

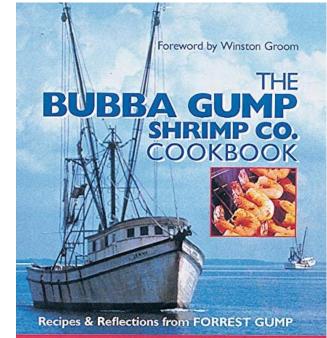
PD-1/PD-L1 Directed IO for Advanced NSCLC

Jonathan Riess, M.D. M.S.

Associate Professor of Medicine Medical Director Thoracic Oncology University of California Davis School of Medicine UC Davis Comprehensive Cancer Center

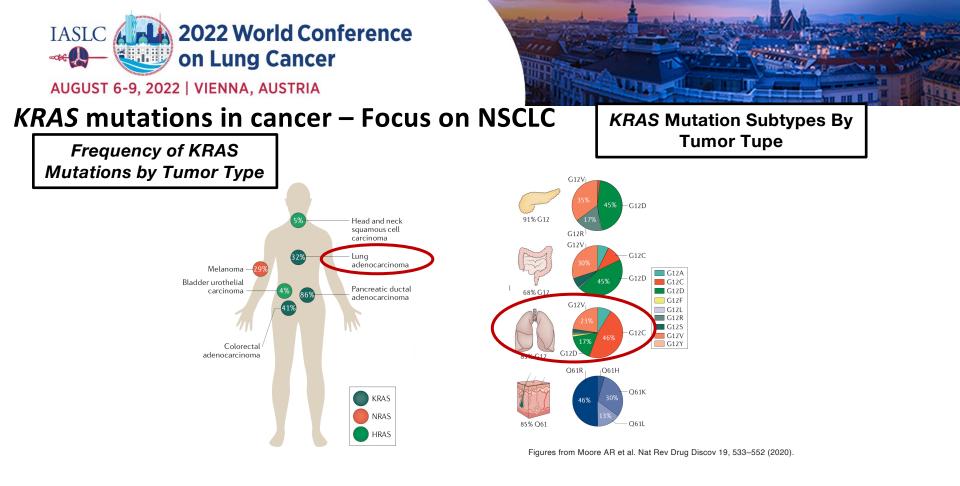
A Comprehensive Cancer Center Designated by the National Cancer Institute

DISCLOSURES


Company	Relationship(s)
Blueprint, Beigene, Daiichi Sankyo, EMD Serano, Janssen, Regeneron, Sanofi, Biodesix, Bayer, Turning Point, Bristol Myers Squibb, Jazz Pharmaceuticals, Novartis, Roche/Genentech, Boehringer Ingelheim	Consulting/Advisory Board
Merck, Boehringer Ingelheim, Novartis, AstraZeneca, Spectrum, Revolution Medicines	Research Funding (To Institution)

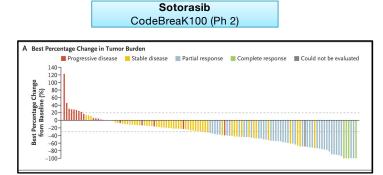
IO Combinations in NSCLC

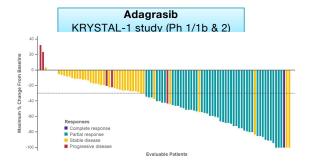
- Targeted therapy + IO (KRAS G12Ci)
- Hudson (ATR inhibitor among others)
- ADC + IO (Dato-DxD Trop2 ADC)



CodeBreaK 100/101: First report of safety and efficacy of sotorasib in combination with pembrolizumab or atezolizumab in advanced KRAS p.G12C NSCLC

Bob T. Li,¹ Gerald S. Falchook,² Gregory A. Durm,³ Timothy F. Burns,⁴ Ferdinandos Skoulidis,⁵ Suresh S. Ramalingam,⁶ Alexander Spira,⁷ Christine M. Bestvina,⁸ Sarah B. Goldberg,⁹ Rajwanth Veluswamy,¹⁰ Wade T. Iams,¹¹ Alberto A. Chiappori,¹² Charlotte R. Lemech,¹³ Alison R. Meloni,¹⁴ Victoria A. Ebiana,¹⁴ Tian Dai,¹⁴ Diana M. Gauto,¹⁴ Tracy L. Varrieur,¹⁴ Wendy J. Snyder,¹⁴ Ramaswamy Govindan¹⁵

