
fu. AUC _{0-24hr} (nM ⋅ hr)	160 mg BID: 278 320 mg QD: 267	420 mg QD: 37–60 560 mg QD: 46–51	100 mg BID: 103
Plasma exposure of major active metabolite	NA	1- to 2.8-fold higher than parent AUC [15]	2- to 3-fold higher than parent AUC [57]
Median BTK occupancy in PBMC at trough	320 mg QD:100% 160 mg BID: 100%	420 mg to 820 mg QD: >90% [30,33]	100 mg BID: ≥95% [32]
Median BTK occupancy in lymph node at trough	320 mg QD: 94% 160 mg BID: 100%	420 mg QD: >90% [16]	200 mg QD: 90% 100 mg BID: 95.8% [34]
Pgp and brain penetration	Weak P-gp substrate Brain penetration data in patients available	Not a P-gp substrate Brain penetration data in patients available	P-gp substrate Likely limited brain penetration
Major enzyme involved	CYP3A	CYP3A	CYP3A

Tam et al. Expert Rev Clin Pharmacol. 2021;14:1329-44.

BTK Inhibitors Class Considerations

Burger N engl j med 383;5 nejm.org July 30, 2020 | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336.

Lymphocytosis

- Can occur upon initiation of therapy with BTKi
 - Due to inhibition of kinase involved in B-cell migration and homing
 - Asymptomatic, typically resolves during the first months of therapy (although it can persist for more than 12 months)
 - Not a sign of resistance or a suboptimal response

Atrial Fibrillation

- The prevalence of AF associated with ibrutinib → greatest in the first 3 months on therapy (median time of onset 2.8 months) and late events (onset at month 18 or later) ~1% of patients
- Acalabrutinib and zanubrutinib have a lower rate of AF compared to ibrutinib
- Conditions that have been associated with increased risk of AF while on therapy:
 - Older age, male sex, history of hypertension, history of coronary artery disease, diabetes, and history of valvular heart disease

Burger N engl j med 383;5 nejm.org July 30, 2020 | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Shanafelt Leukemia & lymphoma 58.7 (2017): 1630-1639. | Bhat et al. Blood blood.2022016953. | Hillmen. 62nd Annual Scientific Meeting of the British Society for Haematology, 3-5 April, 2022, Ma. PO52.

ELEVATE-RR

AEs >10%, n (%)	Acalabrutini	ib (n = 266)	lbrutinib (n = 263)		
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
AF	24 (9.0)	12 (4.5)	41 (15.6)	9 (3.4)	

NOTE. Data are reported as No. (%). Adverse events are reported as individual MedDRA preferred terms. **Higher incidences are shown in bold text for terms with statistical differences.**

	Acalab (n =	Acalabrutinib (n = 266)		tinib 263)
Events	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3
Atrial fibrillation ^b	25 (9.4) ^c	13 (4.9)	42 (16.0)	10 (3.8)
Events/100 person-months	0.366	0.155	0.721	0.124
Age 75 years or older	8 (32.0)	6 (46.2)	11 (26.2)	4 (40.0)
Patients with a history of atrial fibrillation	10 (40.0)	6 (46.2)	5 (11.9)	2 (20.0)
Patients with risk factors ^d	23 (92.0)	12 (92.3)	32 (76.2)	8 (80.0)
Hypertension	15 (60.0)	6 (46.2)	23 (54.8)	6 (60.0)
Diabetes mellitus ^e	10 (40.0)	5 (38.5)	4 (9.5)	2 (20.0)
Myocardial infarction/ischemia	3 (12.0)	3 (23.1)	4 (9.5)	0
Cardiac disease ^f	2 (8.0)	2 (15.4)	5 (11.9)	2 (20.0)
Time to atrial fibrillation onset, median (range), months	28.8 (0.4-52.0)	22.3 (0.4-45.1)	16.0 (0.5-48.3)	4.8 (0.5-28.2

