

#### July 14-16, 2023

The Roosevelt Hotel New Orleans, Louisiana

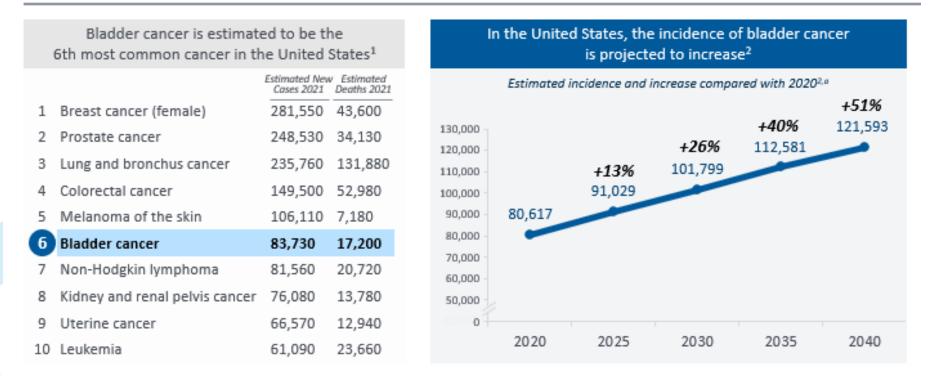
#### 18TH ANNUAL

### New Orleans Summer Cancer Meeting

APPLYING PRECISION ONCOLOGY, EXPLOITING TUMOR MICROENVIRONMENT AND BREAKING DISPARITIES: ALL-IN-ONE FIGHTING AGAINST CANCER

# Immunotherapy in Bladder and Kidney Cancer

Rohit Jain, MD, MPH Assistant Member


Department of Genitourinary Oncology

H. Lee Moffitt Cancer Center

Tampa, FL

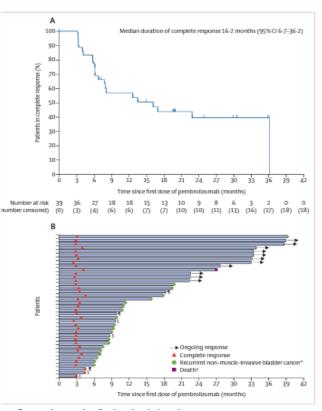


#### Bladder Cancer Is Projected to Be a Growing Health Problem in the US



<sup>a</sup>As with all estimates, cancer predictions for future years should be interpreted with due caution. The key assumptions are that national rates, as estimated in 2020, do not change in the prediction period 2020-2040 and that the national population projections are correct for these years.

1. National Cancer Institute. Cancer stat facts: bladder cancer. https://seer.cancer.gov/statfacts/html/urinb.html. Accessed 06-08-2021.2. International Agency for Research on Cancer. Cancer tomorrow: bladder. http://goo.iarc.fr/tomorrow. Accessed 02-08-2021.2.




#### Pembrolizumab monotherapy for the treatment of high-risk non-muscleinvasive bladder cancer unresponsive to BCG (KEYNOTE-057): an openlabel, single-arm, multicentre, phase 2 study

|                                                          | Cohort A efficacy<br>population (n=96)* |
|----------------------------------------------------------|-----------------------------------------|
| Complete response                                        | 39 (41%, 30-7-51-1)                     |
| Non-complete response                                    | 56 (58%, 47.8-68.3)                     |
| Persistent disease†‡                                     | 40 (42%, 31-7-52-2)                     |
| Recurrent disease                                        | 6 (6%, 2-3-13-1)                        |
| Non-muscle-invasive bladder cancer stage<br>progression§ | 9 (9%, 4-4-17-1)                        |
| Non-bladder malignancy¶                                  | 1 (1%, 0.0-5.7)                         |
| Progression to muscle-invasive disease (T2)              | 0 (NA-NA)                               |
| Non-evaluable                                            | 1 (1%, 0.0-5.7)                         |
|                                                          |                                         |

Data are n (%, 95% CI). NA=not applicable. \*Patients with high-risk non-muscleinvasive bladder cancer who received at least one dose of the study drug, had baseline evaluations, and had at least one post-baseline disease assessment. †Defined as patients with carcinoma in situ at baseline who also had carcinoma in situ with or without papillary tumour at month 3. ‡Defined as pathologically confirmed appearance of papillary turnour (high-grade Ta or T1) without carcinoma in situ at month 3. SDefined as an increase in stage from carcinoma in situ or high-grade Ta at baseline to T1 disease. ¶For this patient, new liver lesions were found on imaging; later, a second primary malignancy of pancreatic cancer was found. Subsequent review of the baseline scan showed subtle findings that, in retrospect, could be attributed to pancreatic cancer, and later scans showed metastases that were most likely from the pancreatic cancer. Clinical course and laboratory values further supported the diagnosis of metastatic pancreatic cancer. ||Patients whose protocol-specified efficacy assessments were missing or who discontinued from the trial for reasons other than progressive disease were not evaluable for efficacy and considered non-responders.

Table 2: Best overall response at month 3 by central review in patients with BCG-unresponsive carcinoma in situ



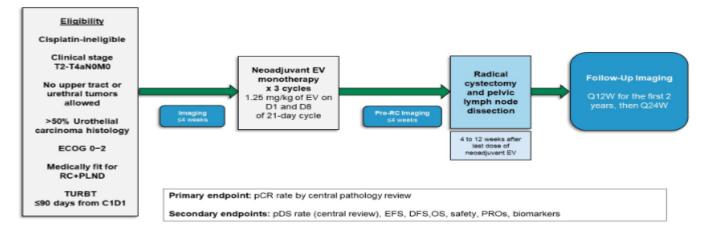
#### Balar A et al Lancet 2021

## **Muscle Invasive Bladder Cancer**

Standard Treatment is Cisplatin-Based Neoadjuvant Chemotherapy

## Neoadjuvant Single-agent IO and enfortumab vedotin is also effective in MIBC

|                    | PURE-011      | ABACUS <sup>2</sup> | NABUCCO <sup>3</sup> | AURA4                  | MDACC <sup>5</sup> | DUTRENEO <sup>6</sup> |
|--------------------|---------------|---------------------|----------------------|------------------------|--------------------|-----------------------|
| N                  | 114           | 95                  | 24 (14)              | 28                     | 28                 | 23                    |
| Immunotherapy      | Pembrolizumab | Atezolizumab        | lpi/Nivo             | Avelumab               | Durval/Tremi       | Durva/Tremi           |
| Cisplatin eligible | ~             | $\checkmark$        | ×                    | ×                      | ×                  | ×                     |
| pCR (pT0)          | 37%           | 31%                 | 46%                  | 36% *(includes<br>Tis) | 37.5%              | 34.8%                 |
| PFS                | 91% (1yr)     | 79% (1yr)           | 92% (1yr)            | Not<br>reported        | 82.8% (1yr)        | Not reported          |


