Optimal treatment for early stage HER2 positive breast cancer: Tailoring treatment to response

Virginia F Borges, MD, MMSc Professor and Deputy Head, Medical Oncology Director, Breast Cancer Research Program & Young Women's Breast Cancer Translational Program University of Colorado Cancer Center Denver, CO

- 1. Summarize the key advances in early stage Her 2 positive breast cancer that led to today's standard of care.
- 2. Apply these latest advances in breast cancer research in clinical practice to how we currently optimize patient outcomes.
- Understand the current clinical trials in progress through review of the background data and identify the key questions facing the management of patients with Her 2+ breast cancer.

HER2 Signals Cells to Divide

Normal

Overexpressed HER2

Berger et al. Cancer Res. 1988;48:1238.

Roskoski. Biochem Biophys Res Commun. 2004;319:1.

Rowinsky. Annu Rev Med. 2004;55:433.

Slamon et al. *Science*. 1987;235:177.

Excessive cellular division

HER2 Protein Overexpression for Clinical Discrimination

IHC 0 IHC I+ IHC 2+ IHC 3+

HER2 Protein Overexpression for Clinical Discrimination

Treatment pathway follows the ER status

Her 2 Low treatment pathway in MBC

Treatment driven down the Her 2 pathway

Trastuzumab: Humanized Anti-HER2 MAb

- Targets HER2 protein
- Selectively binds with high affinity (K_d ≤0.5 nM)
- 95% human, 5% murine

Trastuzumab Randomized Adjuvant Clinical Trials: 2006

Intergroup N9831 (2614 pts)	$AC \rightarrow P$ $AC \rightarrow P \rightarrow H$ $AC \rightarrow PH \rightarrow H$	None vs Sequential vs Concurrent long
NSABP B-31 (2043 pts)	$\begin{array}{l} AC \rightarrow P \\ AC \rightarrow PH \rightarrow H \end{array}$	None vs Concurrent long
HERA (5081 pts)	none Chemo → H x 1 year H x 2 years	None vs Sequential For 1 or 2y
BCIRG 006 (3222 pts)	$AC \rightarrow D$ $AC \rightarrow DH \rightarrow H$ DCbH	None vs Concurrent vs Non-A
FinHer (232 pts)	D or V D or V plus H [→] FEC	None vs Concurrent short

A = doxorubicin, C = cyclophosphamide, P = paclitaxel, H = trastuzumab, D = docetaxel, Cb = carboplatin, V = vinorelbine, E = epirubicin, F = 5-FU

Tam/AI for ER+

The mABs trastuzumab and pertuzumab in the Neoadjuvant Space

Study	Regimen	Phase/Size	pCR	Disease outcomes
NOAH trial	SOC chemo +/- H	II/235	43% v 58%	HR 0.64
TRYPHAENA	FEC-THP FECHP-THP TCHP	II/150	55% 56% 64%	DFS 87-90%
TRAIN-2	FEC-TCHP TCHP		67% v 68%	EFS 93%, OS 98% both arms
KRISTINE	TDM-1P TCHP	/444	44% 55.7%	
NeoSPhere	TH [FEC H adj.] THP HP TP	II/417	29% 45.8% 24% 17%	PFS 81% 86% 73% 73%

These significant studies paved the way for TCHP to become a standard neoadjuvant regimen moving forward.

Gianni, Lancet Oncol 2014. Schneeweiss, Eur J Cancer 2018 Hurvitz Lancet Oncol 2018 Gianni, Lancet Oncol 2014 Sikov W. 2021 https://doi.org/10.1007/978-3-030-88020-0_6

Improvements in the Adjuvant Setting

APHINITY TRIAL

6 year follow up data:

Overall IDFS 91% v 88% Node pos IDFS 88% v 83%

Both HR+ and HR- benefit: 3% gain and 2.5% gain respectively

Cardiac event rate <1%

ExteNET

Neratinib for Early Stage Her 2+ BC HR+/ \leq 1-year population (n=1334)

Absolute improvements seen:

- iDFS 5.1%, dDFS 4.7% , OS 2.1%
 - 4 versus 12 CNS events for neratinib v placebo
 - neoadjuvant/non-pCR population (n=295)
 - iDFS 7.4%, dDFS 7.0%, OS 9.1%
 - neratinib is a pan-HER TKI
 - unmitigated neratinib at recommended 240mg dosing has 40% incidence grade 3 diarrhea
 - median onset 8 days
 - majority occur in the first 2 months

Chan et al. Clin Breast Can 2021 doi.org/10.1016/j.dbc.2020.09.014

ExteNET: Final Overall Survival Analysis

Holmes FA et al. SABCS 2020; Abstract PD3-03.

CONTROL Trial

NCT02400476

Barcenas, Hurvitz, et al. Annal of Oncol. 2020

HER2-Targeting Antibody-Drug Conjugates (ADCs)

This presentation is the intellectual property of the presenter. Contact p.Schmid@gmul.ac.uk for permission to reprint and/or distribute

The neoadjuvant era highlighted the role of pCR in survival for Her 2 + early breast cancer

Krop et al, AACR-SABCS 2017

RD: ~80 % 5y EFS

Untch et. al. JCO 2011²; Cortazar et al. Lancet 2014³; de Azambuja et. al Lancet Oncol 2014⁴; Gianni et al., Lancet Oncol 2014⁵; Schneeweiss et al., Eur J Cancer 2018⁶

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

FEBRUARY **14**, **2019**

VOL. 380 NO. 7

Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer

В 3-Yr Invasive Disease-free Subgroup **T-DM1** Trastuzumab Hazard Ratio for Invasive-Disease Event (95% CI) Survival Rate 100. T-DM1 T-DM1 Trastuzumab no. of patients with an invasive-disease % edom from Distant Recurrence (%) event/total no. 80-Trastuzumab All patients 91/743 165/743 0.50 (0.39-0.64) 88.3 77.0 60-Age group 3-Yr Freedom <40 yr 20/143 37/153 0.50 (0.29-0.86) 86.5 74.9 No. of from Distant No. of 40-64 yr 113/522 88.8 77.1 64/542 0.49 (0.36-0.67) Patients Events (%) Recurrence, % 40-≥65 yr 7/58 15/68 0.55 (0.22-1.34) 87.4 81.1 T-DM1 743 78 (10.5) 89.7 Trastuzumab 743 121 (16.3) 83.0 Clinical stage at presentation 20-Inoperable breast cancer 42/185 70/190 0.54 (0.37-0.80) 76.0 60.2 Unstratified hazard ratio for disease recurrence, 0.60 (95% CI, 0.45-0.79) Operable breast cancer 49/558 95/553 0.47 (0.33-0.66) 92.3 82.8 0-Hormone-receptor status 12 18 24 30 36 42 48 54 60 0 6 Negative (ER-negative and progesterone-receptor-negative or unknown) 38/209 61/203 0.50 (0.33-0.74) 82.1 66.6 Months since Randomization Positive (ER-positive, progesterone-receptor-positive, or both) 53/534 104/540 0.48 (0.35-0.67) 90.7 80.7 No. at Risk Preoperative HER2-directed therapy T-DM1 743 707 682 661 636 564 412 254 143 45 Trastuzumab alone 78/600 141/596 0.49 (0.37-0.65) 87.7 75.9 Trastuzumab 743 679 643 609 577 520 359 233 126 41 4 Trastuzumab plus additional HER2-directed agent or agents 24/147 90.9 81.8 13/143 0.54 (0.27-1.06) Pathological nodal status after preoperative therapy С Node-positive 62/343 103/346 0.52 (0.38-0.71) 83.0 67.7 100 Node-negative or NE 29/400 62/397 ┝───₽ 0.44 (0.28-0.68) 92.8 84.6 T-DM1 Primary tumor stage at definitive surgery Trastuzumab 80. ypT0, ypT1a, ypT1b, ypT1mic, ypTis 40/331 52/306 0.66 (0.44-1.00) 88.3 83.6 Overall Survival (%) 14/175 42/184 0.34 (0.19-0.62) 91.9 75.9 ypT1, ypT1c 60ypT2 25/174 44/185 0.50 (0.31-0.82) 88.3 74.3 No. of No. of 21/57 79.8 урТ3 9/51 0.40 (0.18-0.88) 61.1 Patients Events (%) ypT4 3/12 6/11 0.29 (0.07-1.17) 70.0 30.0 40-T-DM1 743 42 (5.7) Regional lymph-node stage at definitive surgery 56 (7.5) 743 Trastuzumab ypN0 28/344 56/335 0.46 (0.30-0.73) 91.9 83.9 Unstratified hazard ratio for death, 20-0.70 (95% CI, 0.47-1.05) ypN1 29/220 50/213 0.49 (0.31-0.78) 88.9 75.8 P=0.08 16/86 38/103 0.43 (0.24-0.77) 81.1 58.2 ypN2 0-17/37 15/30 0.71 (0.35-1.42) 52.0 40.6 30 36 ypN3 12 18 24 42 48 54 0 6 1/56 6/62 0.17 (0.02-1.38) 98.1 88.7 ypNX Months since Randomization 0.20 0.50 1.00 2.00 5.00 No. at Risk T-DM1 743 719 702 693 668 648 508 345 195 76 12 **T-DM1 Better** Trastuzumab Better Trastuzumab 743 695 677 657 635 608 471 312 175 71 8