ALPINE

	Zanubrutinib (n=204)		lbrut (n=2	tinib 207)
Safety Analysis Population	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Cardiac disordersª, n (%)	28 (13.7)	5 (2.5)	52 (25.1)	14 (6.8)
Atrial fibrillation and flutter (key 2° endpoint), n (%)	5 (2.5)	2 (1.0)	21 (10.1)	4 (1.9)
Hemorrhage, n (%)	73 (35.8)	6 (2.9)	75 (36.2)	6 (2.9)
Major hemorrhage⁵, n (%)	6 (2.9)	6 (2.9)	8 (3.9)	6 (2.9)
Hypertension, n (%)	34 (16.7)	22 (10.8)	34 (16.4)	22 (10.6)
Infections, n (%)	122 (59.8)	26 (12.7)	131 (63.3)	37 (17.9)
Neutropenia [°] , n (%)	58 (28.4)	38 (18.6)	45 (21.7)	31 (15.0)
Thrombocytopenia ^c , n (%)	19 (9.3)	7 (3.4)	26 (12.6)	7 (3.4)
Secondary primary malignancies, n (%)	17 (8.3)	10 (4.9)	13 (6.3)	4 (1.9)
Skin cancers, n (%)	7 (3.4)	3 (1.5)	10 (4.8)	2 (1.0)

"Cardiac disorders leading to treatment discontinuation: zanubrutinib 0 patients and ibrutinib 7 (3.4%) patients. ⁴Includes hemorrhages that were serious or grade ≥3 or CNS hemorrhages of all grades. ²Pooled terms including neutropenia, neutrophil count decreased, and febrile neutropenia; thrombocytopenia and platelet count decreased. AE, adverse events.

Hillmen. 62nd Annual Scientific Meeting of the British Society for Haematology, 3-5 April, 2022, Ma . PO52.

Atrial Fibrillation Management

- Baseline clinical risk assessment of cardiovascular risk factors before initiating therapy
- Pre-existing AF is not an absolute contraindication to therapy
- New AF:
 - Withholding therapy does not result in higher resolution rates of atrial fibrillation, but may compromise PFS and OS
 - If uncontrollable arrhythmias develop consider switching to alternate therapy
 - Interdisciplinary risk-benefit assessment
 - CHA2DS2-VASc 0-1, most clinicians favor continuing BTKi therapy; ≥2, consider temporary drug hold until AF control or discontinuation

Atrial Fibrillation Management

- Consider beta-blockade, often preferred as the first choice over CYP3A4 inhibitors (eg, verapamil and diltiazem) or P-glycoprotein substrates (amiodarone), which interact with BTKis
- Anticoagulation strategies:
 - Apixaban
 - Enoxaparin (at regular doses in patients with a platelet count >50,000/ μ L)
 - Avoid combination with vitamin K antagonists

Burger N engl j med 383;5 nejm.org July 30, 2020 | Shanafelt Leukemia & lymphoma 58.7 (2017): 1630-1639.

Atrial Fibrillation Management

Ibrutinib

Adverse Reaction	Occurrence	Dose Modification for CLL/SLL After Recovery Starting Dose = 420 mg
Grade 3 cardiac arrhythmia	First	Restart at 280 mg daily
·	Second	Discontinue therapy

Acalabrutinib

Adverse Reaction	Occurrence	Dosage Modification (Starting dose = 100 mg approximately every 12 hours)
Grade 3 or greater non- hematologic toxicities	First and second	Interrupt acalabrutinib. Once toxicity has resolved to Grade 1 or baseline level, acalabrutinib may be resumed at 100 mg approximately every 12 hours

Imbruvica [package insert]. Sunnyvale, CA. Pharmacyclics LLC 2022 | CALQUENCE [package insert]. Wilmington, DE AstraZeneca Pharmaceuticals LP 2022

Ventricular Arrhythmia

- Ventricular arrhythmias reported with ibrutinib and acalabrutinib
 - Longer term follow up \rightarrow Cases of ventricular arrhythmias and sudden cardiac death have emerged
 - Rare but serious
- Obtain a detailed cardiac history and baseline electrocardiogram for all patients; reserve echocardiogram for patients with significant cardiac history or risk factors
- Instruct patients to remain vigilant for potential early warning signs of ventricular arrhythmia and immediately investigate incident lightheadedness, palpitations, or syncope

Burger N engl j med 383;5 nejm.org July 30, 2020 | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Shanafelt Leukemia & lymphoma 58.7 (2017): 1630-1639. | Bhat et al. *Blood* blood.2022016953.