1Necchi et al, Eur Urol 2022, 2 Powles et al, Nat Med 2019, 3Van Dijk et al, ASCO Annual Mig 2020;abstr 5020, 4 Kaimakliolis et al, ASCO Annual Mig 2020;abstr 5019 5Gao J et al Nature Med 2020 6. Grande E et al. J Clin Oncol Suppl 5012 7. Petrylak D et al. ASCO GU 2022



Slide Courtesy With Permission from Gupta S GU ASCO 2023

## **Enfortumab Vedotin**

#### EV-103 Cohort H Study Design



| Pathological Response                                        | Central Pathology Results (N=22)<br>n (%) [95% Confidence Interval] |
|--------------------------------------------------------------|---------------------------------------------------------------------|
| Pathological Complete Response Rate                          | <b>8 (36.4%)</b>                                                    |
| (defined as absence of any viable tumor tissue: ypT0 and N0) | [17.2–59.3]                                                         |
| Pathological Downstaging Rate                                | <b>11 (50.0%)</b>                                                   |
| (defined as presence of ypT0, ypTis, ypTa, ypT1, and N0)     | [28.2–71.8]                                                         |



### Neoadjuvant Chemo-IO is effective in cis-eligible MIBC

|               | BLASST-1 <sup>1</sup><br>(N = 41) | HCRN GU14-188 <sup>2</sup><br>(N = 43) | LCCC1520 <sup>3</sup><br>(N = 39) | MKSCC <sup>4</sup><br>(N = 39) | SAKK 06/17 <sup>5</sup><br>(N = 53) |
|---------------|-----------------------------------|----------------------------------------|-----------------------------------|--------------------------------|-------------------------------------|
| Immunotherapy | Nivolumab                         | Pembrolizumab                          | Pembrolizumab                     | Atezolizumab                   | Durvalumab                          |
| Chemotherapy  | Gem-Cis                           | Gem-Cis                                | Split dose<br>Gem-Cis             | Gem-Cis                        | Gem-Cis                             |
| pCR (pT0), %  | 49% *(includes Tis)               | 44                                     | 39                                | 38                             | 34                                  |
| RFS           | 85.4% (1yr)                       | Not reported                           | Not reported                      | Not reported                   | 83.5% (2yr)                         |

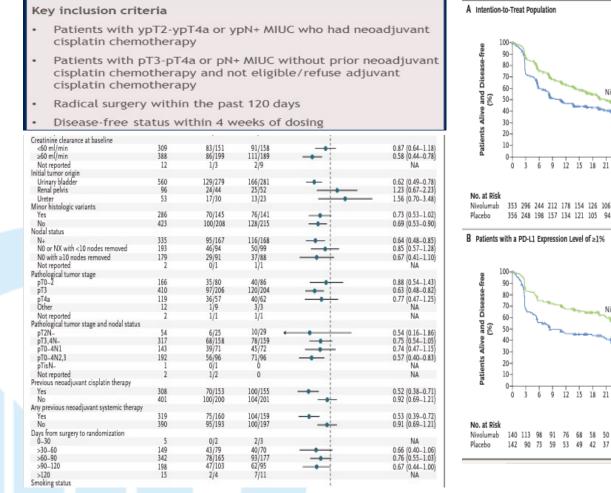
Gupta S et al. ASCO GU 2020. Abstract 439. 2. Holmes CJ et al. ASCO 2020. Abstract 5047. 3. Rose TL et al. J Clin Oncol. 2021;39:3140-3148. 4. Funt SA et al. J Clin Oncol. 2022;40:1312-1322.
 Cathomas R et al. ASCO 2022. Abstract 4515

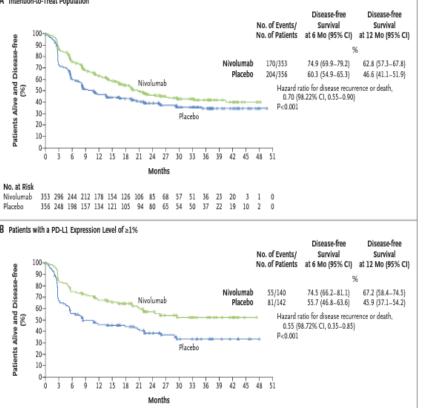
 Slide Courtesy With Permission from Gupta S GU ASCO 2023



14

## **Ongoing Phase 3 trials**


| Ongoing               | Phase 3 Neoadju     | vant IO-b | ased Trials in MIBC                       |
|-----------------------|---------------------|-----------|-------------------------------------------|
|                       | Clinical Trial      | N         | Treatment Arms                            |
|                       | KEYNOTE-866         | 870       | Pembro + GC vs GC                         |
|                       | KEYNOTE-B15/EV-304  | 784       | Pembro +EV vs GC                          |
| CISPLATIN<br>ELIGIBLE | NIAGARA             | 1050      | Durva+ GC vs GC                           |
|                       | ENERGIZE            | 1200      | Nivo + GC vs GC<br>GC+ Nivo + Linrodostat |
|                       | KEYNOTE-905/ EV-303 | 836       | RC vs Pembro+EV vs Pembro                 |
| CISPLATIN-            | VOLGA               | 830       | RC vs Druva/Tremi+EV vs Durva+EV          |
| INELIGIBLE            | SWOG GAP            | 196       | Surgery vs Gem-Carbo+ Avelumab            |
|                       | SWOG GAP            | 190       | Surgery vs Gem-Garbo- Avelumab            |




#### ORIGINAL ARTICLE

#### Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma

Dean F. Bajorin, M.D., J. Alfred Witjes, M.D., Jürgen E. Gschwend, M.D., Michael Schenker, M.D., Begoña P. Valderrama, M.D., Yoshihiko Tomita, M.D., Ph.D., Aristotelis Barnias, M.D., Thierry Lebret, M.D., Shahrokh F. Shariat, M.D., Se Hoon Park, M.D., Dingwei Ye, M.D., Mads Agerbaek, M.D., Deborah Enting, M.D., Ray McDermott, M.D., Pablo Gajate, M.D., Avivit Peer, M.D., Matthew I. Milowsky, M.D., Alexander Nosov, M.D., João Neif Antonio, Jr., M.D., Krzysztof Tupikowski, M.D., Laurence Toms, B.M., B.Ch., Bruce S. Fischer, M.D., Anila Oureshi, M.D., Sandra Collette, M.Sc., Keziban Unsal-Kacmaz, Ph.D., Edward Broughton, Ph.D., Dimitrios Zardavas, M.D., Henry B. Koon, M.D., and Matthew D. Galsky, M.D.