KATHERINE Trial, von Minckwitz, et al.

Summary of the Early Her2+ BC Field

NODE NEGATIVE

<u>Adjuvant :</u>

TH-> H

TCH->H

? TDM-1

Larger tumor [>2cm]: Neoadjuvant TCHP -> HP

NODE POSITIVE

<u>Neoadjuvant:</u> TCHP or anthracycline based regimen

<u>Adjuvant:</u> pCR yes: HP pCR no: TDM-1

Option to add neratinib add if ER+ and high risk

<u>Pregnancy:</u> AC x 4 during 2 or 3rd trimester (stop by 36-37 weeks) then TH or THP postpartum

SUMMARY: IMPACT ON CLINICAL PRACTICE

FROM EARLY SUCCESS WE LEARNED:

- Hitting the target => lives saved
- All stages of Her 2 + breast cancer need targeted therapy, but lower stages still lower risk, so minimally toxic regimens are a must!
- Less toxic options needed
- Success at systemic disease control has led to CNS outgrowth
- Future directions => better definition of risk and better targeted combination therapies tailored to the risk at hand

TODAY'S OPTIONS IN HER 2 TARGETED THERAPY FOR EARLY-STAGE DISEASE

Overexpressed HER2

1998-2023

trastuzumab

pertuzumab

ado-emtansine-trastuzumab [T-DM1]

neratinib

Contenders:

tucatinib

trastuzumab-deruxtecan [T-DXd]

COMPARATIVE SELECT TOXICITIES OVERVIEW

Drug	neuropathy	neutropenia	thrombocytopenia	Diarrhea	LFTs	Pulmonary
trastuzumab	-	-	-	+	-	+
pertuzumab	+	-	-	+	-	-
T-DM1	+	+	+	+	+	+
neratinib	-	-	-	+	+	-
tucatinib	-	-	-	+	+	-
T-DXd	-	+	+	+	+	+

SUSAN F. SMITH CENTER FOR WOMEN'S CANCERS

TBCRC 033: A Randomized Phase 2 Trial of Adjuvant Trastuzumab Emtansine (T-DM1) vs. Paclitaxel with Trastuzumab for Stage 1 HER2+ Breast Cancer (ATEMPT)