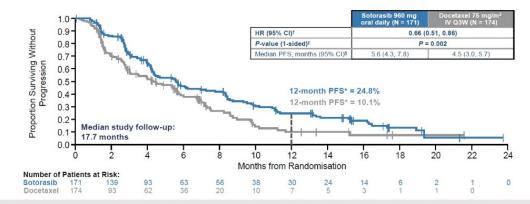

¹Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, NY, USA; ²Sarah Cannon Research Institute at HealthONE, Denver, CO, USA ³Indiana University School of Medicine, Indianapolis, IN, USA; ⁴University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA; ⁵The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁶Winship Cancer Institute of Emory University, Atlanta, GA, USA; ⁷US Oncology Research, The Woodlands, TX, USA; ⁸The University of Chicago Medicine, Chicago, IL, USA; ⁹Yale School of Medicine, New Haven, CT, USA; ¹⁰Icahn School of Medicine at Mount Sinai, New York, NY, USA; ¹¹Vanderbilt University Medical Center, Nashville, TN, USA; ¹²Moffitt Cancer Center, Tampa, FL, USA; ¹³Scientia Clinical Research, Randwick, Australia; ¹⁴Amgen Inc., Thousand Oaks, CA, USA; ¹⁵Washington University School of Medicine, St Louis, MO, USA



KRAS G12C inhibitors have activity in *KRAS* G12C NSCLC

N=124 pts at 960 mg po qd Median 2 prior lines of therapy 81% received both platinum and anti-PD-(L)1 ORR 37.1% (95% Cl 28.6-46.2) // DCR 80.6% (95% Cl 72.6-87.2) mDOR 11.1 mo (95% Cl 6.9-NE); mPFS 6.8 mo (95% Cl 5.1-8.2) mOS 12.5 mo (95% Cl 10.0-NE)*

*median f/u 15.3 months F Skoulidis et al. N Engl J Med 2021;384:2371-2381.



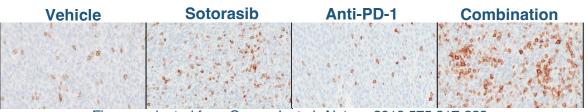
N=112 pts at 600 mg po bid 98% received both chemo and anti-PD-(L)1 ORR 43% // DCR 80% // mPFS 6.5 months (95% CI 4.7-8.4) mOS 12.6 months (95% CI 9.2-19.2)

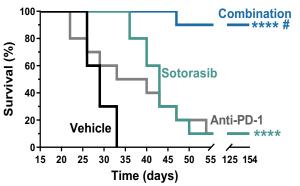
Primary Endpoint: PFS by BICR

CodeBreaK 200 met its primary endpoint with sotorasib demonstrating superior PFS over docetaxel (HR 0.66, *P* = 0.002); 12-month PFS rate was 24.8% for sotorasib and 10.1% for docetaxel

ORR 28.1% vs. 13.2% mOS 10.6 (soto) vs. 11.3 months (doce). No difference in OS. 34% crossover in docetaxel arm

M. Johnson et al ESMO 2022


Introduction

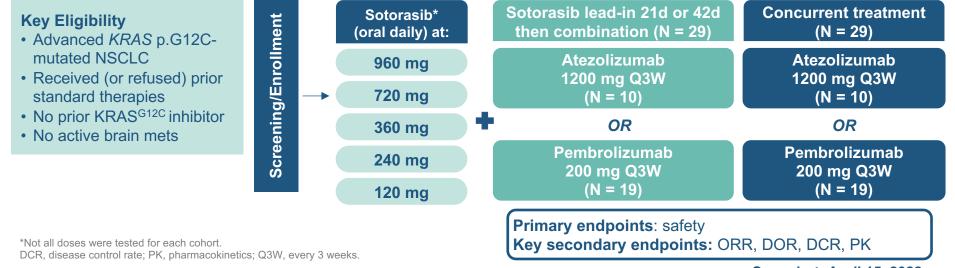

 Sotorasib, a first-in-class KRAS^{G12C} inhibitor, is approved as a monotherapy in the US, EU, and other countries for patients with previously treated KRAS p.G12C-mutated advanced NSCLC¹⁻⁴

CodeBreaK 100⁵	ORR	DOR	Median OS	Grade 3-4 TRAE	TRAE leading to discontinuation
Pooled Phase 1/2 (N=174)	41%	12.3 months	12.5 months	21%	6%

 Sotorasib synergizes with anti-PD-1 to inhibit tumor growth in mice and enhances CD8+ T cell infiltration¹

Figures adapted from Canon J, et al. Nature. 2019;575:217-223.

****P<0.0001 vs vehicle; #P<0.001 combination vs sotorasib or anti-PD-1 alone by 2-sided Mantel-Cox test


DOR, duration of response; KRAS, Kirsten rat sarcoma virus; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD-1, programmed death 1; TRAE, treatment-related adverse event.

