Myelodysplastic Syndrome Challenges, Current Standard Therapy and Future Directions.

Rami Komrokji, MD

Senior Member, Vice Chair, Department of Malignant Hematology Moffitt Cancer Center Professor of Oncologic Sciences University of South Florida

Tampa, FL

Myelodysplastic Syndromes (MDS)

- A group of malignant hematopoietic neoplasms characterized by¹:
 - Bone marrow failure with resultant cytopenia and related complications
 - Evidence of clonality by cytogenetic abnormalities or somatic gene mutations
 - Dysplastic cytologic morphology is the hallmark of the disease
 - Tendency to progress to AML
- Overall incidence 3.7-4.8/100,000²
 - In US (true estimates ≈37,000-48,000)
- Median age: 70 yrs; incidence: 34-47/100,000 >75 yrs³

1. Bennett J et al. *Clinical Oncology*. New York, NY: Churchill Livingstone; 2004:2849-2881; 2. SEER data. 2000-2009. 3. SEER 18 data. 2000-2009.

MDS Minimal Diagnostic Criteria

Valent, et al. Oncotarget. 2017 Sep 26; 8(43): 73483-73500.

MDS classification has evolved over time

WHO 2022 Leukemia www.nature.com/leu () Check for updates **REVIEW ARTICLE** The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/ **Dendritic Neoplasms** Joseph D. Khoury (1¹²⁷, Eric Solary (1²²⁷, Oussama Abla³, Yassmine Akkari (1⁶⁴, Rita Alaggio⁵, Jane F. Apperley (1⁶), Rafael Bejar (1⁶), Emilio Berti⁸, Lambert Busque (1⁹), John K. C. Chan¹⁰, Weina Chen (1¹¹), Xueyan Chen¹², Wee-Joo Chng¹³, John K. Choi (1⁶⁴, Isabel Colmenero (1⁵), Sarah E. Coupland¹⁶, Nicholas C. P. Cross (1⁵⁷, Daphne De Jong¹⁸, M. Tarek Elghetany¹⁹, Emiko Takahashi (1⁶²), Jean-Francois Emile (1⁶²¹), Judith Ferry²², Linda Fogelstrand²³, Michaela Fontenav²⁴, Ulrich Germing²⁵, Sumeet Gujral²⁶, Torsten Haferlach (0²⁷, Claire Harrison²⁸, Jennelle C. Hodge²⁹, Shimin Hu (0¹, Joop H. Jansen³⁰, Rashmi Kanagal-Shamanna (0¹, Hagop M. Kantarjian 💿 31, Christian P. Kratz 💿 32, Xiao-Qiu Li 33, Megan S. Lim 34, Keith Loeb 35, Sanam Loghavi 💿 1, Andrea Marcogliese 19 Soheil Meshinchi³⁶, Phillip Michaels³⁷, Kikkeri N. Naresh 3³⁵, Yasodha Natkunam 3³⁸, Reza Nejati³⁹, German Ott⁴⁰, Eric Padron 3⁴¹ Keyur P. Patel¹, Nikhil Patkar ⁴², Jennifer Picarsic⁴³, Uwe Platzbecker ⁴⁴, Irene Roberts⁴⁵, Anna Schuh ⁴⁶, William Sewell⁴⁷, Reiner Siebert⁴⁸, Prashant Tembhare 2⁴², Jeffrey Tyner 2⁴⁹, Srdan Verstovsek 2³¹, Wei Wang 2¹, Brent Wood⁵⁰, Wenbin Xiao 2⁵¹, Cecilia Yeung 135 and Andreas Hochhaus 1052 **ICC 2022** The International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphological, Clinical, and Genomic Data Daniel A. Arber, Attilio Orazi, Robert P. Hasserjian, Michael J. Borowitz, Katherine R. Calvo, Hans-Michael Kvasnicka. Sa A. Wang, Adam Bagg, Tiziano Barbui, Susan Branford, Carlos E. Bueso-Ramos, Jorge E. Cortes, Paola Dal Cin, Courtney D. DiNardo, Herve' Dombret, Eric J. Duncavage, Benjamin L. Ebert, Elihu H. Estey, Fabio Facchetti, Kathryn Foucar, Naseema Gangat, Umberto Gianelli, Lucy A. Godley, Nicola Gökbuget, Jason Gotlib, Eva Hellström-Lindberg, Gabriela S. Hobbs, Ronald Hoffman, Elias J. Jabbour, Jean-Jacques Kiladijan, Richard A. Larson, Michelle M. Le Beau, Mignon L-C. Loh, Bob Löwenberg, Elizabeth Macintyre, Luca Malcovati, Charles G. Mullighan, Charlotte Niemeyer, Olatoyosi M. Odenike, Seishi Ogawa, Alberto Orfao, Elli Papaemmanuil, Francesco Passamonti, Kimmo Porkka, Ching-Hon Pui,

Jerald P. Radich, Andreas Reiter, Maria Rozman, Martina Rudelius, Michael R. Savona, Charles A.