Sara M. Tolaney^{1,2}, Jiani Hu^{1,2}, Chau Dang³, Denise Yardley⁴, Steven J. Isakoff⁵, Vicente Valero⁶, Meredith Faggen¹, Therese Mulvey⁵, Ron Bose⁷, Nabihah Tayob^{1,2}, William Barry^{1,2}, Douglas Weckstein¹, Antonio C. Wolff⁸, Katherine Reeder-Hayes⁹, Hope S. Rugo¹⁰, Bhuvaneswari Ramaswamy¹¹, Dan Zuckerman¹², Lowell Hart¹³, Vijayakrishna K. Gadi¹⁴, Michael Constantine¹, Kit Cheng¹⁵, Frederick Briccetti¹, Bryan Schneider¹⁶, Nadine Tung^{1,2}, Merrill Garrett¹⁷, Kelly Marcom¹⁸, Kathy Albain¹⁹, Patricia DeFusco²⁰, Blair Ardman²¹, Rita Nanda²², Rachel Jankowitz²³, Mothaffar Rimawi²⁴, Vandana Abramson²⁵, Paula Pohlmann²⁶, Catherine Van Poznak²⁷, Andres Forero-Torres²⁸, Minetta Liu²⁹, Michelle DeMeo¹, Ann Partridge^{1,2}, Harold Burstein^{1,2}, Eric P. Winer^{1,2}, Ian Krop^{1,2}

¹Dana-Farber Cancer Institute, Boston, MA; ²Harvard Medical School, Boston, MA; ³Memorial Sloan-Kettering Cancer Center, New York, NY; ⁴Sarah Cannon Cancer Center, Nashville, TN; ⁵Massachusetts General Hospital, Boston, MA; ⁶MD Anderson Cancer Center, Houston, TX; ⁷Washington University, St. Louis, MO; ⁶Johns Hopkins Sidney Kimmel Cancer Center, Washington, DC; ⁹UNC Chapel Hill, Chapel Hill, NC; ¹⁰UCSF, San Francisco, CA; ¹¹OSU Comprehensive Cancer Center, Columbus, OH; ¹²St. Luke's Mountain States Tumor Institute, Boise, ID; ¹³Florida Cancer Specialists, Fort Myers, FL; ¹⁴Seattle Cancer Care Aliance, Seattle, WA; ¹⁶North Shore-LIJ Cancer Institute, Lake Success, NY; ¹⁶IU School of Medicine, Indiana; ¹⁷Northern Light Cancer Care, Brewer, ME; ¹⁹Duke University, Durham, NC; ¹⁹Loyola University Medical Center, Maywood, IL; ²⁴Hartford Healthcare Cancer Institute, Hartford, CT; ²¹Lowell General Hospital, Lowell, MA; ²²UChicago Medicine, Chicago, IL; ²³UPMC Hilman Cancer Center, Pittsburgh, PA; ²⁴Baylor College of Medicine, Houston, TX; ²⁹Vanderbilt Ingram Cancer Center, Nashville, TN; ²⁶Georgetown University Hospital, Washington DC; ²⁷University of Michigan, Ann Arbor, MI; ²⁸Birmingham Veterans Affairs Medical Center, Birmingham, AL; ²⁹Mayo Clinic Cancer Center, Rochester, MN

Study Design: ATEMPT Trial

Study Population

	T-DM1 (n = 383)	TH (n = 114)	All Patients (n = 497)
Median Age (Range)	56 (32-85)	55 (23-82)	56 (23-85)
Tumor Size			
<0.5 cm	42 (11%)	14 (12%)	56 (11%) 📜 43%
≥0.5-1.0 cm	121 (32%)	38 (33%)	159 (32%)
≥1.0-1.5 cm	118 (31%)	29 (25%)	ر (30%) 147
≥1.5-2.0 cm	102 (27%)	33 (29%)	135 (27%) 🕇 57%
Histologic Grade			
Well Differentiated	11 (3%)	4 (4%)	15 (3%)
Moderately Differentiated	148 (39%)	46 (40%)	194 (39%)
Poorly Differentiated	219 (57%)	62 (54%)	281 (57%)
Unknown	5 (1%)	2 (2%)	7 (2%)
HR status			
Positive	289 (75%)	84 (74%)	373 (75%)
Negative	94 (25%)	30 (26%)	124 (25%)
HER2 Status (Central)			
1+	5 (1%)	1 (1%)	6 (1%)
2+	92 (24%)	25 (22%)	117 (24%)
3+	277 (72%)	87 (76%)	364 (73%)
Not done*	9 (2%)	1 (1%)	10 (2%)