CodeBreaK 100/101 Study Design

• Phase 1b multicenter, open-label studies

Snapshot: April 15, 2022

Here we present first data of lead-in and concurrent sotorasib with pembrolizumab or atezolizumab from CodeBreaK 100/101 with median follow-up time of 12.8 months (range: 1.6, 29.9)

Safety by Dose: Pembrolizumab Concurrent

	Sotorasil (N :	o 120 mg = 5)	Sotorasil (N :	o 360 mg = 8)		b 720 mg = 2)		b 960 mg = 4)
TRAE, n (%)	Any	Grade ≥ 3	Any	Grade ≥ 3	Any	Grade ≥ 3	Any	Grade ≥ 3
All TRAEs	5 (100)	4 (80)	7 (88)	6 (75)	2 (100)	2 (100)	3 (75)	3 (75)
Hepatotoxicity	2 (40)	2 (40)	3 (38)	2 (25)	2 (100)	2 (100)	3 (75)	3 (75)
ALT increased	2 (40)	1 (20)	3 (38)	1 (13)	2 (100)	2 (100)	3 (75)	3 (75)
AST increased	2 (40)	2 (40)	3 (38)	0	2 (100)	2 (100)	3 (75)	1 (25)

- Higher rate of TRAEs than with either monotherapy^{6–8}, with no fatal TRAEs
- At lower doses of sotorasib, there was a trend towards less liver enzyme elevations, although sample sizes were limited
- Given the safety data for this combination, sotorasib lead-in was explored

Hepatotoxicity included autoimmune hepatitis, ALT increased, AST increased, ALP increased, bilirubin increased, and GGT increased. ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase.

Safety Summary: Lead-in versus Concurrent

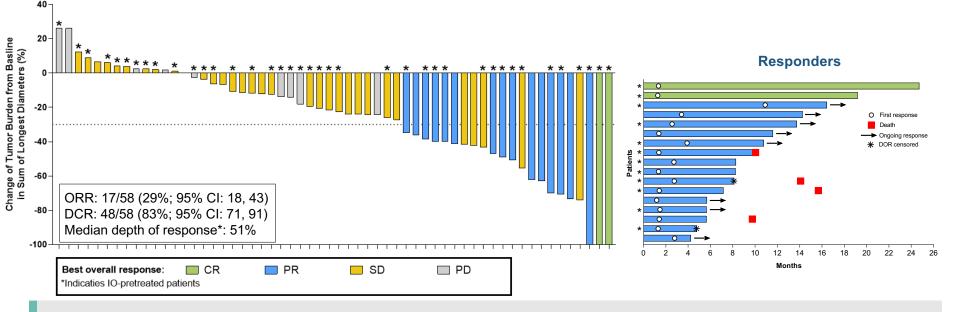
	Sotorasib + Atezolizumab Lead-In (N = 10)	Sotorasib + Atezolizumab Concurrent (N = 10)	Sotorasib + Pembrolizumab Lead-In (N = 19)	Sotorasib + Pembrolizumab Concurrent (N = 19)
TRAE, any grade, n (%)	10 (100)	9 (90)	15 (79)	17 (89)
Grade 3	3 (30)	5 (50)	10 (53)	14 (74)
Grade 4*	0	1 (10)		1 (5)
TRAE leading to sotorasib and/or IO discontinuation, n (%)	1 (10)	5 (50)	6 (32)	10 (53)
Median duration of sotorasib, months (min, max)	6.5 (1, 18)	4.4 (1, 14)	2.8 (1, 15)	4.9 (2, 30)
Median duration of combination, months (min, max) [‡]	1.5 (0, 18)	2.5 (1, 14)	0.7 (1, 15)	2.3 (1, 9)
Hepatotoxicity grade ≥ 3, median onset, days (range)	50 (28, 93)	67 (36, 147)	73 (45, 127)	51 (29, 190)

- Lead-in had lower incidence of Grade 3-4 TRAEs and TRAEs leading to discontinuation than concurrent
- Grade 3-4 hepatotoxicity first occurrence was outside DLT window[†] in 88% of patients; 97% of events resolved with corticosteroids, treatment modification, and/or discontinuation
- The incidence of hepatotoxicity TRAEs was similar in IO-naïve versus IO-pretreated patients