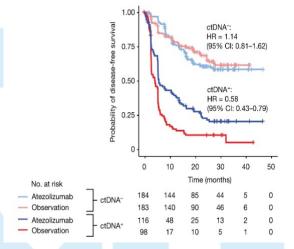


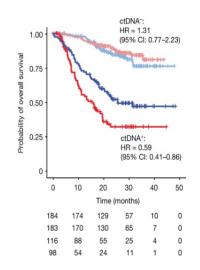


140 113 98 91 76 68 58 50 38 31 27 24 21 12 10 1 0 0 142 90 73 59 53 49 42 37 28 22 17 16 12 7 5 3 1 0



#### THE LANCET Oncology


Volume 22, Issue 4, April 2021, Pages 525-537


Articles

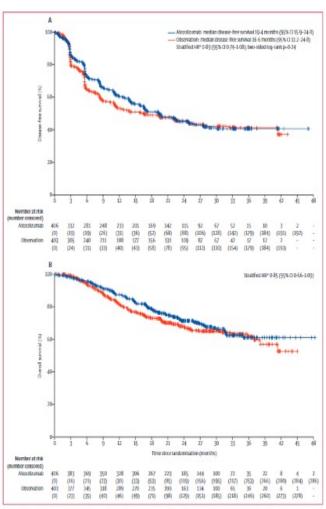


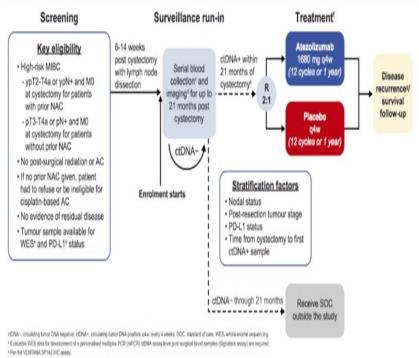
#### Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial

Joaquim Bellmunt MD<sup>a</sup> , 🖾 , Prof Maha Hussain MD<sup>b</sup>, Prof Jürgen E Gschwend MD<sup>c</sup>, Prof Peter Albers MD<sup>d</sup>, Prof Stephane Oudard MD<sup>e</sup>, Daniel Castellano MD<sup>f</sup>, Siamak Daneshmand MD<sup>g</sup>, Prof Hiroyuki Nishiyama MD<sup>b</sup>, Martin Majchrowicz MPH<sup>i</sup>, Viraj Degaonkar PharmD<sup>i</sup>, Yi Shi PhD<sup>i</sup>, Sanjeev Mariathasan PhD<sup>i</sup>, Petros Grivas MD<sup>j k I</sup>, Alexandra Drakaki MD<sup>m</sup>, Peter H O'Donnell MD<sup>n</sup>, Prof Jonathan E Rosenberg MD<sup>o</sup><sup>P</sup>, Daniel M Gevnisman MD<sup>q</sup>, Prof Daniel P Petrvlak MD<sup>r</sup>, Jean Hoffman-Censits MD<sup>g</sup>.









Figure 2: Kaplan Meler plots for investigator assessed disease free survival (A) and overall survival (B) in the intention to treat population HR-hazard ratio. "Stratified by post resection tumour stage, nodal status, and PD-L1 status.



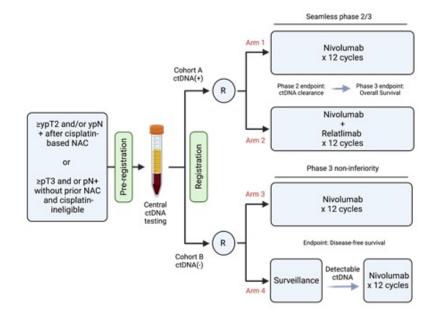
Bellmunt et al 2021 Lancet Powles T et al 2021 Nature

## IMvigor 011

## MODERN

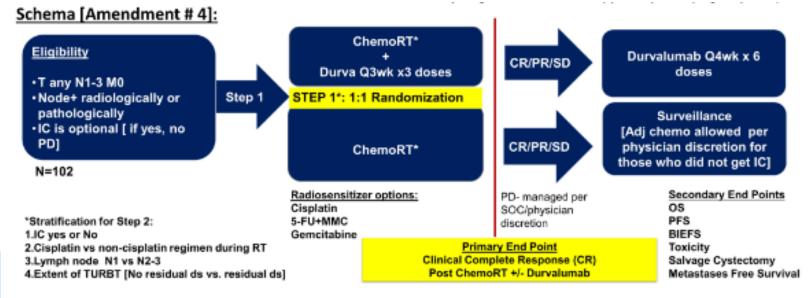


\* Every 6 weeks up to 36 weeks and q12w (every 12 weeks) up to 21 months.


1 q12w up to Week 84 or until 21 months from date of cystectomy, whichever occurs first.

• cDNA positivity is defined as 12 mutations per cIDNA mPCR assay. Patients will be randomised to treatment at the first cIDNA+ sampler, full recovery from

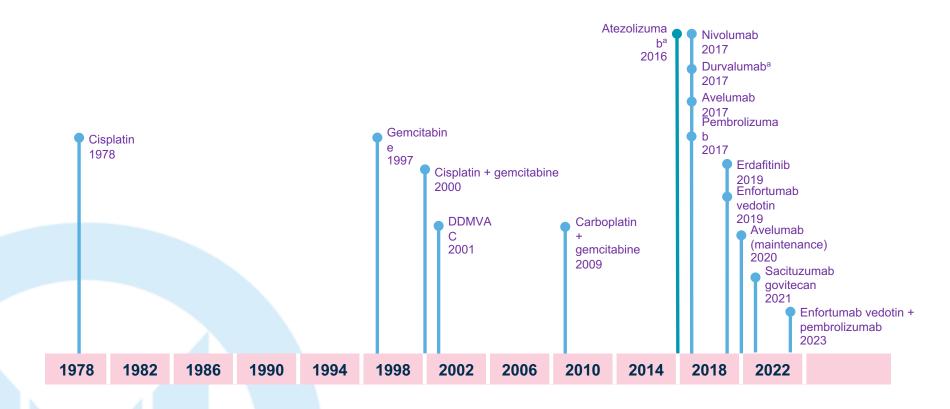
systectomy and no evidence of disease recurrence within 28 days of treatment initiation is required.


Imaging and blood draws give (every 9 weeks) starting at Week 9 up to Week 54.

Assessed gW up to Year 3; less often up to Year 6.