Ayalew Tefferi

Schiffer, Annette Schmitt-Graeff, Akiko Shimamura, Jorge Sierra, Wendy A. Stock, Richard M. Stone, Martin S. Tallman, Jürgen Thiele, Hwei-Fang Tien, Alexandar Tzankov, Alessandro M. Vannucchi, Paresh

Vyas, Andrew H. Wei, Olga K. Weinberg, Agnieszka Wierzbowska, Mario Cazzola, Hartmut Döhner and

EHA2023

Zeidan A et al, Blood Reviews, 2019; Khoury J et al, Leukemia; Arber D et al, Blood 2022

Similarities and Differences: WHO and ICC 2022 for MDS

Genetically Defined Subgroups	SF3B1	No specific category	MDS-SF3B1: MDS with low blasts (BM <5%, PB <2%) and SF3B1 mutation	MDS-SF3B1: MDS with low blasts (BM <5%, PB <2%) and SF3B1 mutation
			 No del 5q, -7, complex karyotype No biallelic TP53 	 SF3B1 VAF ≥10% No del 5q, -7, inv3/t(3;3), complex karyotype No multi-hit TP53 or RUNX1 mutations
	Del 5q	MDS with isolated del(5q)	MDS-5q: MDS with low blasts and isolated del 5q or with 1 other cytogenetic abnormality except - 7/del(7)	MDS del(5q): MDS with isolated Del 5q or with 1 other cytogenetic abnormality except -7/del(7)
	<i>TP53</i> mutation (supersedes all other MDS categories)	Not included	MDS-biTP53: MDS with biallelic TP53 inactivation - ≥2 TP53 mutations, or 1	MDS with mutated <i>TP53</i> MDS/AML with mutated <i>TP53</i> - MDS (blast <10%): Criteria same as WHO
			mutation with evidence of <i>TP53</i> copy number loss or cnLOH	or, 1 TP53 mutation plus complex karyotype - MDS/AML (blast 10-19%): Any TP53 mutation (VAF ≥10%)
Other genetic Subgroups	MDS-related gene mutations and cytogenetic	Not included		MDS/AML with myelodysplasia related gene mutations MDS/AML with myelodysplasia related
*	abnormalities			cytogenetic abnormalities

AIDEI et al. Dioou. 2010, Miloury et al. Leukenna. 2022, Alber et al. Dioou. 29

Similarities and Differences: WHO and ICC 2022 for MDS

MORPH	JLOGY	WHO 2016	WHO 2022	ICC 2022
Ring Sideroblasts	RS ≥15%	MDS with ring sideroblasts and single lineage dysplasia (MDS-RS-SLD) and multi- lineage dysplasia (MDS-RS- MLD)	MDS with ring sideroblasts (MDS-RS): Low blast, SF3B1 wild-type	No RS specific category
Number of Dysplastic Lineages	1 vs. >1	MDS with single lineage dysplasia (MDS-SLD) and multi-lineage dysplasia (MDS- MLD)	Dysplastic lineages are removed MDS with low blasts (MDS-LB): <5% BM and <2% PB	MDS, not otherwise specified with single lineage dysplasia (MDS, NOS- SLD) and multi-lineage dysplasia (MDS, NOS-MLD)
Blasts	5-9%	MDS with excess blasts-1 (MDS-EB1): 5-9% BM blasts	MDS with increased blasts-1 (MDS- IB1): 5-9% BM and/or 2-4% PB blasts	MDS with excess blasts (MDS-EB; 5-9% BM and/or 2-9% PB blasts or Auer rods)
	10-19%	MDS excess blasts-2 (MDS- EB2): 10-19% BM or PB blasts or Auer rods	MDS with increased blasts-2 (MDS- IB2): 10-19% BM or 5-19% PB blasts or Auer rods	MDS/AML (10-19% BM or PB blasts)
Added Subgroup	WHO	Not included	MDS, hypoplastic (MDS-h): Hypocellular marrow (age-adjusted)	Not included
		Not included	MDS with fibrosis (MDS-f): BM blasts 5-19%, PB blasts 2-19%; BM Fibrosis- grade ≥ 2	Not included
Removed		MDS unclassifiable	Not included	Not included
Arber et al F	300d 2016	Khoury et al Leukemia 2022: Arb	er et al Blood 2022	EHA202

Arber et al. Blood. 2016; Khoury et al. Leukemia. 2022; Arber et al. Blood. 2022. ***EHA**

MYELODYSPLASTIC NEOPLASMS (MDS) CLASSIFICATION FROM WHO 2017 TO WHO 2022 AND ICC 2022: AN EXPANDED ANALYSIS OF 7017 PATIENTS ON BEHALF OF THE INTERNATIONAL CONSORTIUM FOR MDS (icMDS)

Rami S Komrokji^{*}, Somedeb Ball^{*}, Giulia Maggioni, Erica Travaglino, Najla Al Ali, Pierre Fenaux, Uwe Platzbecker, Maria Diez-Campelo, Torsten Haferlach, Avani M Singh, Luis E Aguirre, Akriti G Jain, Sara M Tinsley, Zaker I Schwabkey, Onyee Chan, Zhuoer Xie, Andrew Kuykendall, Andrew Brunner, John Bennett, Rena Buckstein, Rafael Bejar, Jan Philipp Bewersdorf, Hetty Carraway, Amy E. DeZern, Elizabeth A. Griffiths, Stephanie Halene, Robert Hasserjian, Sanam Loghavi, Olatoyosi Odenike, Mrinal Patnaik, Gail Roboz, Valeria Santini, Maximilian Stahl, Mikkael A Sekeres, David Steensma, Michael R. Savona, Justin Taylor, Mina Xu, Kendra Sweet, Jeffrey lancet, Alan List, Eric Padron, David A Sallman, Amer M Zeidan[#], Matteo G Della Porta [#]

Date: 10/06/2023

Program section: Session: s424 Clinical updates in MDS

Conceptual classification of MDS

Chronic phase MDS

- MDS-*SF3B1*
- MDS-del5q
- MDS-LB

Accelerated phase MDS

- MDS-EB (5-19% myeloblasts) (cutoff to be refined)
- Bi-allelic TP53 MDS
- MDS-f

AML-MDS related (AML-MR)

• ≥20% myeloblasts (cutoff to be refined) with prior history of MDS or AML with MDS defining cytogenetic abnormalities or gene mutations.