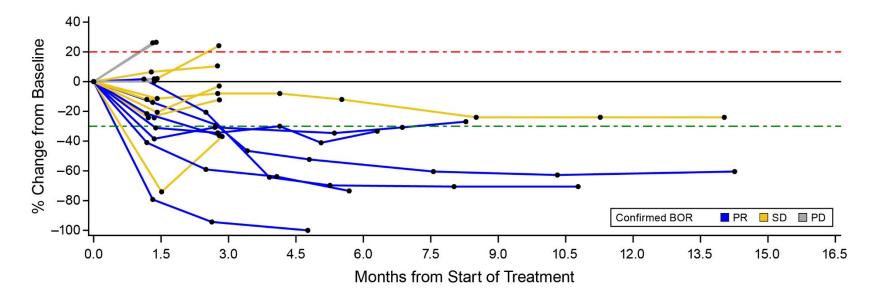
Hepatotoxicity included ALT increased, AST increased, ALP increased, bilirubin increased, GGT increased; also hepatitis, liver function test increased, drug-induced liver injury, transaminases increased for sotorasib+atezolizumab; also hepatic enzyme increased, immune-mediated hepatitis for sotorasib lead-in+pembrolizumab; also autoimmune hepatitis for sotorasib+pembrolizumab concurrent. *Grade 4 TRAEs were ALT increased (n = 1; related to sotorasib and atezolizumab), and AST increased (n = 1; related to sotorasib). *Duration of combination calculated for patients receiving both sotorasib and IO; one patient in a lead-in cohort did not receive IO and not included *DLT window was 21 days following initiation of combination treatment. IO, immune-oncology

Safety for Sotorasib Lead-in + Pembrolizumab

	Cotorooih 44	20 - 2	Sotorasib 240 mg (N = 5)		N = 3) Sotorasib 240 mg (N = 5) Sotorasib 360 mg (0
		20 mg (N = 3)					
TRAE*, n (%)	Any	Grade ≥ 3	Any	Grade ≥ 3	Any	Grade ≥ 3	
All TRAEs	3 (100)	3 (100)	3 (60)	1 (20)	9 (82)	6 (55)	
ALT increased	2 (67)	2 (67)	1 (20)	1 (20)	6 (55)	3 (27)	
AST increased	2 (67)	2 (67)	1 (20)	1 (20)	6 (55)	2 (18)	
ALP increased	2 (67)	0	0	0	3 (27)	2 (18)	
Diarrhea	1 (33)	0	1 (20)	0	6 (55)	1 (9)	
Arthralgia	1 (33)	0	0	0	2 (18)	0	
Nausea	0	0	0	0	4 (36)	0	
Fatigue	0	0	0	0	4 (36)	0	
Hypokalemia	0	0	0	0	3 (27)	2 (18)	
Decreased appetite	0	0	0	0	3 (27)	0	
Headache	0	0	0	0	2 (18)	0	
Hepatotoxicity	2 (67)	2 (67)	2 (40)	1 (20)	6 (55)	5 (45)	


Overall safety data from lead-in and concurrent cohorts support lower dose sotorasib and lead-in administration for better tolerability

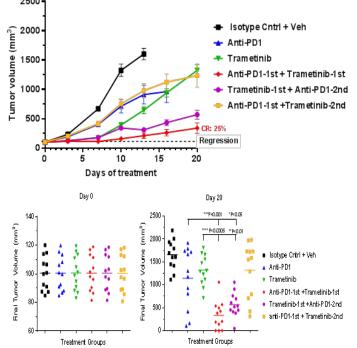
Efficacy


- Deep and durable responses were observed for this combination across all cohorts, including at low doses
- Among the 17 responders, median duration of response was 17.9 months (95% CI: 5.6, NE)
- Response was similar in IO-naïve and IO-pretreated patients

*Median depth of response among responders. CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.

Efficacy for Sotorasib Lead-In + Pembrolizumab

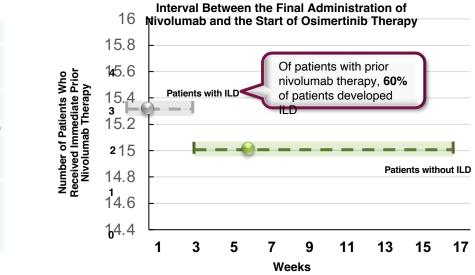
Durable clinical benefit observed with sotorasib lead-in + pembrolizumab, with deep responses
Low dose sotorasib lead-in + pembrolizumab is being pursued given its safety and efficacy profile



Lead in TT + IO Rationale

- 1. Three regimens tested in syngeneic CT26 engrafted BALB/C mice
 - Trametinib+anti-PD1 concurrently
 - In sequence trametinib 1st then anti-PD1 2nd
 - In sequence anti-PD1 1st then trametinib 2nd
 - All inhibited tumor growth more effectively than their single agent controls during the initial 2-3 weeks of treatment
- 2. Two treatments produced profound TGD
 - Concurrent treatment
 - Trametinib 1st then anti-PD1 2nd
- Combination increased tumor infiltrating CD8+ T cells *in vivo*. No significant alterations in the numbers and expression levels of CD3, CD4, CD25, CD69, PD1.