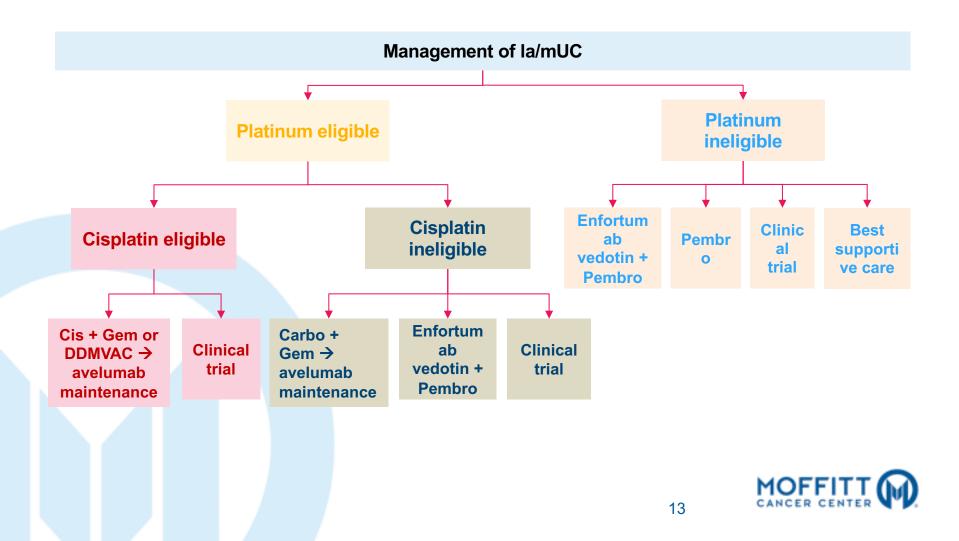





### EA8185: Phase 2 study of bladder-sparing chemoradiation (chemoRT) with durvalumab in clinical stage III, node-positive urothelial carcinoma (INSPIRE), an ECOG-ACRIN/NRG collaboration.



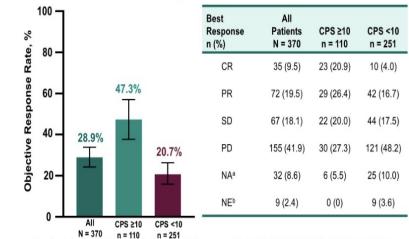



Joshi M GU ASCO 2022, Shilpa Gupta GU ASCO 2023

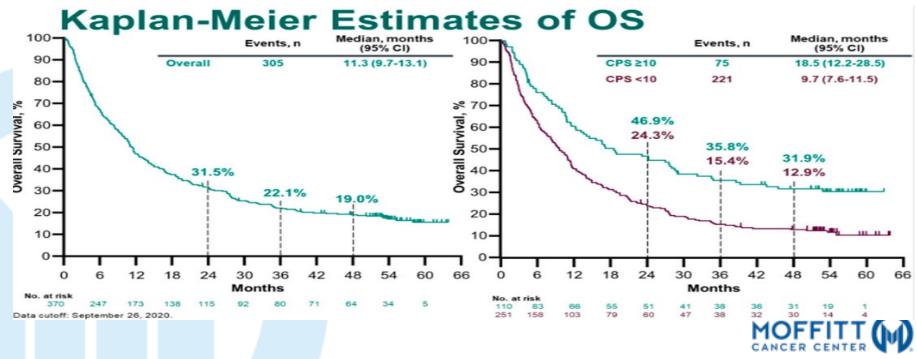
### Treatment Landscape for la/mUC





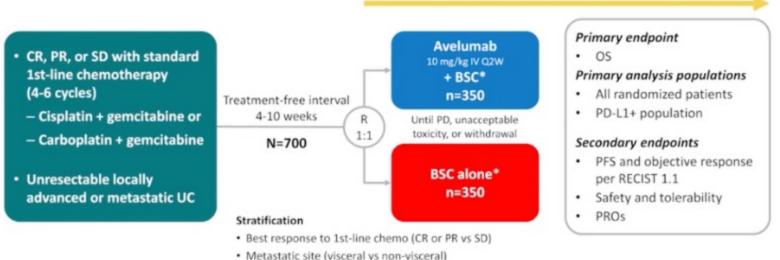

## First-Line Management of Ia/mUC




### First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study

Arjun V Balar, Daniel Castellano, Peter H O'Donnell, Petros Grivas, Jacqueline Vuky, Thomas Powles, Elizabeth R Plimack, Noah M Hahn, Ronald de Wit, Lei Pang, Mary J Savage, Rodolfo F Perini, Stephen M Keefe, Dean Bajorin, Joaquim Bellmunt

#### Confirmed ORR per RECIST v1.1




o available postbaseline imaging data. Had postbaseline imaging, and best objective response was determined to be NE by RECIST v1.1. Data cutoff: September 26, 2020



Balar et al 2017 Lancet oncology; O'Donell P. ASCO 2021

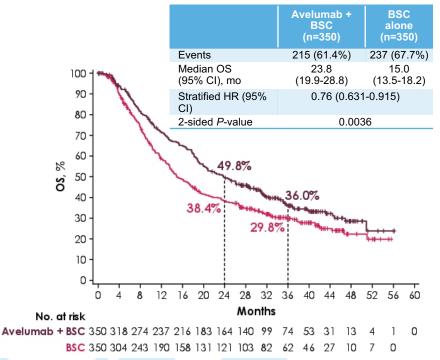
### JAVELIN Bladder 100 study design (NCT02603432)



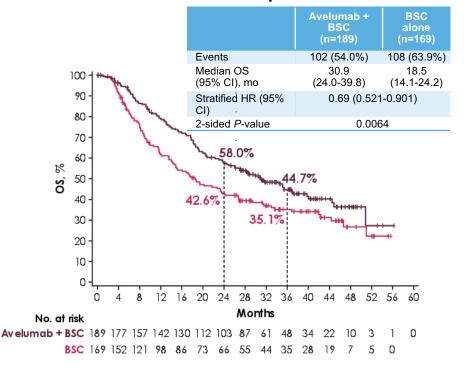
All endpoints measured post randomization (after chemotherapy)

PD-L1+ status was defined as PD-L1 expression in ≥25% of tumor cells or in ≥25% or 100% of tumor-associated immune cells if the percentage of immune cells was >1% or ≤1%, respectively, using the Ventana SP263 assay; 358 patients (51%) had a PD-L1–positive tumor

BSC, best supportive care; CR, complete response; IV, intravenous; PR, partial response; PRO, patient reported outcome; Q2W, every 2 weeks; R, randomization; RECIST 1.1, Response Evaluation Criteria in Solid Tumors version 1.1; SD, stable disease

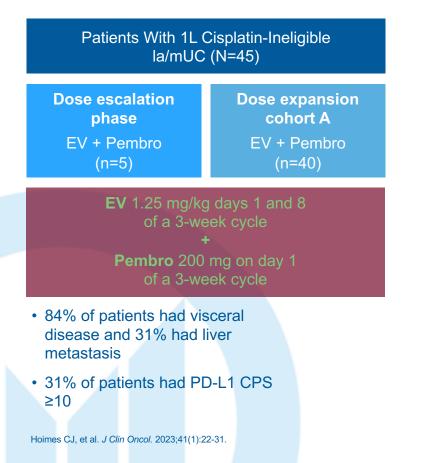

\*BSC (eg. antibiotics, nutritional support, hydration, or pain management) was administered per local practice based on patient needs and clinical judgment; other systemic antitumor therapy was not permitted, but palliative local radiotherapy for isolated lesions was acceptable