Risk stratification and clinical decisions in MDS – pre-2022

1. Greenberg PL, *et al. Blood* 2012; **120**:2454–2465; 2. Fenaux P, *et al. Ann Oncol* 2021; **32**:142–156.

Clinical and molecular variables defining IPSS-M

Category	Variable	Multivariable model: haza	rd ratio (95% CI)	Weight w	Scaling xmean
Confounder	Age, in years	ļ.	1.23 (1.05–1.43)	N/A	N/A
	Sex: Male	•	1.22 (1.06–1.41)	N/A	N/A
	Type: Secondary/Therapy-related		1.36 (1.10–1.68	N/A	N/A
clinical	Bone marrow blasts, in %	•	1.07 (1.05–1.09)	0.352	0.922
	(Platelets , 250), in x10 ⁹ /L	•!	0.80 (0.72–0.89)	-0.222	1.41
	Hemoglobin, in g/dL	•	0.84 (0.81–0.88)	-0.171	9.87
cytogenetics	IPSS-R category vector	•	1.33 (1.21–1.47)	0.287	1.390
gene main effects	TP53 ^{multi}	·	3.27 (2.38–4.48)	1.18	0.0710
genes	MLL ^{PTD}	! —	2.22 (1.49–3.32)	0.798	0.0247
	FLT3ITD+TKD	·	2.22 (1.11–4.45)	0.798	0.0108
	SF3B1 ^{5q}		1.66 (1.03–2.66)	0.504	0.0166
	NPM1	+	1.54 (0.78–3.02)	0.430	0.0112
	RUNX1		1.53 (1.23–1.89)	0.423	0.126
	NRAS	·	1.52 (1.05–2.20)	0.417	0.0362
	ETV6	<u> </u>	1.48 (0.98–2.23)	0.391	0.0216
	IDH2	I	1.46 (1.05–2.02)	0.379	0.0429
	CBL	! _ ●	1.34 (0.99–1.82)	0.295	0.0473
	EZH2	I-0	1.31 (0.98–1.75)	0.270	0.0588
	U2AF1	 	1.28 (1.01–1.61)	0.247	0.0866
	SRSF2	⊢ ⊕	1.27 (1.03–1.56)	0.239	0.158
	DNMT3A	 _ ⊷	1.25 (1.02–1.53)	0.221	0.161
	ASXL1		1.24 (1.02–1.51)	0.213	0.252
	KRAS		1.22 (0.84–1.77)	0.202	0.0271
	SF3B1	+	0.92 (0.74–1.16)	-0.0794	0.186
gene residuals	Min(Nres ,2)		1.26 (1.12–1.42)	0.231	0.388
1 variable, 15 genes	Possible values are 0,1 or 2				
		0.5 1.5 2.5 3.5 4.5			

A six-category risk schema

Hazard ratio (from average patient)

IPSS-M risk score

[^]residual genes: BCOR, BCORL1, CEBPA, ETNK1, GATA2, GNB1, IDH1, NF1, PHF6, PPM1D, PRPF8, PTPN11, SETBP1, STAG2, WT1

Bernard E, et al. NEJM Evidence 2022; 1:7

Risk stratification and clinical decisions in MDS – IPSS-M

Diagnosis ¹	Classification ¹	Incidence (%) ¹	Median OS (yrs) ¹	Progression risk (yrs)* ^{,1}	Treatment goal ²	Current SoC ²
	Very low (Very low/low)	14	10.6	2.8		Transfusion
26 16 26 26 28 27 01 16 26 27 28 28 11 28 28 28 28	Low (Very low/low/int)	()) 33	6.0	5.1	Hematologic improvement (lower risk	ESAs Watch & wait
	Moderate low (Low/int)	🎲 11	4.6	11.4	of infection & bleeding)	
	Moderate high <i>(Low/int/high</i>)	11	2.8	18.9	Alter disease	HMAs/ICT +/- ASCT
	High (Int/high/very high)	14	1.7	29.2	history (higher risk of infection	
any All	Very high (High/very high)	17	1.0	42.8	& bleeding)	

IPSS-M: Improves risk stratification of patients with MDS, providing a valuable tool for clinical decision making

Categorization by IPSS-M and restratified 46% of patients (n=1,223/2,678) and of these, 74% (n=911) were upstaged vs IPSS-R

IPSS-M improved discrimination of MDS vs **IPSS-R** Moffitt Cancer Center

IPSS-M improved discrimination of LFS, OS, and leukemic transformation vs IPSS-R with 2.3-, 2.0-, and 1.5-point increases in C-index