CT26 mouse colorectal tumor cells: homozygous KRAS G12D mutation, *MAPK1* and *MET* amplification


 $PD_{-}(I)1$

EGER-TKI

Increased Toxicity with EGFR-TKI + PD-(L)1

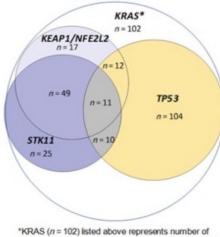
Toxicity

1. Kotake M, et al. Ann Oncol.

EGEN-INI		TOXICITY
Erlotinib	Atezolizumab	39% G3-4 trAEs (pyrexia, transaminitis)
Erlotinib	Nivolumab	10% G3 trAEs (diarrhea, transaminitis)
Osimertinib	Durvalumab	64% pneumonitis (TKI naïve); 26% (prior TKI)
		36% irAEs (nephritis, adrenal insuff, colitis) G3-4 irAEs (20%)
Afatinib Gefitinib	Pembrolizumab Durvalumab	transaminitis

Conclusions

- In mostly IO-pretreated patients, sotorasib with atezolizumab or pembrolizumab led to a high incidence of grade 3-4 TRAEs
- Lower sotorasib doses trended toward less hepatotoxicity TRAEs including fewer grade ≥3 events
- Sotorasib lead-in had lower rates of grade 3-4 TRAEs and TRAEs leading to discontinuation compared with concurrent administration. ? More efficacy.
- Lead-in cohorts demonstrated durable clinical activity and depth of response
- Among 17 responders, median duration of response was 17.9 months (95% CI: 5.6, NE)
- Lower dose and lead in being pursued.
- Co-mutation status may impact response to PD-(L)1 plus KRAS G12Ci



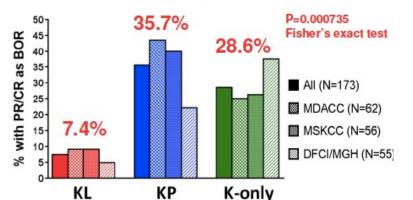
Spectrum of KRAS mutations and Co-Mutations in

NSCLC

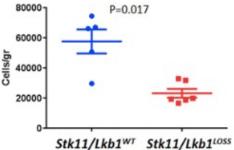
G12S G13C _2% Q61H 2% Other 4% 5% G13D 5% C12A 44% 7% G12V 15% 16%

*KRAS (n = 102) listed above represents number of patients with KRAS mutations but without cooccurring mutations in TP53, STK11, KEAP1 or NFE2L2

Arbour et al CCR 2018



SU2C cohort (N=173)


AUGUST 6-9, 2022 | VIENNA, AUSTRIA

Differential activity of PD-1 Blockade in KRAS mutant NSCLC by STK11 (LKB1) co-mutation status

CD3+CD8+

Patients with KRAS;STK11(LKB1) co-mutated tumors exhibit poor clinical response to PD-1 inhibitors

Skoulidis F et al. ASCO Annual Meeting, 2017

Skoulidis F et al, Cancer Discovery, 2018

"Cold" Tumor Microenvironment in Syngeneic KRAS LUAC mouse model

HUDSON: AN OPEN-LABEL, MULTI-DRUG, BIOMARKER-DIRECTED PHASE 2 STUDY IN NSCLC PATIENTS WHO PROGRESSED ON ANTI-PD-(L)1 THERAPY

Benjamin Besse¹, Mark M. Awad², Patrick M. Forde³, Michael Thomas⁴, Glenwood Goss⁵, Boaz Aronson⁶, Rosalind Hobson⁷, Emma Dean⁷, Jane Peters⁷, Sonia Iyer⁸, James Conway⁶, J. Carl Barrett⁸, Jan Cosaert⁷, Marlene Dressman⁶, Simon T. Barry⁷, John V. Heymach⁹

¹Paris-Saclay University, Institut Gustave Roussy, Villejuif, France; ²Dana-Farber Cancer Institute, Boston, MA, USA;
 ³Johns Hopkins University School of Medicine, Baltimore, MD, USA; ⁴Thoraxklinik am Universitätsklinikum Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany; ⁵The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada;
 ⁶AstraZeneca, Gaithersburg, MD, USA; ⁷AstraZeneca, Cambridge, UK; ⁸AstraZeneca, Boston, MA, USA;
 ⁹MD Anderson Cancer Center, Houston, TX, USA