- Prevalence of HTN (any grade) increases over time (11% year 1, 15% year 2; 20% year 3 in a pooled ibrutinib analysis)
- Optimize and control patient's HTN prior to initiating BTKi therapy
- Development of new onset hypertension while a patient is on BTKi does not warrant therapy discontinuation, unless medically necessary

HTN: hypertension

Burger N engl j med 383;5 nejm.org July 30, 2020 | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2

- New onset HTN: patients should be appropriately managed with antihypertensive medications
 - Consider drug-drug interactions when initiating treatment with supportive care medications as ibrutinib, acalabrutinib, and zanubrutinib are metabolized primarily by CYP3A4

Bleeding

- Increased risk of bleeding due to the BTK inhibition and other related TEC family kinases, which play an important role in platelet aggregation, adhesion and activation
- Ibrutinib is associated with predominantly minor bleeding (grade ≤2), ecchymoses and petechiae
 - Major bleeding (grade ≥3), necessitating transfusion or hospitalization occurs less frequently, in 2% to 9% of patients
- ELEVATE-RR
 - Acalabrutnib bleeding events were less frequent 38.0% vs ibrutinib 51.3% and rates of major bleeding were comparable
- ALPINE
 - Zanubrutinib bleeding events were comparable to ibrutinib in the study

Byrd et al. J Clin Oncol 2021 | Burger N engl j med 383;5 nejm.org July 30, 2020 | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Hillmen. 62nd Annual Scientific Meeting of the British Society for Haematology, 3-5 April, 2022, Ma . PO52.

Bleeding

- Caution when using concurrent anticoagulation therapy
- Consider non-warfarin anticoagulation
- Apixaban and rivaroxaban may be preferred due to minimal drug interactions
- Note in clinical studies for acalabrutinib and ibrutinib, patients on warfarin therapy were excluded vs warfarin use was not excluded in zanubrutinib studies

Bleeding

- Hold BTKi for 3 days before and after minor surgical procedures and for 7 days before and after major surgical procedures
- For minor bleeding, holding BTKi results in the resolution of bleeding tendency in 2 to 3 days
- For severe bleeds, provide platelet transfusions as appropriate to overcome clinical bleeding, regardless of platelet count
- Patient counseling: abstain from over-the-counter supplements that may exacerbate bleeding risk, such as vitamin E or fish oil, ginger and turmeric

Diarrhea

- Early in the treatment course ~ first 6 months; it is selflimiting and can be managed
- Manage with supportive care, antimotility agents, and nighttime dosing of drug (in the case of ibrutinib) to mitigate symptoms
- Consider temporary drug holds in the case of grade ≥3 diarrhea

Stephens. Blood 133.12 (2019): 1298-1307. | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2

Table 3. Frequency of adverse events in landmark studies of currently approved BTKis

	Ibrutinib		Acalabrutinib		
	RESONATE2 ⁵	RESONATE ^{83,84}	ELEVATE-TN ¹⁰	ASCEND ¹²	
	TN n = 135	RR n = 195	TN n = 179	RR n = 154	
Adverse events	f/u = 18.4 mo	f/u = 19 mo	f/u = 28.3 mo	f/u = 22 mo	
Diarrhea					
All grades	57 (42)	105 (54)	62 (35)	30 (20)	
Grade ≥3	5 (4)	9 (5)	1 (0.6)	3 (2)	

f/u, follow-up; NR, not reported in original publication; RR, relapsed or refractory; TN, treatment-naive. *Reported numbers reflect 16.1-month follow-up.⁸⁵