Natural History of LR-MDS

- LR-MDS conventionally defined as IPSS \leq 1 or IPSS-R \leq 3.5
- 2396 patients in European MDS Registry with IPSS ≤ 1
 - Median OS 4.7 years; most common causes of death were MDS/AML (20%), infection (18%), and cardiovascular disease (10%)
- Patterns of progression in 1914 patients with LR-MDS by IPSS-R at Moffitt
 - 68% remained LR, 17% LR→high-risk (HR), 7% LR→HR→AML, 9% LR→AML
- Reducing transfusion dependence is associated with improved QOL in LR-MDS & HR-MDS

Prognostic Score	Median OS (years)
IPSS	Low: 5.7 Int-1: 3.5
IPSS-R	Very low: 8.8 Low: 5.0 Int: 3.0
IPSS-M	Very low: 10.6 Low: 6.0 Moderate Low: 4.6

Greenberg et al, Blood 1997; Greenberg et al, 2012; Bernard, NEJM Evidence 2022; Pfeilstöcker et al, Blood 2016; Madry et al, BJH 2023; Jain et al, ASH 2021; Oliva et al, JCM 2022; Zeidner et al, Haematologica 2023

PRESENTED BY: A. Patel: Myeloid for Measure Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

How Do I Manage LR-MDS in 2023

- Allogeneic stem cell transplant maybe considered after standard therapy failure or in younger patients with higher-risk disease features.
- Iron chelation should be considered in patients with evidence of iron overload.

Luspatercept versus epoetin alfa for treatment of anemia in ESA-naive lower-risk myelodysplastic syndromes patients requiring RBC transfusions: data from the phase 3 COMMANDS study

Matteo Giovanni Della Porta,^{1,2} Uwe Platzbecker,³ Valeria Santini,⁴ Amer M. Zeidan,⁵ Pierre Fenaux,⁶ Rami S. Komrokji,⁷ Jake Shortt,⁸ David Valcarcel,⁹ Anna Jonasova,¹⁰ Sophie Dimicoli-Salazar,¹¹ Ing Soo Tiong,¹² Chien-Chin Lin,¹³ Jiahui Li,¹⁴ Jennie Zhang,¹⁴ Ana Carolina Giuseppi,¹⁴ Sandra Kreitz,¹⁵ Veronika Pozharskaya,¹⁴ Karen L. Keeperman,¹⁴ Shelonitda Rose,¹⁴ Jeevan K. Shetty,^{15*} Sheida Hayati,¹⁴ Sadanand Vodala,¹⁴ Andrius Degulys,^{16,17} Stefania Paolini,¹⁸ Thomas Cluzeau,¹⁹ Guillermo Garcia-Manero²⁰

¹Cancer Center IRCCS Humanitas Research Hospital, Milan, Italy; ²Department of Biomedical Sciences, Humanitas University, Milan, Italy; ³Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany; ⁴MDS Unit, Hematology, University of Florence, AOUC, Florence, Italy; ⁵Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ⁶Service d'Hématologie Séniors, Hôpital Saint-Louis, Université Paris 7, Paris, France; ⁷Moffitt Cancer Center, Tampa, FL, USA; ⁸Monash University and Monash Health, Melbourne, VIC, Australia; ⁹Hospital Universitari Vall d'Hebron, Barcelona, Spain; ¹⁰Medical Department Hematology, Charles University General University Hospital, Prague, Czech Republic; ¹¹Hôpital Haut-Lévêque, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; ¹²Malignant Haematology & Stem Cell Transplantation, The Alfred, Melbourne, VIC, Australia; ¹³Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¹⁴Bristol Myers Squibb, Princeton, NJ, USA; ¹⁵Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland; ¹⁶Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania; ¹⁷Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.; ¹⁸IRCCS University Hospital of Bologna, "Seràgnoli" Institute of Hematology, Bologna, Italy; ¹⁹Département d'Hématologie Clinique, Université Cote d'Azur, CHU Nice, Nice, France; ²⁰Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA. *At the time of the study

EHA 2023, Presentation \$102

The COMMANDS study

The COMMANDS study (NCT03682536) is a phase 3, global, open-label, randomized trial comparing the efficacy and safety of luspatercept versus epoetin alfa for the treatment of anemia due to IPSS-R LR-MDS in ESA-naive patients who require RBC transfusions

Key eligibility criteria

- \geq 18 years of age
- IPSS-R very low-, low, or intermediaterisk MDS (with or without RS) by WHO 2016, with < 5% blasts in bone marrow^a
- Required RBC transfusions (2-6 pRBC units/8 weeks for a minimum of 8 weeks immediately prior to randomization)
- Endogenous sEPO < 500 U/L
- ESA-naive

Patients stratified by:

- Baseline sEPO level
- Baseline RBC transfusion burden
- RS status

^aMDS with del(5q) were excluded. ^b2 patients randomized to the epoetin alfa arm withdrew consent prior to receiving their first dose; ^cClinical benefit defined as transfusion reduction of ≥ 2 pRBC units/8 weeks versus baseline; AML, acute myeloid leukemia; ESA, erythropoiesis-stimulating agent; IPSS-R, Revised International Prognostic Scoring System; IWG, International Working Group; LR-MDS, lower-risk MDS; MDS, myelodysplastic syndromes; pRBC, packed RBC; QW, once weekly; Q3W, every 3 weeks; RBC, red blood cell; RS, ring sideroblasts; s.c., subcutaneously; sEPO, serum erythropoietin; WHO, World Health Organization.