Benjamin Besse, Paris-Saclay University, Institut Gustave Roussy, Villejuif, France

Rationale

Combination agent	Mechanism of action	Mechanism of anti-PD-(L)1 resistance targeted	HUDSON biomarkers
Ceralasertib (AZD6738)	ATR inhibitor	Improving tumor immunogenicity and tumor immune microenvironment via DDR pathway inhibition, to sensitize cancer cells to anti-PD-L1/PD-1 therapy ¹	ATM alteration
Olaparib	PARP inhibitor	Alterations to DDR pathways affect anti-PD-(L)1 sensitivity; ² PARP inhibition promotes DDR pathway defects ³	HRRm <i>STK11/LKB1m</i>
Danvatirsen	STAT3 inhibitor	Interferon-γ signalling defects arising from JAK-STAT pathway mutations associated with acquired resistance ⁴	Not applicable
Oleclumab	Anti-CD73 monoclonal antibody	Immunosuppressive tumor immune microenvironment due to production of adenosine, mediated by CD73 ⁵	High CD73 expression

4. Schoenfeld & Hellmann. Cancer Cell 2020;37:443-455; 5. Roh et al. Curr Opin Pharmacol 2020;53:66-76.

ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-relatedprotein kinase; CD73, cluster of differentiation 73; DDR, DNA damage response and repair; HRRm,

homologous recombination repair mutated; STK11/LKB1m, STK11/LKB1 aberration; PARP, Poly-(ADP-ribose) polymerase; PD-(L)1, programmed death (ligand)-1

*Ongoing. †Data not mature. ‡Immunohistochemistry was also performed. \$/# Progression on prior anti-PD-(L)1 therapy within 24 weeks / after > 24 weeks.

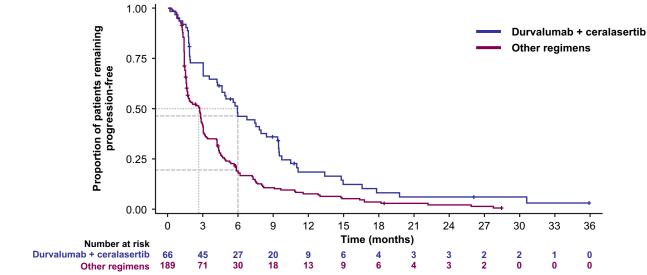
ATM, ataxia telangiectasia mutated; ATRi, ataxia telangiectasia receptor inhibitor; CD73(h), (high expression of) cluster of differentiation 73; DCR, disease control rate; HER2e/i/m, human epidermal growth factor receptor 2 expression/inhibitor/mutated; HRRm, homologous recombination repair mutated; LKB1, LKB1/STK11 aberration; mAb, monoclonal antibody; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PARPi, poly ADP ribose polymerase inhibitor; VEGFL voorammed death (licand)-1; PFS, progression-free survival; STAT3, signal transducer and activator of transcription 3 inhibitor; VEGFL vascular endothelial arowth factor inhibitor.

Treatment efficacy by regimen

	Durvalumab + ceralasertib n=66	Durvalumab + olaparib n=87	Durvalumab + danvatirsen n=45	Durvalumab + oleclumab n=57
Median treatment duration, months Durvalumab* Other agent [†]	7.3 6.3	3.7 3.2	2.8 2.8	2.9 2.9
12-week disease control rate, %	60.6	36.8	26.7	29.8
24-week disease control rate, %	42.4	17.2	13.3	15.8
ORR, %	16.7%	4.6%	0%	1.8%

ORR, objective response rate.

*Treatment duration for durvalumab calculated as (the earliest of (last infusion date + 27, date of death, date of cut-off) – first infusion date + 1) / (365.25/12).


†Treatment duration for:

- Olaparib calculated as (Last dose date first dose date + 1) / (365.25/12)
- Danvatirsen calculated as (Last infusion date first infusion date + 1) / (365.25/12), if the last cycle is Cycle 0 and there were less than 3 doses, or (the earliest of (last infusion date + 6, death date, date of cut-off) first infusion date + 1) / (365.25/12) for all other cases
- Ceralasertib calculated as (Last dose date first dose date + 1) / (365.25/12)
- Oleclumab calculated as (the earliest of (last infusion date + 13, death date, date of cut-off) first infusion date + 1) / (365.25/12) if the last cycle is Cycle 1 or 2, or as (the earliest of (last infusion date + 27, death date, date of cut-off) first infusion date + 1) / (365.25/12), for all other cases.