ELEVATE-RR	Acala	Acalabrutinib (n = 266)			lbrutinib (n = 263)		
AEs >15%, n (%)	Any G	irade	Grade ≥3	А	ny Grade	Grade ≥3	
Diarrhea	92 (3	4.6)	3 (1.1)	1	21 (46)	13 (4.9)	
ALPINE first in analysis n (%)	terim	n Zanubrutinib (n=204)			Ibrutinib	(n=207)	
Diarrhea		34 (16.7)			40 (19.3)		

NOTE. Data are reported as No. (%). Adverse events are reported as individual MedDRA preferred terms. **Higher incidences are shown in bold text for terms with statistical differences.**

Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Byrd et al. J Clin Oncol 2021 | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Hillmen. 62nd Annual Scientific Meeting of the British Society for Haematology, 3-5 April, 2022, Ma. PO52.

- Patients receiving BTKis are immunocompromised and are at risk of infectious complications despite receiving effective therapy
- Infection (of any grade) occurs in >50% of patients on BTKis particularly during the early period after starting treatment, and R/R patients are at greater risk
- Of all infectious complications, pneumonia was the most common, observed in an integrated analysis of landmark ibrutinib studies in 12% of patients (grade ≥3 infection)
- Opportunistic infections, including Aspergillus fumigatus and PJP, have been reported
- Monitor for fungal infection

Table 3. Frequency of adverse events in landmark studies of currently approved BTKis

	Ibrutinib		Acalabr	utinib	
	RESONATE25	RESONATE25 RESONATE83,84		ASCEND ¹²	
	TN n = 135	RR n = 195	TN n = 179	RR n = 154	
Adverse events	f/u = 18.4 mo	f/u = 19 mo	f/u = 28.3 mo	f/u = 22 mo	
Infection					
All grades	NR	NR	116 (65)	97 (63)	
Grade ≥3	21 (23)	59 (30)	25 (14)	30 (20)	

ELEVATE-RR AEs	Acalabrutini	ib (n = 266)	lbrutinib (n = 263)		
>10%, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Pneumonia	47 (17.7)	28 (10.5)	43 (16.3)	23 (8.7)	
URTI	71 (26.7)	5 (1.9)	65 (24.7)	1 (0.4)	

ALPINE first interim analysis n (%)	Zanubrut	tinib (n=204)	Ibrutinib (n=207)		
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Infection	122 (59.8)	26 (12.7)	131 (63.3)	37 (17.9)	

Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Byrd et al. J Clin Oncol 2021 | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Hillmen. Appual Scientific Meeting of the British Society for Haematology 3-5 April 2022 Ma. PO52

Infection – Management

- Acute infection hold vs continue BTKi → Regardless of approach, pharmacotherapy can be reinitiated after the start of clinical improvement when deemed appropriate by the caring provider
- In the case of severe infection → Hold BTKi until a definitive diagnosis is determined and restart after the start of clinical improvement, except in the case of fungal infections
- Consider PJP and VZV prophylaxis depending on risk factor
 - High risk factors (R/R or heavily pretreated patients) or patients with a prior history of infection
- Screen for and treat HBV infections
- Provide clinically indicated vaccinations (eg, against influenza and pneumococcus) of patients before treatment initiation
- Caution with drug interactions → Triazoles and fluoroquinolones increase drug levels
- Consider COVID-19 prophylaxis

VZV: Varicella zoster virus HBV: Hepatitis B virus

Hwang JP, et al. J Clin Oncol 38:1-20, 2020 | Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2

Fatigue

- Commonly reported symptom seen early during BTKi therapy and is usually selflimited
 - Up to 36% of patients on ibrutinib (in a pooled analysis, up to 3% grade 3) and in 28% to 34% of patients on acalabrutinib (up to 2% grade 3)
- Avoid dosage reductions for fatigue early in the course of therapy
- If observed later in the course → search for potential causes of fatigue; consider drug holiday or dosage reduction only when severe and truly drug related