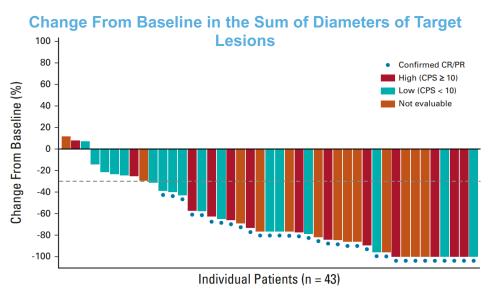
#### Powles T, et al. J Clin Oncol 38: 2020 (suppl; abstr LBA1




### **JAVELIN Bladder 100: Overall Survival**

#### **OS in the Overall Population**





#### OS in the PD-L1+ Population



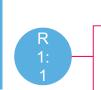


### EV-103 Dose Escalation and Cohort A: Phase 1b/2 Trial of Enfortumab Vedotin + Pembrolizumab





| Confirmed ORR [95% CI] | <b>73.3%</b> (33/45) [58.1-85.4] |  |  |
|------------------------|----------------------------------|--|--|
| Complete response      | 15.6% (7/45)                     |  |  |
| Partial response       | 57.8% (26/45)                    |  |  |


57.1% ORR in patients with liver metastases



### EV-103 Cohort K: Phase 1b/2 Trial of Enfortumab Vedotin + Pembrolizumab



- la/mUC
- Cisplatin ineligible
- No prior treatment for la/mUC



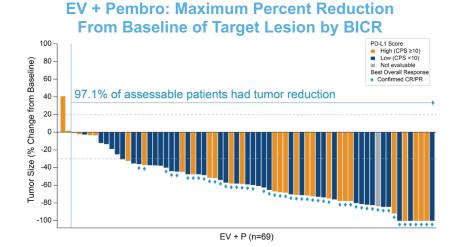
Primary endpoint: ORR per BICR Key secondary endpoints: ORR per investigator assessment, DOR, disease control rate, PFS, OS, safety/tolerability, lab abnormalities

No formal statistical comparisons were conducted between the two treatment arms

Rosenberg JE, et al. ESMO 2022. Abstract LBA73.

N=76 EV 1.25 mg/kg days 1 and 8 of a 3-week cycle + Pembro 200 mg on day 1 of a 3-week cycle

- EV + Pembro arm: 84% of patients had visceral disease and 17% had liver metastasis
- EV + Pembro arm: 41% of patients had PD-L1 CPS ≥10

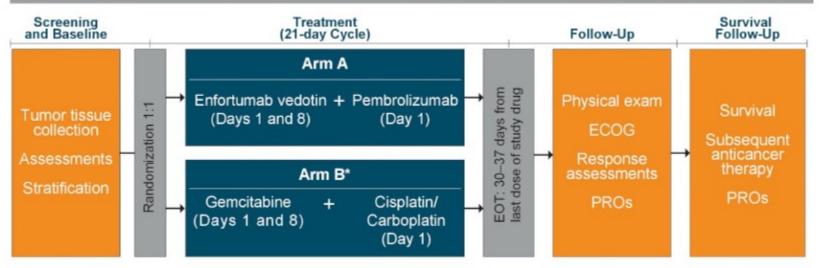

N=73 EV 1.25 mg/kg days 1 and 8 of a 3-week cycle



### EV-103 Cohort K: Phase 1b/2 Trial of Enfortumab Vedotin + Pembrolizumab

|                                               | <b>EV + Pembro</b><br>N=76         | <b>EV Mono</b><br>N=73    |
|-----------------------------------------------|------------------------------------|---------------------------|
| Confirmed ORR<br>(95% CI)                     | 49 ( <b>64.5%</b> )<br>(52.7-75.1) | 33 (45.2%)<br>(33.5-57.3) |
| Best overall response                         |                                    |                           |
| CR                                            | 8 (10.5%)                          | 3 (4.1%)                  |
| PR                                            | 41 (53.9%)                         | 30 (41.1%)                |
| SD                                            | 17 (22.4%)                         | 25 (34.2%)                |
| PD                                            | 6 (7.9%)                           | 7 (9.6%)                  |
| NE                                            | 3 (3.9%)                           | 5 (6.8%)                  |
| No assessment                                 | 1 (1.3%)                           | 3 (4.1%)                  |
| Median time to objective response, mo (range) | 2.07 (1.1-6.6)                     | 2.07 (1.9-15.4)           |
| Median number of treatment cycles (range)     | 11.0 (1-29)                        | 8.0 (1-33)                |

 EV + Pembro arm: 7/13 (53.8%) confirmed ORR observed in patients with liver metastases




|                                    | <b>EV + Pembro</b><br>N=76 | EV Mono<br>N=73       |
|------------------------------------|----------------------------|-----------------------|
| Median DOR, mo (95%<br>CI)         | NR (10.25-NR)              | 13.2 (6.14-<br>15.97) |
| <b>Median PFS</b> , mo (95%<br>CI) | NR (8.31-NR)               | 8.0 (6.05-10.35)      |
| <b>Median OS</b> , mo (95%<br>CI)  | 22.3 (19.09-NR)            | 21.7 (15.21-NR)       |