*FISH performed centrally without IHC

Disease-Free Survival: T-DM1

Disease-Free Survival: TH

Tolaney S et al, NEJM 2015

Clinically Relevant Toxicity

Clinically Relevant Toxicity	T-DM1 (n = 383) N (%)	TH (n = 114) N (%)
Grade ≥3 non-hematologic toxicity	37 (10%)	13 (11%)
Grade ≥ 2 neurotoxicity	42 (11%)	26 (23%)
Grade ≥4 hematologic toxicity	4 (1%)	0 (0%)
Febrile neutropenia	0 (0%)	2 (2%)
Any toxicity requiring dose delay	106 (28%)	30 (26%)
Any toxicity requiring early discontinuation	67 (17%)	7 (6%)
Total	176 (46%)	53 (46%)

Suitability of Chemotherapy Deescalation Based on Response to Neoadjuvant Paclitaxel + Trastuzumab + Pertuzumab in HER2-Positive Breast Cancer: The DAPHNE Trial

- Feasibility study, single arm, dose de-escalation study -THP
- Stage II/III ER any Her 2 positive breast cancer
- "Infeasible if adherence is <80% in patients with pCR"
 - 81 subjects, 86% stage 2, 32% ER/PR-
 - 51 achieved pathCR adherence endpoint was met in that 95% stayed on regimen
 - 30 without pCR 14 got chemo, 16 got non-chemo approach [TDM-1]

A011801 (CompassHER2 RD) Postneoadjuvant T-DM1 + Tucatinib/Placebo in Patients With Residual Disease

The CompassHER2 Trials

COMprehensive use of Pathologic response ASSessment to optimize therapy in HER2-positive breast cancer

CompassHER2 pCR(EA1181): Patients with pCR after preoperative THP CTSU active, Feb 11,2020

CompassHER2 RD (A011801): Patients with residual disease after THP CTSU activation, January 6,2021

> Virginia F. Borges, MD, MMSc University of Colorado Cancer Center NRG co-Chair RD trial

CompassHER2 Trials EA1181 and A011801

Rationale for Escalation in Residual Disease

T-DM1 3.6 mg/kg IV Q3W HER2+ 14 cvcles Residual disease after N=1486 Trastuzumab chemo + H 6 mg/kg IV Q3W 14 cycles 100 Invasive Disease-Free Survival Rate (%) 80-Trastuzumab 60 T-DM1 Trastuzumab T-DM1 (n=743) (n=743) 40-IDFS Events, no. (%) 165 (22.2) 91 (12.2) Unstratified HR=0.50 (95% CI, 0.39-0.64) 20-P<0.0001 3-vears IDFS 77.0% 88.3% 60 12 18 24 30 36 42 48 54 Ω Time (months)

KATHERINE POSTNEOADJUVANT TRIAL

		Trastuzumab (n=743)	T-DM1 (n=743)	
-	Total	3-Year	3-Year	
əroup	N	IDE S	IDES	
AII	1486	77.0	88.3	
Clinical stage at presentation				
Operable	1111	82.8	92.3	
Inoperable	375	60.2	76.0	
Iormone receptor status				
Negative (ER negative and PgR negative/unknown)	412	66.6 280	82.1	
Positive (ER and/or PgR positive)	1074	80.7	90.7	
Preoperative HER2-directed therapy		of po	o'n	
Trastuzumab alone	1196	75.9	87.7	
Trastuzumab plus additional HER2-directed agent(s)	290	81.8	90.9	
Pathological nodal status after preoperative therapy		460	6	
Node positive	689	67.7 407	83.0	
Node negative/not done	797	84.6 of po	p'n 92.8	
Age group (years)				
<40	296	74.9	86.5	
40–64	1064	77.1	88.8	
≥65	126	81.1	87.4	
Race [*]				
White	1082	79.1	88.8	
Asian	129	71.9	82.5	
American Indian or Alaska Native	86	60.3	81.8	
Black or African American	40	66.0	94.7	