ELEVATE-RR AEs	Acalabrutinib (n = 266)		Ibrutinib (n = 263)	
>10%, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Fatigue	54 (20.3)	9 (3.4)	44 (16.7)	0

Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Byrd et al. J Clin Oncol 2021

NOTE. Data are reported as No. (%). Adverse events are reported as individual MedDRA preferred terms. **Higher incidences are shown in bold text for terms with statistical differences.**

Arthralgia-Myalgia

- Arthralgia and myalgia are seen in 11% to 36% of patients on ibrutinib, with higher rates compared with comparators in a pooled analysis
- Arthralgias were associated with 42% of ibrutinib discontinuations in real-world data
- Rule out other causes of arthralgia
- Grade 1-2 \rightarrow observation and supportive care vs grade \geq 3 consider hold and/or dose reduce
- Adjunctively treat with pharmacotherapy, approaches include
 - Magnesium supplementation and quinine-containing tonic water
 - Severe arthralgias \rightarrow short-course steroids and anti-inflammatory agents

ELEVATE-RR AEs	Acalabrutinib (n = 266)		lbrutinib (n = 263)	
>15%, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Arthralgia	42 (15.8)	0	60 (22.8)	2 (0.8)

Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2 | Byrd et al. J Clin Oncol 2021

NOTE. Data are reported as No. (%). Adverse events are reported as individual MedDRA preferred terms. **Higher incidences are shown in bold text for terms with statistical differences.**

Headaches

- Acalabrutinib
 - Acalabrutinib-associated headaches reported up to 70% and are generally observed early in therapy (weeks 1-3), they subside over time typically within the first two months of treatment
 - Headaches pose concerns with patient compliance
 - Consider analgesics such as acetaminophen and caffeine supplements for management

Dermatologic

- Skin manifestations of BTKi therapy
 - 1. Nonpalpable asymptomatic petechial rash thought to result from -induced platelet dysfunction
 - 2. Palpable rash that is often pruritic, associated with EGFR inhibition and infiltration of inflammatory cells → responsive to corticosteroids or dose holds
 - 3. Erythema nodosum \rightarrow responsive to corticosteroids or dose holds
 - 4. Textural changes in hair and nails
 - a. Brittle fingernails or toenails with the formation of vertical nail ridges in two-thirds of patients treated with ibrutinib
 - b. Appear **gradually** median reported **onset of 9 months**, and do not represent a dose-limiting toxicity
 - c. Treat with biotin supplementation and the application of nail oil

Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2

- CLL is associated with AICs which occur in \sim 4% to 10% of patients
 - Autoimmune hemolytic anemia is most common (~7%) > Immune thrombocytopenia (<1% to 2%)>>>Pure red cell aplasia occurring less frequently
 - Management:
 - Short-course corticosteroids or anti-CD20 monoclonal antibody treatment and then resume treatment with BTKis
- Other cytopenias including neutropenia
 - Unless higher grade, rarely necessitate dose interruption or discontinuation, provide growth factor support

Lipsky. Hematology Am Soc Hematol Educ Program. 2020;1:336. 2

Cytopenias

• Drug related cytopenias

ELEVATE-RR AEs >15%,	Acalabrutinib (n = 266)		Ibrutinib (n = 263)		
n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Neutropenia	56 (21.1)	52 (19.5)	65 (24.7)	60 (22.8)	
Thrombocytopenia	40 (15.0)	26 (9.8)	35 (13.3)	18 (6.8)	
ALPINE first interim	Zanubrutinib (n=204)		Ibrutinib (n=207)		
analysis n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Neutropenia	<u>58 (28.4)</u>	38(18.6)	<u>45(21.7)</u>	31(15)	

Hillmen. 62nd Annual Scientific Meeting of the British Society for Haematology, 3-5 April, 2022, Ma . PO52.