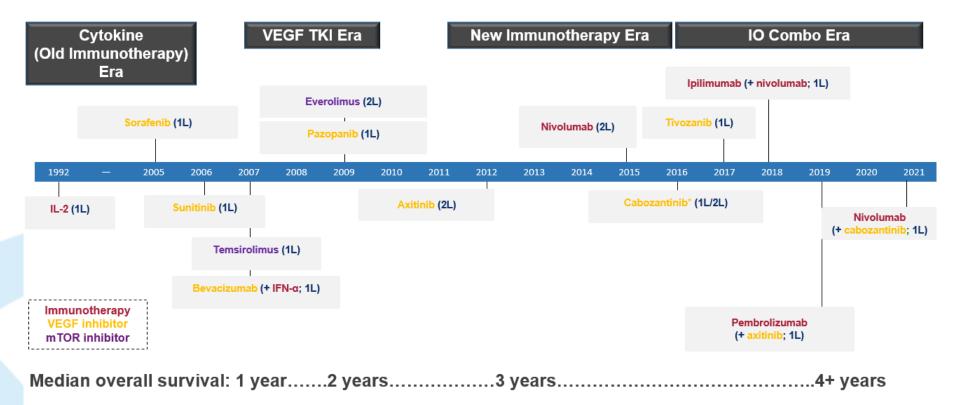


#### EV-302/Keynote-A39 Study Design





## Second-Line Treatment Options Post-Platinum Treatment\*


|                           | KEYNOTE-045 <sup>1</sup><br>Pembrolizumab<br>Phase 3                                                                                                                                                     | IMvigor 210²<br>Atezolizumab<br>Phase 2                                                                                                                      | CheckMate 275³<br>Nivolumab<br>Phase 2                                                                                                                                         | Study 1108⁴<br>Durvalumab<br>Phase 1/2                                                                                                                                                                                                    | JAVELIN solid tumor ⁵<br>Avelumab<br>Phase 1B                                                                                                                                    |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Patient number            | 542                                                                                                                                                                                                      | 310 (Cohort 2)                                                                                                                                               | 270                                                                                                                                                                            | 191                                                                                                                                                                                                                                       | 242                                                                                                                                                                              |
| Study Arms                | Pembrolizumab<br>200 mg (IV) q3w                                                                                                                                                                         | Atezolizumab<br>1200 mg (IV) q3w                                                                                                                             | Nivolumab<br>3 mg/kg IV q2w                                                                                                                                                    | <b>Durvalumab</b><br>10 mg/kg IV q2w                                                                                                                                                                                                      | <b>Avelumab</b><br>10 mg/kg q2w                                                                                                                                                  |
| Key Inclusion<br>Criteria | <ul> <li>Metastatic or locally<br/>advanced urothelial<br/>cancer</li> <li>Progression after 1 or<br/>2 lines of platinum-<br/>based therapy</li> <li>Measurable disease</li> <li>ECOG PS 0-2</li> </ul> | Cohort 2:<br>• ≥1 Platinum-<br>containing or ≤12<br>months of<br>neoadjuvant/<br>adjuvant treatment<br>• Tumor tissue for PD-<br>L1 testing<br>• ECOG PS 0-1 | <ul> <li>≥1 Platinum-<br/>containing or ≤12<br/>months of<br/>neoadjuvant/<br/>adjuvant treatment</li> <li>Tumor tissue for PD-<br/>L1 testing</li> <li>ECOG PS 0-1</li> </ul> | <ul> <li>Histologically<br/>confirmed solid<br/>tumors</li> <li>Locally advanced or mUC<br/>cohort:</li> <li>Had progressed, on<br/>were ineligible for, or<br/>refused any number<br/>of prior therapies</li> <li>ECOG PS 0-1</li> </ul> | <ul> <li>Solid tumors mUC cohort:</li> <li>Had progressed post-<br/>platinum treatment or<br/>cisplatin-ineligible</li> <li>Unselected for PD-L1</li> <li>ECOG PS 0-1</li> </ul> |
| ORR (%)                   | • 21.1                                                                                                                                                                                                   | • 15                                                                                                                                                         | • 19.6                                                                                                                                                                         | • 20.4                                                                                                                                                                                                                                    | • 16.1 (after ≥6 weeks follow-up)                                                                                                                                                |
| Median PFS<br>(months)    | • 2.1                                                                                                                                                                                                    | • 2.1                                                                                                                                                        | • 2.0                                                                                                                                                                          | • NA                                                                                                                                                                                                                                      | • NA                                                                                                                                                                             |
| Median OS<br>(months)     | • 10.3                                                                                                                                                                                                   | • 7.9                                                                                                                                                        | • 8.7                                                                                                                                                                          | • NA                                                                                                                                                                                                                                      | • NA                                                                                                                                                                             |

\*No head-to-head studies have been conducted and direct comparisons cannot be made between these studies.

1. Bellmunt et al. N Engl J Med 2017; 376:1015-1026; 2. Loriot Y et al. Poster presentation at ESMO 2016. 783P; 3. Sharma P, et al. Lancet Oncol. 2017; 4. Powles T, et al. Poster presentation at ASCO GU. 286; 5. Patel M et al. Poster presentation at ASCO GU. 330.



#### The Evolving Treatment Landscape in Metastatic Clear Cell RCC

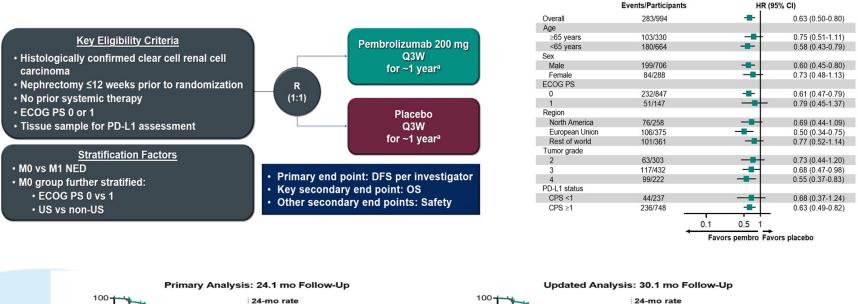


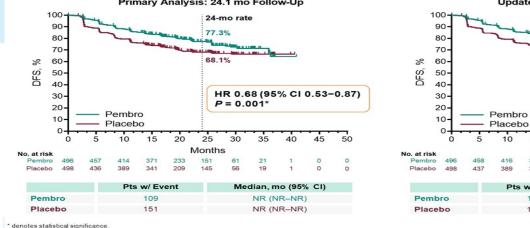
Slide Courtesy to Sandy Srinivas, MD. 5th Annual Global Summit on Genitourinary Cancer, Banff 2022



## Studies of Adjuvant IO in RCC

| Trial                       | Sample<br>Size | Inclusion Criteria                                                                           | Treatment                                                                   | Primary<br>Endpoint | Expected Results                                                         |
|-----------------------------|----------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------|
| Keynote-564 <sup>1</sup>    | 994            | pT2G4, pT3aG3-4, pT3b-T4Gx, pTxN1,<br>pTxNxM1 (resected to NED within 1 year);<br>clear cell | Pembrolizumab vs placebo                                                    | DFS                 | ASCO 2021<br>ASCO GU 2022                                                |
| IMmotion010 <sup>2</sup>    | 778            | pT2G4, pT3aG3-4, pT3b-T4Gx, pTxN1,<br>pTxNxM1 (resected to NED*); clear cell                 | Atezolizumab vs placebo                                                     | DFS                 | ESMO 2022<br>NS DFS<br>HR 0.93; P=0.4950                                 |
| CheckMate-914 <sup>3</sup>  | 1600           | pT2aG3-4N0, pT2b-T4GxN0, pTxGxN1;<br>clear cell                                              | Nivolumab + ipilimumab vs. nivolumab + placebo vs placebo <i>(6 months)</i> | DFS                 | ESMO 2022<br><i>Part A (Nivo+lpi)</i><br>NS DFS<br>HR, 0.92; P=0.5347    |
| PROSPER RCC <sup>4</sup>    | 766            | cT2Nx, cTxN1, cTxNxM1 (resected to NED);<br>any RCC histology                                | Nivolumab vs observation                                                    | EFS                 | ESMO 2022<br>NS DFS<br>HR, 0.97; P=0.43<br>Trial stopped for<br>futility |
| <b>RAMPART</b> <sup>5</sup> | 1750           | Leibovich score 3-11;<br>any RCC histology                                                   | Durvalumab + tremelimumab vs durvalumab<br>vs observation                   | DFS, OS             | 7/2024                                                                   |


\*Metachronous pulmonary, lymph node, or soft tissue recurrence >12 months from nephrectomy.