PFS

	Durvalumab + ceralasertib. n=66	Other regimens n=189
Median PFS, months (80% CI)	6.0 (4.6–7.5)	2.7 (1.8–2.8)
6-month PFS, % (80% CI)	46.3 (37.9–54.2)	18.0 (14.5–21.9)

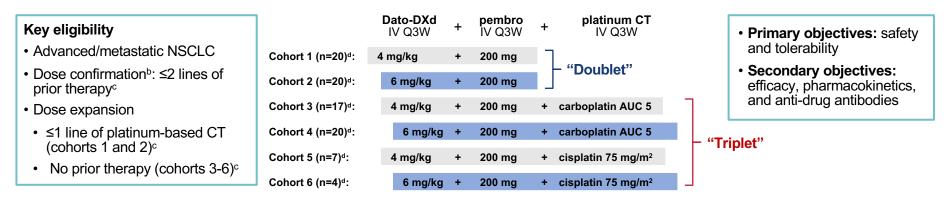
PFS, progression-free survival.

Conclusions

- Durvalumab plus ceralasertib (Module 3) demonstrated an efficacy signal across biomarker-matched and biomarker-non-matched patients with locally advanced or metastatic NSCLC following failure of prior anti-PD-1/PD-L1-containing immunotherapy and platinum-doublet regimen
 - The combination resulted in the highest ORR (16.7% vs 0–4.8%) and disease control rates (12-week: 60.6% vs 26.7–36.8%; 24-week: 42.4% vs 13.3–17.2%) among the regimens evaluated to date
 - Hypothesis generating for future studies
 - Need to match IO enhancement/resistance mechanism to combo treatment.

NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD-(L)1, programmed death (ligand)-1

TROPION-Lung02: Initial Results for Datopotamab Deruxtecan Plus Pembrolizumab and Platinum Chemotherapy in Advanced NSCLC


Benjamin Levy,¹ Luis Paz-Ares,² Olivier Rixe,^{3,4} Wu-Chou Su,⁵ Tsung-Ying Yang,⁶ Anthony Tolcher,⁷ Yanyan Lou,⁸ Yoshitaka Zenke,⁹ Panayiotis Savvides,¹⁰ Enriqueta Felip,¹¹ Manuel Domine,¹² Konstantinos Leventakos,¹³ Mariano Provencio Pulla,¹⁴ Marianna Koczywas,¹⁵ Atsushi Horiike,¹⁶ Siddhartha Rawat,⁴ Xiangfeng Wu,⁴ Priyanka Basak,⁴ Michael Chisamore,¹⁷ Yasushi Goto¹⁸

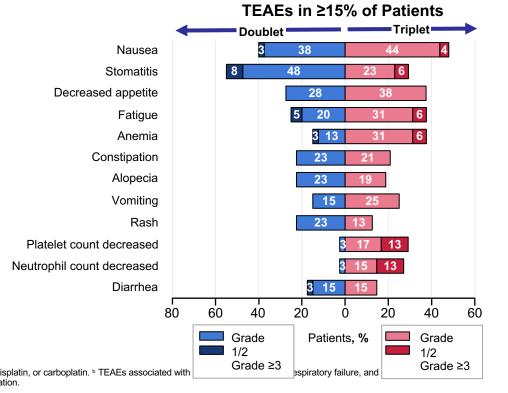
¹The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Medicine, Baltimore, MD, USA; ²Hospital Universitario 12 de Octubre, CNIO-H12O Lung Cancer Unit, Universidad Complutense & CiberOnc, Madrid, Spain; ³Quantum Santa Fe, Santa Fe, NM, USA; ⁴Daiichi Sankyo, Inc, Basking Ridge, NJ, USA; ⁵Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ⁶Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; ⁷NEXT Oncology, San Antonio, TX, USA; ⁸Mayo Clinic, Jacksonville, FL, USA; ⁹Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ¹⁰Mayo Clinic, Phoenix, AZ, USA; ¹¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹²Department of Oncology, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; ¹³Mayo Clinic, Rochester, MN, USA; ¹⁴Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain; ¹⁵Department of Medical Oncology & Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ¹⁶Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ¹⁷Merck & Co., Inc., Rahway, NJ, USA; ¹⁸National Cancer Center Hospital, Tokyo, Japan

Background

- Dato-DXd is an ADC composed of a humanized TROP2 IgG1 mAb covalently linked to a topoisomerase I inhibitor payload via a stable tetrapeptidebased cleavable linker
- TROPION-Lung02 is a phase 1b study evaluating Dato-DXd + pembrolizumab (pembro) ± platinum CT^a in advanced NSCLC without actionable genomic alterations (NCT04526691)
- Study approach: safety of Dato-DXd + pembro "doublets" was established prior to evaluation of platinum-containing "triplets"
 - Safety of Dato-DXd 4-mg/kg combinations was established prior to evaluation of 6-mg/kg combinations