Primary endpoint: luspatercept superior to epoetin alfa

- Of 301 pts included in the efficacy analysis, 86 (58.5%) patients receiving luspatercept and 48 (31.2%) epoetin alfa achieved the primary endpoint
 - Achievement of the primary endpoint favored luspatercept or was similar to epoetin alfa for all subgroups analyzed

This prespecified interim analysis included 301 patients who had either completed 24 weeks of treatment or discontinued prior to completing 24 weeks of treatment.

Della Porta MG, et al. EHA 2023 [Abstract #S102]

Duration of RBC-TI ≥ 12 weeks^a longer with luspatercept

EOT, end of treatment; NE, not estimable; RBC-TI, red blood cell transfusion independence. ^aIn ITT responders during weeks 1–EOT.

Della Porta MG, et al. EHA 2023 [Abstract #S102]

CONTINUOUS TRANSFUSION INDEPENDENCE WITH IMETELSTAT IN HEAVILY TRANSFUSED NON-DEL(5Q) LOWER-RISK MYELODYSPLASTIC SYNDROMES RELAPSED/REFRACTORY TO ERYTHROPOIESIS STIMULATING AGENTS IN IMERGE PHASE 3

<u>Uwe Platzbecker,¹</u> Valeria Santini,² Pierre Fenaux,³ Mikkael A. Sekeres,⁴ Michael Robert Savona,⁵ Yazan F. Madanat,⁶ Maria Diez-Campelo,⁷ David Valcárcel-Ferreiras,⁸ Thomas Illmer,⁹ Anna Jonášová,¹⁰ Petra Bělohlávková,¹¹ Laurie Sherman,¹² Tymara Berry,¹² Souria Dougherty,¹² Sheetal Shah,¹² Qi Xia,¹² Lixian Peng,¹² Libo Sun,¹² Ying Wan,¹² Fei Huang,¹² Annat Ikin,¹² Shyamala Navada,¹² Rami S. Komrokji,¹³ Amer M. Zeidan¹⁴

¹Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany; ²MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Italy; ³Service d'Hématologie Séniors, Hôpital Saint-Louis, Université de Paris 7, Paris, France; ⁴Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; ⁵Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; ⁶Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁷Hematology Department, The University Hospital of Salamanca, Salamanca, Spain; ⁸Hematology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain; ⁹Hematology Private Practice, Dresden, Germany; ¹⁰1st Medical Department - Hematology, General Hospital, Prague, Czech Republic; ¹¹4th Department of Internal Medicine - Haematology, Charles University Hospital, Hradec Kralove, Czech Republic; ¹²Geron Corporation, Parsippany, NJ, USA; ¹³Moffitt Cancer Center, Tampa, FL, USA; ¹⁴Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA

EHA

09/06/2023 Session: s417 MPN and MDS Targeting red cells and platelets

Imetelstat in Lower Risk MDS

- Imetelstat is a first-in class direct and competitive inhibitor of telomerase activity that specifically targets malignant clones with abnormally high telomerase activity, enabling recovery of effective hematopoiesis¹⁻⁴
- In the phase 2 part of the IMerge study (NCT02598661), patients with LR-MDS who were heavily RBC transfusion dependent, ESA relapsed/refractory or ineligible, non-del(5q), and naive to lenalidomide and HMA achieved durable and continuous RBC-TI when treated with imetelstat⁵
 - Specifically, 8-week RBC-TI rates were 42% with a median TI duration of 86 weeks
- This analysis reports phase 3 results from IMerge in the same patient population

ESA, erythropoiesis stimulating agent; HMA, hypomethylating agent; LR-MDS, lower risk myelodysplastic syndromes; RBC, red blood cell; TI, transfusion independence; WBC, white blood cell. 1. Asai A, et al. *Cancer Res.* 2003;63(14):3931-3939; 2. Herbert BS, et al. *Oncogene.* 2005;24(33):5262-5268; 3. Mosoyan G, et al. *Leukemia.* 2017;31(11):2458-2467; 4. Wang X at al. *Blood Adv.* 2018;25;2(18):2378-2388. 5. Steensma DP, et al. *J Clin Oncol.* 2021;39(1):48-56. EHA2023

IMerge Phase 3 Trial Design (MDS3001; NCT02598661)

Phase 3 Double blind, randomized 118 Clinical sites in 17 countries

Patient Population (ITT N = 178)

- IPSS low- or intermediate 1- risk MDS
- relapsed/refractory^a to ESA or EPO >500 mU/mL (ESA ineligible)
- Transfusion dependent: ≥4 units RBCs/8 weeks over 16-week pre-study
- Non-deletion 5q
- No prior treatment with lenalidomide or HMAs

EHA2023

^aReceived ≥8 weeks of ESA treatment (epoetin alfa ≥40,000 units, epoetin beta ≥30,000 units or darbepoetin alfa 150 µg or equivalent per week) without Hgb rise ≥1.5 g/dL or decreased RBC transfusion requirement ≥4 units/8 weeks or transfusion dependence or reduction in Hgb by ≥1.5 g/dL after hematologic improvement from ≥8 weeks of ESA treatment. ^bProportion of patients without any RBC transfusion for ≥8 consecutive weeks since entry to the trial (8-week TI); proportion of patients without any RBC transfusion for ≥24 consecutive weeks since entry to the trial (24-week TI)

EPO, erythropoietin; ESA, erythropoiesis stimulating agent; G-CSF, granulocyte colony-stimulating factor; Hgb, hemoglobin; HMÁ, hypomethylating agent; IPSS, International Prognostic Scoring System; ITT, intent-to-treat; IV, intravenous; MDS, myelodysplastic syndromes; R, randomization; RBC, red blood cell; TI, transfusion independence, VAF, variant allele frequency.