DFS, disease-free survival; EFS, event-free survival; NED, no evidence of disease; RCC, renal cell carcinoma; OS, overall survival; NS, nonsignificant.

1. Choueiri TK et al. N Engl J Med. 2021;385:683-694. 2. NCT03024996. 3. NCT03138512. 4. NCT03055013. 5. NCT03288532.



## **KEYNOTE 564**





11T population included all randomized participants. DFS, disease-free survival; NR, not reached. Primary analysis data cutoff date: December 14, 2020. Updated analysis data cutoff date: June 14, 2021

Data cutoff at updated analysis: June 14, 2021 Powles T, et al. Lancet Oncol. 2022;23;1133-1144; Choueiri TK, et al. ASCO GU 2022. Abstract 290 Choueiri TK et al. N Engl J Med. 2021;385:683-694; Choueiri TK et al. 2021 ASCO Annual Meeting. Abstract LBA5.

78.3%

67.3%

25

Months

255

230

30

135

125

15

356

114

169

w/ Event

Pts

20

325

HR 0.63 (95% CI 0.50-0.80)

40

37

33

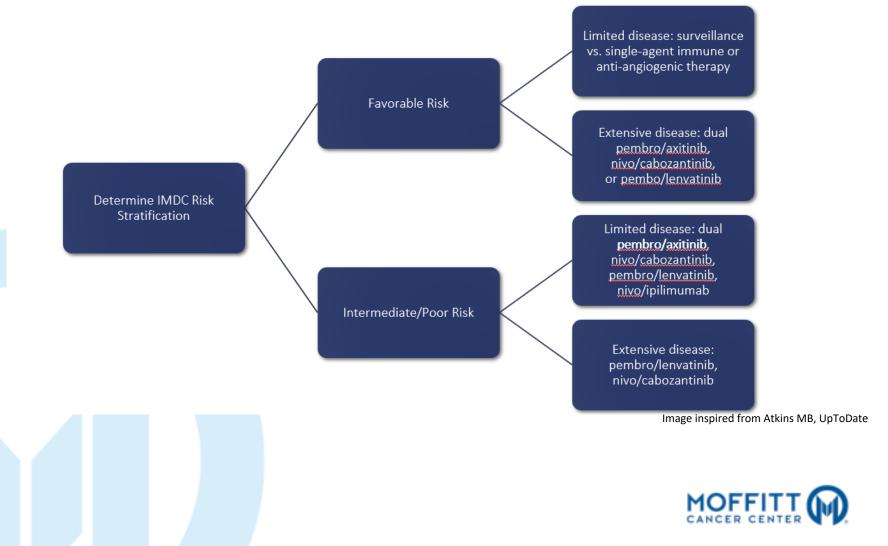
Median, mo (95% CI)

NR (NR-NR)

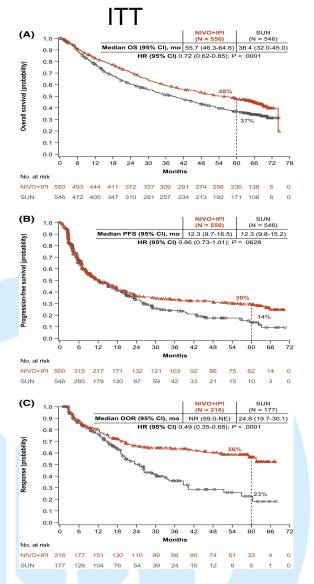
NR (40.5-NR)