ADC, antibody-drug conjugate; AUC, area under the curve; CT, chemotherapy; Dato-DXd, datopotamab deruxtecan; DLT, dose-limiting toxicity; IgG1, immunoglobulin G1; IV, intravenous; mAb, monoclonal antibody; NSCLC, nonsmall cell lung cancer; pembro, pembrolizumab; Q3W, every 3 weeks; TROP2, trophoblast cell-surface antigen 2. ^a Administered sequentially at the same visit. ^b The first 3-6 patients in each cohort were enrolled to confirm acceptable safety/DLT rate; the remaining patients are considered part of "dose expansion" (for which enrollment was

ongoing at time of data cutoff). • Prior therapy requirements are for treatment in the advanced/metastatic setting. • As of the May 2, 2022, data cutoff.



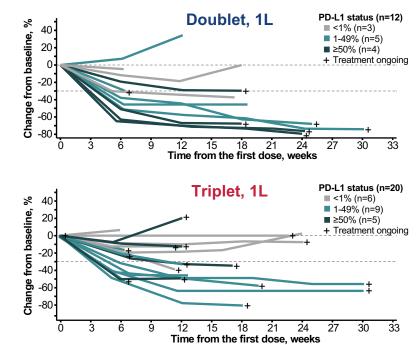
Safety

Events, n (%)	Doublet (n=40)	Triplet (n=48)	
TEAEs	37 (93%)	47 (98%)	
Study treatment-related ^a	33 (83%)	46 (96%)	
Grade ≥3 TEAEs	16 (40%)	29 (60%)	
Study treatment-related ^a	14 (35%)	26 (54%)	
Serious TEAEs	9 (23%)	13 (27%)	
Study treatment-related	4 (10%)	7 (15%)	
TEAEs associated with			
Death ^b	2 (5%)	1 (2%)	
Discontinuation due to any drug	9 (22%)	9 (19%)	N
Discontinuation due to Dato- DXd	6 (15%)	5 (10%)	
ILD adjudicated as drug related ^c			
Grade 1/2	2 (5%)	0	isplati
Grade 3	1 (3%)	1 (2%)	ation.

Antitumor Activity

In the overall population:

ORRs (confirmed + pending) of 37% and 41% were seen with doublet (n=38) and triplet (n=37) therapy, respectively; both groups had 84% DCR


BOR With 1L Therapy For Advanced NSCLC^{a,b}

Response, n (%)	Doublet (n=13)	Triplet (n=20)
ORR confirmed + pending	8 (62%)	10 (50%)
CR	0	0
PR confirmed	8 (62%)	7 (35%)
PR pending	0	3 (15%)
SD	5 (39%)	8 (40%)
DOD	40 (4000()	40 (000()

- As Deferapy, the doublet and triplet Vielder ORRs (cohint Alexa) + pending) of 62% and 50%, respectively
- As 2L+ therapy, respective ORRs (confirmed + pending) were 24% and 29%

Percent Change in Sum of Diameters^a

Data cutoff: May 2, 2022.

BOR, best overall response; CR, complete response; DCR, disease control rate; ORR, overall response rate; PR, partial response; SD, stable disease. ^a By investigator. ^b BOR is based on response evaluable patients who have ≥1 postbaseline tumor assessment or discontinued.

Summary

- This first reported clinical experience of a TROP2 ADC + a checkpoint inhibitor ± platinum CT in metastatic NSCLC demonstrated a tolerable safety profile and supported further evaluation of the 6-mg/kg dose of Dato-DXd in immunotherapy combination regimens^a
- Stomatitis and nausea, mostly grade 1/2, were the most frequent TEAEs in patients receiving doublet and triplet therapy, respectively

Interim efficacy results in the overall population and in patients receiving 1L therapy

- Responses were observed across all PD-L1 expression levels
- The study is ongoing, and additional analyses with longer follow-up and more patients are pending
- The phase 3 TROPION-Lung08 trial (NCT05215340) is evaluating Dato-DXd + pembro vs pembro alone as 1L therapy in advanced/metastatic NSCLC with PD-L1 TPS >50%¹

TPS, tumor proportion score.

^a The Dato-DXd 6-mg/kg dose is also being evaluated as monotherapy in ongoing, global, phase 3 studies.

1. Levy B, et al. Poster presented at: American Society for Clinical Oncology, June 3-7, 2022. Abstract TPS3162.