Higher Rates of Longer-Term Duration of RBC TI Observed With Imetelstat vs Placebo, Including 1-year RBC TI With Additional 3 Month Follow-up

EHA2023

^aData cutoff: October 13, 2022. ^bData cutoff: January 13, 2023.

P-values were determined by the Cochran-Mantel-Haenszel test, with stratification for prior RBC transfusion burden (>4 to <6 vs. >6 RBC units/8-weeks during a 16-week period prior to randomization) and baseline International

Prognostic Scoring System risk category (low vs. intermediate-1) applied to randomization.

RBC, red blood cell; TI, transfusion independence.

Imetelstat 8-Week RBC-TI Responders Have Significantly Longer Duration of Transfusion Independence vs Placebo

EHA2023

Data cutoff: October 13, 2022.

ČEHA

^aHR (95% CI) from the Cox proportional hazard model, stratified by prior RBC transfusion burden (≥4 to ≤6 vs >6 RBC units/8-weeks during a 16-week period prior to randomization) and baseline IPSS risk category (low vs

intermediate-1), with treatment as the only covariate. ^bP value (2-sided) for superiority of imetelstat vs placebo in HR based on stratified log-rank test.

HR, hazard ratio; IPSS, International Prognostic Scoring System; RBC, red blood cell; TI, transfusion independence.

Significant and Sustained Increase in Hemoglobin Among Patients Treated With Imetelstat

8-Week TI Respondersª	lmetelstat (N = 47)	Placebo (N = 9)	4 - 3 3/dL ±SE
Median Hgb rise, g/dL (range)	3.6 (−0.1 to 13.8)	0.8 (-0.2 to 1.7)	H 2 - Change in H
Median Hgb peak, g/dL (range)	11.3 (8.0–21.9)	8.9 (7.9–9.7)	Wear

Mean Change in Hgb Over Time^b

Weeks

٦.	43	-		4 -	•••	
	Т	0	п	TC	N	
•		-				

netelstat	118	59	53	54	47	42	48	48	43	43	31	37	31	35	32	25	26	24	23	21	19	18	11	11	9	9	5
lacebo	60	37	29	17	16	18	15	8	10	10	11	7	3	9	8	9	7	7	5	5	4	2	4				

EHA2023

Data cutoff: October 13, 2022.

^aAmong patients achieving 8-week TI, analysis performed during TI. Hgb rise is defined as the maximum Hgb value in the longest TI interval excluding the first 2 weeks minus the pretreatment Hgb level. ^bMean changes from the minimum Hgb of the values that were after 14 days of transfusions in the 8 weeks prior to the first dose date are shown. P-value based on a mixed model for repeated measures with Hgb change as the dependent variable, week, stratification factors, minimum Hgb in the 8 weeks prior to the first dose date, treatment group, and treatment and week interaction term as the independent variables with autoregressive moving average (ARMA(1,1)) covariance structure.

Comparable 24-Week RBC TI Rate Across Key LR-MDS Subgroups

		Imetelstat, n/N (%)	Placebo, n/N (%)	% Difference (95% Cl)	P-value
Overall	I I I	33/118 (28.0)	2/60 (3.3)	24.6 (12.64–34.18)	<0.001
WHO category RS+	. ⊢©	24/73 (32.9)	2/37 (5.4)	27.5 (10.00–40.37)	0.003
RS-		9/44 (20.5)	0/23 (0.0)	20.5 (-0.03-35.75)	0.019
Prior RBC transfusion burden per IWG 2006					
4–6 units / 8 weeks	• • • • • • • • • • • • • • • • • • •	19/62 (30.6)	2/33 (6.1)	24.6 (5.68–38.66)	0.006
>6 units / 8 weeks		14/56 (25.0)	0/27 (0)	25.0 (6.44–38.65)	0.012
IPSS risk category Low Intermediate-1	,; ,;	23/80 (28.8) 10/38 (26.3)	2/39 (5.1) 0/21 (0)	23.6 (7.23–35.75) 26.3 (3.46–43.39)	0.003 0.009
Baseline sEPO ≤500 mU/mL >500 mU/mL		29/87 (33.3) 4/26 (15.4)	2/36 (5.6) 0/22 (0)	27.8 (10.46–39.71) 15.4 (−5.81–35.73)	0.002 0.050
Prior ESA use Yes No		31/108 (28.7) 2/10 (20)	2/52 (3.8) 0/8	24.9 (11.61–35.00) 20.0 (-23.47–55.78)	<0.001 0.225
-40 Fav	-20 0 20 40 60 Percent Difference ors placebo Favors imetelstat				

Similar trends were observed across subgroups for 8-week RBC TI rates

Data cutoff: October 13, 2022.

٠

P-values were determined by the Cochran-Mantel-Haenszel test, with stratification for prior RBC transfusion burden (>4 to <6 vs >6 RBC units/8-weeks during a 16-week period prior to randomization) and baseline IPSS risk category (low vs. intermediate-1) applied to randomization.

IPSS, International Prognostic Scoring System; IWG, International Working Group; LR-MDS, lower-risk myelodysplastic syndromes; RBC, red blood cell; RS, ring sideroblast; sEPO, serum erythropoietin; TI, transfusion independence.