Even with T-DM1, ER-negative and any node+ have EFS ~ 82%

Incidence of brain metastases similar in both treatment arms

• Appropriate subgroups for escalation: (ER-/HER2+ patients, high-risk ER+/HER2+ patients, e.g. N+ after preoperative systemic therapy)

Geyer, NEJM 2018

KATHERINE: Central Nervous System Recurrence Events

	T-DM1 (n = 743)	Trastuzumab (n = 743)
Patients with CNS recurrence	45 (6.1%)	40 (5.4%)
At first IDFS event ^a	44 (5.9%)	32 (4.3%)
After first IDFS event ^b	1 (0.1%)	8 (1.1%)
Patients with CNS as only event ^c	36 (4.8%)	21 (2.8%)
Median time to CNS recurrence	17.5 months	11.9 months

T-DM1 = trastuzumab emtansine; CNS = central nervous system; IDFS = invasive disease-free survival CNS recurrence ^awithin or ^bafter 61 days of first IDFS event or at ^cany time

Mamounas EP et al. Ann Oncol 2021;32(8):1005-14.

A011801 (CompassHER2 RD) Postneoadjuvant T-DM1 + Tucatinib/Placebo in Patients With Residual Disease

Eligibility A011801 HER2+ RD ER- & ER+ (must have N+ if ER+) (~30% of A011801 participants expected to come from EA1181)

Tucatinib Combined With Ado-Trastuzumab Emtansine in Advanced ERBB2/HER2-Positive Metastatic Breast Cancer A Phase 1b Clinical Trial

Virginia F. Borges, MD, MMSc; Cristiano Ferrario, MD; Nathalie Aucoin, MD; Carla Falkson, MD; Qamar Khan, MD; Ian Krop, MD, PhD; Stephen Welch, MD; Alison Conlin, MD; Jorge Chaves, MD; Philippe L. Bedard, MD;

Marc Chamberlain, MD; Todd Gray, MD; Alex Vo, MD; Erika Hamilton, MD

Figure 2. Kaplan-Meier Plot of Progression-Free Survival (PFS) Among Patients Treated With the Maximum Tolerated Dosage of Tucatinib Combined With Ado-Trastuzumab Emtansine

Findings In this phase 1b study of 57 patients with metastatic or unresectable locally advanced *ERBB2/HER2*-positive breast cancer treated previously with trastuzumab and a taxane, the maximum tolerated dosage of tucatinib combined with ado-trastuzumab emtansine was determined to be 300 mg administered orally twice daily; the objective response rate was 48%; and median progression-free survival was 8.2 months.

- Adverse events: nausea (72%), diarrhea (60%), fatigue (56%), epistaxis (44%), headache (44%), vomiting (42%), constipation (42%), decreased appetite (40%);
- Majority AEs grade 1 or 2.
- Tucatinib-related toxic reactions ≥ grade 3: thrombocytopenia (7 patients; 14%) and transaminitis (6 patients; 12%).

Acceptable safety profile and preliminary antitumor efficacy

HER2CLIMB-02: A Randomized, Double-Blind, Phase 3 Study of Tucatinib or Placebo with T-DM1 for Unresectable Locally-Advanced or Metastatic HER2+ Breast Cancer (Trial in Progress)

Sara Hurvitz¹, Linda Vahdat², Nadia Harbeck³, Antonio C. Wolff⁴, Sara M. Tolaney⁵, Sherene Loi⁶, Norikazu Masuda⁷, Joyce O'Shaughnessy⁸, Cassie Dong⁹, Luke Walker⁹, Evelyn Rustia⁹, Virginia F. Borges¹⁰ ¹University of California, Los Angeles/Jonsson Comprehensive Cancer Center, Los Angeles, CA; ²Memorial Sloan Kettering Cancer Center, New York, NY; ³Brustzentrum der Universität München (LMU), Munich, Germany; ⁴The Johns Hopkins Kimmel Cancer Center, Baltimore, MD; ⁵Dana-Farber Cancer Institute, Boston, MA; ⁶Peter MacCallum Cancer Center, Melbourne, Australia; ⁷NHO Osaka National Hospital, Osaka, Japan; 8Baylor University Medical Center, Texas Oncology, US Oncology, Dallas;