	Acalabrutinib	Ibrutinib	Zanubrutinib
Dose	100 mg PO BID	420 mg PO daily	160 mg PO BID or 320 mg PO daily
Lymphocytosis		Yes	
Antimicrobial prophylaxis	Consider PJP and VZV in patients at increased risk for infections. Monitor for fungal infections		
Hepatic impairment	Avoid in patients with severe impairment	Reduce dose in mild and moderate, avoid in severe impairment	Reduce dose in patients with severe impairment
CYP3A4 inhibitors	Strong: Avoid with concomitant use	See next slide	Strong: Reduce dose to 80 mg once daily
	Moderate: Reduce dose to 100 mg PO daily		Moderate: Reduce dose to 80 mg BID
CYP3A4 inducers	Avoid with concomitant strong CYP3A4 inducers. If unavoidable, increase dose to 200 mg PO BID	Avoid with concomitant strong CYP3A4 inducers	Avoid concomitant use of moderate or strong CYP3A4 inducers
Antacids	 Capsule formulation Avoid concomitant PPIs Take acalabrutinib 2 hours before taking a H2-RA Separate dosing by at least 2 hours with antacids 		NA

CALQUENCE [package insert]. AstraZeneca Pharmaceuticals LP Wilmington, DE; 2019 | Tam et al. haematologica | 2021; 106(9) Imbruvica [package insert]. Sunnyvale, CA. Pharmacyclics LLC 2020 | PJP: Pneumocystis Jiroveci Pneumonia VZV: Varicella zoster virus

Ibrutinib Dose Adjustment

Coadministered Drug	Recommended ibrutinib dosage
Moderate CYP3A inhibitor	280 mg once daily
 Voriconazole 200 mg twice daily Posaconazole suspension 100 mg once daily, 100 mg twice daily, or 200 mg twice daily 	140 mg once daily
 Posaconazole suspension 200 mg three times daily or 400 mg twice daily Posaconazole intravenously 300 mg once daily Posaconazole delayed-release tablets 300 mg once daily 	70 mg once daily
Other strong CYP3A inhibitors	Avoid concomitant use. If these inhibitors will be used short term (such as anti-infectives for seven days or less), interrupt ibrutinib

Acalabrutinib Formulation

 New Acalabrutinib Formulation Enables Co-administration with Proton-Pump Inhibitors (PPI) and Dosing in Patients Unable to Swallow Capsules (ELEVATE-PLUS)

Figure 1: PK Profiles of Acalabrutinib and its Major Pharmacologically Active Metabolite,

ACP-5862, Across 3 Clinical Trials

Sharma (ELEVATE-PLUS) [abstract]. Blood. 2021;138 (supplement 1). Abs 4365.

Note: Arithmetic mean is shown in the figures.

Venetoclax Considerations

- Tumor Lysis Syndrome (TLS)
 - Dosing ramp-up and obinutuzumab lead in
- Neutropenia
 - Dose interruptions or reductions refer to PI
- Infectious complications
- Immunization: no live attenuated vaccines prior to, during, or after treatment with venetoclax until B-cell recovery
- Caution with drug interactions

Venetoclax Ramp-up Dosing

In combination with Obinutuzumab

- Start venetoclax on cycle 1 day 22
- After completing the ramp-up phase on cycle 2 day 28, continue venetoclax at a dose of 400 mg orally once daily from cycle 3 day 1 until the last day of cycle 12

In combination with Rituximab

- Start rituximab administration after the patient has completed the 5-week ramp-up dosing schedule and has received venetoclax at the recommended dosage of 400 mg orally once daily for 7 days
- Continue venetoclax 400 mg orally once daily for 24 months from cycle 1 day 1 of rituximab