Consistent With Prior Clinical Experience, the Most Common AEs Were Hematologic

- Grade 3–4 thrombocytopenia and neutropenia were the most frequently reported AEs, most often reported during Cycles 1–3
 - There were no fatal hematologic AEs
- Nonhematologic AEs were generally low grade
- No cases of Hy's Law or drug-induced liver injury observed
 - The incidence of grade 3 liver function test laboratory abnormalities was similar in both treatment groups

AE (≥10% of	Imetelstat	: (N = 118)	Placebo (N = 59)				
patients), n (%)	Any Grade	Grade 3–4	Any Grade	Grade 3–4			
Hematologic							
Thrombocytopenia	89 (75)	73 (62)	6 (10)	5 (8)			
Neutropenia	87 (74)	80 (68)	4 (7)	2 (3)			
Anemia	24 (20)	23 (19)	6 (10)	4 (7)			
Leukopenia	12 (10)	9 (8)	1 (2)	0			
Other							
Asthenia	22 (19)	0	8 (14)	0			
COVID-19	22 (19) ^a	2 (2) ^b	8 (14) ^a	3 (5) ^b			
Headache	15 (13)	1 (1)	3 (5)	0			
Diarrhea	14 (12)	1 (1)	7 (12)	1 (2)			
ALT increased	14 (12)	3 (3)	4 (7)	2 (3)			
Edema peripheral	13 (11)	0	8 (14)	0			
Hyperbilirubinemia	11 (9)	1 (1)	6 (10)	1 (2)			
Pyrexia	9 (8)	2 (2)	7 (12)	0			
Constipation	9 (8)	0	7 (12)	0			

EHA2

8-Week and 24-Week RBC-TI Correlated With Reduction in RS+ Cells, **Cytogenetic Responses, and VAF Reduction in Patients Treated With Imetelstat**

8-Week RBC-TI Correlations

24-Week RBC-TI Correlations

EHA2023

Note: *P* value calculated using Fisher exact test between yes vs no in each outcome. ASXL1, additional sex combs like-1; BM, bone marrow; CR, complete response; DNMT3A, DNA (cytosine-5)-methyltransferase 3A; IRC, independent review committee; PR, partial EHA response: RBC, red blood cell: RS, ring sideroblasts; TET2. Tet methylcytosine dioxygenase 2: SF3B1, splicing factor 3b subunit 1; TI, transfusion independence; VAF, variant allele frequency.

How Do I Manage LR-MDS in 2024

- Allogeneic stem cell transplant maybe considered after standard therapy failure or in younger patients with higher-risk disease features by IPSS-M.
- Iron chelation should be considered in patients with evidence of iron overload.

BMT CTN 1102: RIC Plus Allo-HSCT vs BSC in Older Patients With Higher-Risk MDS

Baseline and Serial Molecular Profiling Predicts Outcomes With HMAs in MDS

Survival of Patients With HR-MDS Remains Poor Despite Use of HMAs

532 patients ≥66 yr at diagnosis who received ≥10 days of HMA therapy

636 HR-MDS of all ages in the MDS Clinical Research Consortium who received HMA (median 5 cycles), 72% received ≥4 cycles. 68% received AZA.

Survival post-AZA failure for patients with HR-MDS

ASCERTAIN: Update on Efficacy and Safety of Oral Decitabine/Cedazuridine in Patients With MDS and CMML

Response Category ^{1,2}	Treated Patients (N = 133)
CR, n (%)	29 (22)
PR, n (%)	0
mCR, n (%)	43 (32.3)
mCR with HI	22 (16.5)
HI, n (%)	10 (7.5)
 HI-erythroid 	2 (1.5)
 HI-neutrophils 	1 (0.8)
 HI-platelet 	7 (5.3)
Overall response (CR + PR + mCR + HI), n (%)	82 (61.7)
RBC transfusion independence, n/N (%)*	27/53 (51)
Platelet transfusion independence, n/N (%)*	6/12 (50)
*# patients TI/# patients TD at baseline.	

Median CR duration: 14.0 mo (range: 2-29)

 Median duration of best response: 12.7 mo (range: 1-33)

Number of patients proceeding to HCT: 34 (26%)

1. Savona. ASH 2020. Abstr 1230. 2. Savona. MDS 2021. Abstr P48.

Novel MoA of late phase therapies for higherrisk MDS

Adapted from Pagliuca S, et al. Cancers 2021; 13:784

VERONA: Phase 3 study of Ven+Aza in higher-risk MDS

Key inclusion criteria

- ≥18 years old with newly diagnosed MDS according to 2016 WHO classification
- <20% BM blasts
- ECOG PS 0-2
- IPSS-R score of >3 (Intermediate, high, very high)
- No planned HSCT at the time of C1D1

Primary endpoints • CR

• OS

Secondary endpoints

- Modified overall response (mOR)
- Transfusion independence (TI)
- ORR
- QoL

Venetoclax and HMA in Higher-Risk MDS: Efficacy of First-line Therapy

Best Response, %	HMA + Ven (n = 35)	HMA Alone (n = 1127)	P Value
ORR	77	40	<.005
■ CR	34	13	
■ mCR	37 (62 + HI)	11	
■ PR	3	1	
■ HI	3	15	
ASXL-1 mut	(n = 16)	(n = 106)	
ASXL-1 mut ORR	(n = 16) 87	(n = 106) 32	<.005
ASXL-1 mut ORR • CR	<mark>(n = 16)</mark> 87 44	(n = 106) 32 8	<.005
ASXL-1 mut ORR • CR TP53 mut	(n = 16) 87 44 (n = 12)	(n = 106) 32 8 (n = 137)	<.005
ASXL-1 mut ORR • CR TP53 mut ORR	(n = 16) 87 44 (n = 12) 75	(n = 106) 32 8 (n = 137) 44	<.005