DESTINY-Breast05

A Phase 3, Multicenter, Randomized, Open-Label, Active-Controlled Study of Trastuzumab Deruxtecan (T-DXd) Versus Trastuzumab Emtansine (T-DM1) in Participants With High-Risk HER2-Positive Primary Breast Cancer Who Have Residual Invasive Disease in Breast or Axillary Lymph Nodes Following Neoadjuvant Therapy [NCT04622319]

RATIONALE FOR ESCALATION TO T-DXD IN RD: DESTINY-03 T-DXD v. T-DM1 in Previously Treated HER2+ Positive Breast Cancer

Randomized Phase III (n=524)

mPFS T-DXDnot yet reachedmPFS T-DM16.8 months

12-month PFS75.8% T-DXD12-months PFS34.1% T-DM1

PFS in Key Subgroups

		Number	lumber of Events Media		Median PFS (mo, 95% CI)		HR (95% CI)
		T-DXd	T-DM1	T-DXd	T-DM1		
All patients		87/261	158/263	NE (18.5-NE)	6.8 (5.6-8.2)	IØI -	0.2840 (0.2165-0.3727)
Hormone Receptor	Positive (n = 272)	46/133	84/139	22.4 (17.7-NE)	6.9 (4.2-9.8)	Her	0.3191 (0.2217-0.4594)
Status	Negative (n = 248)	41/126	73/122	NE (18.0-NE)	6.8 (5.4-8.3)	HHH I	0.2965 (0.2008-0.4378)
Prior Pertuzumab	Yes (n = 320)	57/162	98/158	NE (18.5-NE)	6.8 (5.4-8.3)	HH -	0.3050 (0.2185-0.4257)
reatment	No (n = 204)	30/99	60/ <mark>1</mark> 05	NE (16.5-NE)	7.0 (4.2-9.7)	H#H	0.2999 (0.1924-0.4675)
Visceral Disease	Yes (n = 384)	72/195	123/189	22.2 (16.5-NE)	5.7 (4.2-7.0)	101	0.2806 (0.2083-0.3779)
	No (n = 140)	15/66	35/74	NE (NE-NE)	11.3 (6.8-NE)	+++	0.3157 (0.1718-0.5804)
Prior Lines of	0-1 (n = 258)	46/132	75/126	22.4 (17.9-NE)	8.0 (5.7-9.7)	- 14-1	0.3302 (0.2275-0.4794)
Therapy*	≥2 (n = 266)	41/129	83/137	NE (16.8-NE)	5.6 (4.2-7.1)		0.2828 (0.1933-0.4136)
Brain Metastases	Yes (n = 114)	31/62	31/52	15.0 (12.6-22.2)	5.7 (2.9-7.1)	++	0.3796 (0.2267-0.6357)
	No (n = 410)	56/199	127/211	NE (22.4-NE)	7.0 (5.5-9.7)	H H 1	0.2665 (0.1939-0.3665)
					0	0 05 10	15 20
2021 FSVO ^{congre}	SS			UNCONTROLLI	ED COPY	HR (T-DXd vs	T-DM1)

Шİ.

.

. ł

^aRapid progressors on (neo)adjuvant therapy were included. Line of therapy does not include endocrine therapy.

Summary and future directions

- We are living in an era of opportunity to tailor therapy to the biology, the stage, the response, and the tolerability/patient preferences.
- These are long treatment pathways for patients, so PROs, QOL, clinical resources and support are of increased importance.
- Continuing to tweak options for the lower risk patients
- Ongoing HR+ Her 2+ concepts
- Understanding Low Her2+ in the adjuvant setting
- Additional pathways and outcome drivers PIK3CA+, etc.