Venclexta [package insert]. North Chicago, IL. AbbVie Inc 2022

TLS Risk	Tumor Burden	Prophylaxis, monitoring, and management*
Low	All LN < 5 cm AND ALC <25 x 10 ⁹ /L	 <u>Outpatient:</u> Oral hydration (1.5 to 2 L) and allopurinol First dose of 20 mg and 50 mg: Pre-dose, 6 to 8 hours, 24 hours Subsequent ramp-up doses: Pre-dose
Medium	LN ≥5 cm and <10 cm OR ALC: ≥25 x 10 ⁹ /L	 Outpatient: Oral hydration (1.5 to 2 L) and (IV PRN), and allopurinol First dose of 20 mg and 50 mg: Pre-dose, 6 to 8 hours, 24 hours Subsequent ramp-up doses: Pre-dose First dose of 20 mg and 50 mg: Consider hospitalization for patients with CLcr <80ml/min; see below for monitoring in Hospital
High	LN ≥10 cm OR LN ≥5 cm AND ALC ≥25 x 10 ⁹ /L	 In hospital: Oral hydration (1.5 to 2 L) and IV (150 to 200 mL/hr as tolerated) and allopurinol; consider rasburicase if baseline uric acid is elevated First dose of 20 mg and 50 mg: Pre-dose, 4, 8, 12, and 24 hours Outpatient: Subsequent ramp-up doses: Pre-dose, 6 to 8 hours, 24 hours

*Evaluate blood chemistries (potassium, uric acid, phosphorus, calcium, and creatinine); review in real time. For patients at risk of TLS, monitor blood chemistries at 6 to 8 hours and at 24 hours at each subsequent ramp-up dose. Start allopurinol or xanthine oxidase inhibitor 2 to 3 days prior to initiation

Venclexta [package insert]. North Chicago, IL. AbbVie Inc 2022

ALC = absolute lymphocyte count; CLcr = creatinine clearance; LN = lymph node
Venetoclax Considerations

	Venetoclax
AEs ≥20%	 Neutropenia, thrombocytopenia, anemia, diarrhea, nausea, upper respiratory tract infection, cough, musculoskeletal pain, fatigue, and edema
Antimicrobial prophylaxis	 Consider fluoroquinolones and fungal prophylaxis during neutropenia
CYP3A4 inhibitors P-glycoprotein inhibitor	 Avoid concomitant use of moderate or strong CYP3A4 inhibitors at initiation and during ramp-up (contraindicated). If unavoidable after the ramp-up venetoclax dose modification is required Reduce dose by at least 50% when used with a moderate CYP3A4 or P-glycoprotein inhibitor Resume the venetoclax dosage that was used prior to concomitant use of a strong or moderate CYP3A inhibitor or a P-gp inhibitor 2 to 3 days after discontinuation of the inhibitor
CYP3A4 inducers	 Avoid with concomitant strong and moderate CYP3A4 inducer
Concomitant therapy considerations	 Increase INR monitoring if used with warfarin Avoid use with P-glycoprotein substrates (as venetoclax increases their level), if unavoidable then separate by 6 hours

Importance of Adverse Events Management

- Adherence and discontinuation rate
 - Toxicity with ibrutinib can lead to discontinuation in up to 20% in trials, higher in real-world experience up to 42%
- AEs affecting quality of life
 - Musculoskeletal pain, headaches, diarrhea, fatigue
- Life-threatening

- Arrhythmias, bleeding, hypertension, infections, TLS

Byrd. ASCO 2021. Abstr 7500. Mato. Haematologica. 2018;103:874. Dickerson. Blood. 2019;134:1919.

Conclusion

- Cytogenetics and molecular markers play a role in treatment choice
- Choice of treatment is disease and patient-specific. It requires considerations of pros/cons with each therapy
- For almost all patients, targeted therapies are preferred with few exceptions
- Choice of targeted therapies is determined by patient preference, comorbidities, and safety considerations
- Given the efficacy of agents used in the treatment of CLL, appropriate management of BTKi toxicities and venetoclax based therapies is critical

Pharmacotherapy Management in Chronic Lymphocytic Leukemia (CLL)

Tiba Al Sagheer, PharmD, BCOP, BCACP

HCT/BMT & Malignant Hematology Clinical Pharmacy Specialist Miami Cancer Institute | Baptist Health South Florida Miami, FL Email: tibaa@baptisthealth.net