Outcome	HMA + Ven (n = 35)	HMA Alone (n = 1127)	P Value
Median OS, mo From diagnosis (95% CI) From start of	21 (11-32)	20 (19-22)	.86
treatment*	19.4	17.2	.88
AML transformation, %	23	37	.08
AHSCT cohort [†]	(n = 13)	(n = 256)	
Median OS, mo (95% CI)	NR	38 (27-50)	.20
2-yr OS, %	91	51	

*Median time from diagnosis to treatment was 1 mo in both arms. *Patients who went on to AHCST.

Oral decitabine/cedazuridine + venetoclax in 1L HR MDS or CMML

ENHANCE: Phase 3 study of Magro+Aza in higherrisk MDS

Key inclusion criteria

- ≥18 years old with diagnosed intermediate to high-risk MDS according to 2016 WHO classification
- Adequate performance status and hematologic, liver, and kidney function

Key exclusion criteria

Immediate eligibility for alloSCT

Primary endpoints	Key secondary endpointsDuration of CR
• CR	• ORR
• OS	• DoR
	RBC TI rate

Tamibarotene + Aza vs Pbo+Aza

Phase 3, double-blind, randomized trial in patients with RARA+ newly diagnosed HR-MDS

Key inclusion criteria

- Adults ≥18 years old
- RARA+ based on the investigational biomarker test
- Newly diagnosed with HR-MDS by 2016 WHO classification and classified by IPSS-R as very high, high, or intermediate risk
- Blast count >5% at study entry

Key exclusion criteria

· Patients suitable for transplant at the time of screening

Primary endpoint

• Proportion of participants with CR [Timeframe: up to 5 years]

Key secondary endpoints

- ORR
- EFS, OS
- Transfusion independence

AlloSCT and Investigational Agents Best Salvage Therapy for Patients With HR MDS After HMA Failure

Prebet. JCO. 2011;29:3322.

Treatment Options in MDS After HMA Failure

- Add additional agent to HMA
- Intensive chemotherapy
- Mini-CLA ± venetoclax: normal karyotype
- *IDH2* (5-10%): enasidenib
- IDH1 (5%): ivosidenib
- *FLT3* (15%): multiple *FLT3* agents
- NPM1 (1%): ara-C based

Venetoclax and HMA in Higher-Risk MDS: Efficacy in R/R MDS Population

Best Response, %	1L HMA (n = 1127)	HMA + Ven for R/R (n = 31)	1L HMA + Ven (n = 35)	P Value
ORR	77	61	40	
■ CR	34	13	13	
■ mCR	37 (62 + HI)	48	11	
Median OS from diagnosis, mo	20	33	21	.02
(95% CI)	(19-22)	(31-36)	(11-32)	

- 31 patients with R/R MDS received median 6 cycles of first-line HMA
- 9 patients who received HMA + venetoclax for R/R MDS underwent AHSCT
 - Median OS: 31 vs 33 mo with no AHSCT (P = .70)

Targeting R/R *IDH1/IDH2*^{mut} MDS with ivosidenib/enasidenib

IDIOME: phase 2 study of Ivo in 3 cohorts (N=26)¹

- A: HR-MDS, failed AZA (n=13)
- B: Untreated HR-MDS (n=11)
- C: LR-MDS, failed EPO (n=2)

Median follow-up: 9.1 months Median DoR: 7.4 months Median OS: 14 months Differentiation syndrome, n=4, febrile neutropenia, n=1

IDEAL: phase 2 study of Ena in 3 cohorts (N=26)²

- A: HR-MDS, failed AZA (n=11)
- B: Untreated HR-MDS (n=9)
- C: LR-MDS, failed ESA (n=6)

Median follow-up: 8.6 months

Median OS: 17.3 months

Differentiation syndrome, n=3; nausea/diarrhea, n=4; thrombocytopenia, n=5

ORR

69%

Ivosidenib in R/R IDH1/IDH2^{mut} MDS³

Updated results of a phase 1 dose-escalation study (500 mg QD)

Efficacy outcomes	N=16	Safety outcomes	
ORR	81%	Grade ≥3 AEs	69%
CR mCR	44% 31%	Grade ≥3 TRAEs	13%
PR	6%	SAEs	44%
н	69%	-	
12-month duration CR+PR	60%	-	

2. Ades L, *et al.* ASH 2021. Abstract 63 (oral presentation); 3. Sallman DA, *et al.* ASCO 2022. Abstract 7053 (Poster 284)

^{1.} Sebert M, et al. ASH 2021. Abstract 62 (oral presentation);

How do I treat Higher risk MDS?

Thank You Rami.Komrokji@moffitt.org

MEET THE TEAM

Dr. Jeffrey Lancet

and the second second

Dr. David Sallman

Dr. Kendra Sweet

Dr. Andrew Kuykendall

Dr. Sara Tinsley

and the second

Moffitt MDS team: Only perfect counts !!!

Acknowledgements:

- Our patients and their caregivers
- Moffitt MDS team