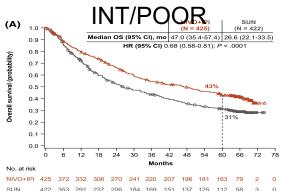
45

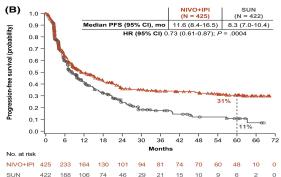
50

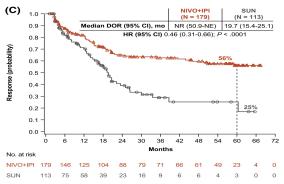

0

Nominal P < 0.0001


35


74


#### **Overview of Systemic Therapy in RCC Based on IMDC Risk Stratification**

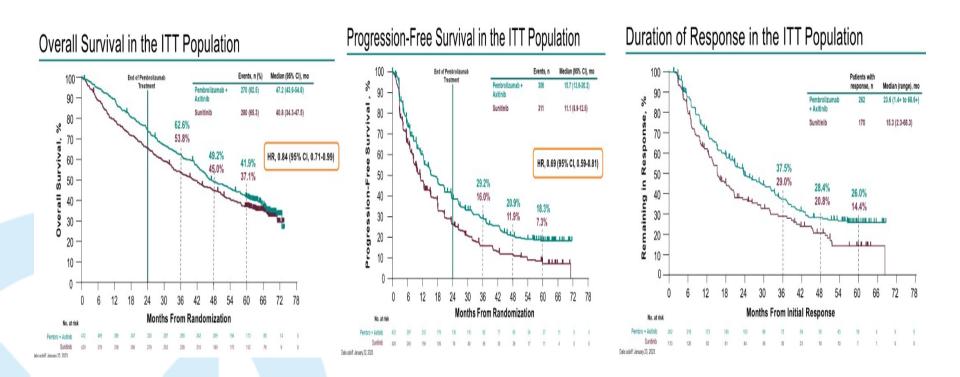




### CheckMate 214: Nivo + IPI vs Sunitinib



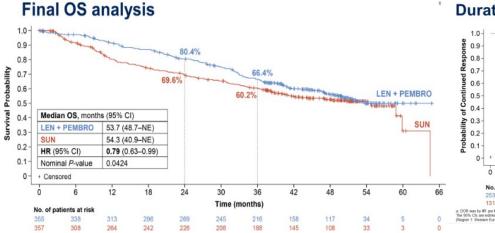




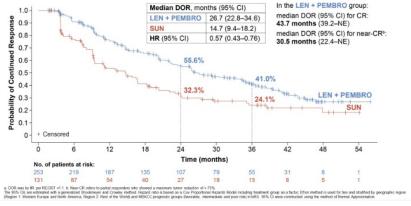




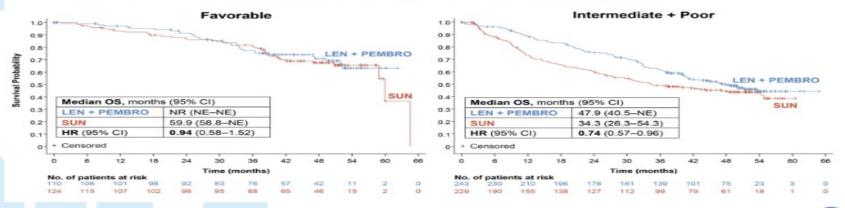




## KEYNOTE 426: Pembrolizumab/Axitinib vs Sunitinib






Rini et al ASCO 2023


## CLEAR: Lenvatinib + Pembro vs Sunitinib



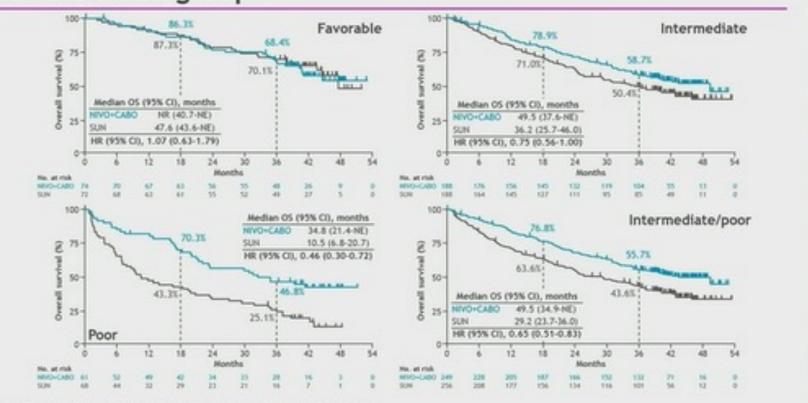
#### Duration of response<sup>a</sup>



#### Final OS analyses in IMDC risk subgroups



MOFFITT

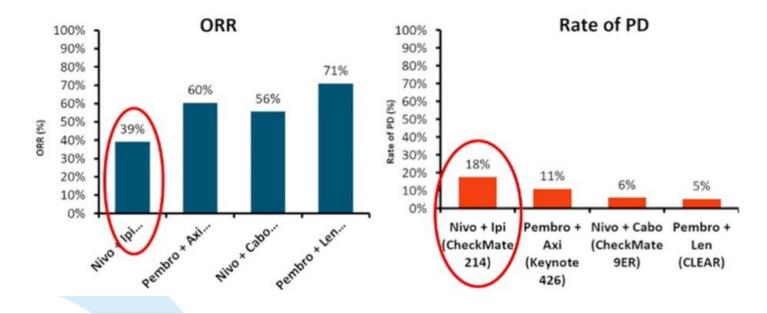

Hudson et al ASCO 2023

## CheckMate 9ER: Nivolumab + Cabozantinib vs

### **Sunitinib**

CheckMate 9ER

### OS: IMDC risk group



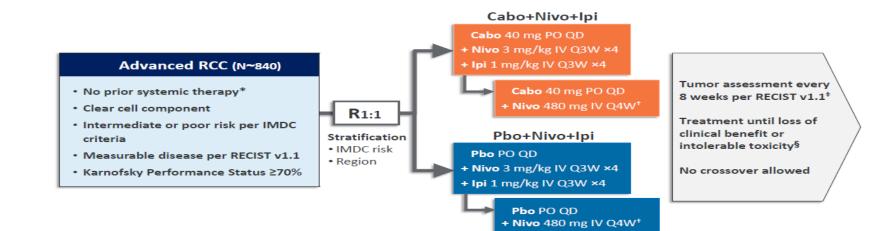

Hedian follow-up for 05, 44.0 months. Unstratified Cox proportional hazard model used for HR.

Burotto M GU ASCO 2023



#### **Cross-Trial Comparison of Response in ITT Population**

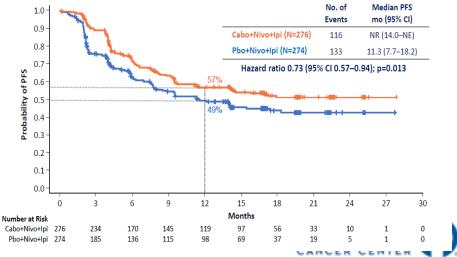



- Response rate may be a more immediately meaningful endpoint than survival measure.
- IO/IO has the lowest response rate and higher primary progressive disease.
- TKI containing therapy is more likely to control symptoms and may be prioritized.

Motzer. ESMO 2021. Abstr 661P. Rini. ASCO 2021. Abstr 4500; Motzer. ASCO GU 2022. Abstr 350. Motzer. ASCO GU 2021. Abstr 269. Pickering L, EIKCS 2022



## COSMIC-313


#### **COSMIC-313 Study Design**



#### **Tumor Response (PITT Population)**

| Cabo+Nivo+Ipi<br>(N=276) | Pbo+Nivo+lpi<br>(N=274)                                                                                                                                        |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 43 (37.2–49.2)           | 36 (30.1–41.8)                                                                                                                                                 |
|                          |                                                                                                                                                                |
| 7 (3)                    | 9 (3)                                                                                                                                                          |
| 112 (41)                 | 89 (32)                                                                                                                                                        |
| 119 (43)                 | 100 (36)                                                                                                                                                       |
| 23 (8)                   | 55 (20)                                                                                                                                                        |
| 15 (5)                   | 21 (8)                                                                                                                                                         |
| 86                       | 72                                                                                                                                                             |
| 2.4 (1.5–17.1)           | 2.3 (1.9–16.8)                                                                                                                                                 |
| NR (20.2–NE)             | NR (NE-NE)                                                                                                                                                     |
|                          | (N=276)           43 (37.2-49.2)           7 (3)           112 (41)           119 (43)           23 (8)           15 (5)           86           2.4 (1.5-17.1) |

### Progression-Free Survival: Final Analysis (PITT Population)



Choueiri T. et al ESMO 2022

## **VEGF-IO** in Refractory RCC

### Phase III CONTACT-03 study

#### Key eligibility criteria

 Advanced/metastatic clear cell or non-clear cell<sup>a</sup> RCC with or without a sarcomatoid component Radiographic progression on or after prior ICI treatment

- ICI as adjuvant, 1L or 2L (single agent or in combination with another permitted agent)
- · ICI in the immediately preceding line of therapy

### Stratification factors

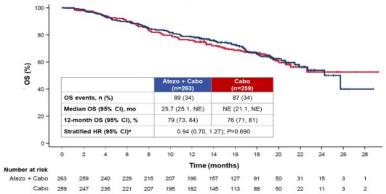
IMDC risk group
 0 vs 1-2 vs ≥3

#### Histology

Dominant clear cell without sarcomatoid vs dominant non-clear cell without sarcomatoid vs any sarcomatoid<sup>b</sup>

- Most recent line of ICI
- Adjuvant vs 1L vs 2L

Atezolizumab 1200 mg IV q3w + Cabozantinib 60 mg daily PO Cabozantinib 60 mg daily PO Primary endpoints • Independent centrally-assessed PFS<sup>c</sup> • OS Key secondary endpoints • Investigator-assessed PFS<sup>c</sup>


• ORR (per central review and per investigator)<sup>c</sup> • Duration of response (per central review and per investigator)<sup>c</sup> • Safety

ClinicalTréas gov ID, NCT04338269, NDC, International Matastalic RCC Database Consortium, Patients were enrolled between July 28, 2020 and December 27, 2021. \* Papilary, chromophobe or unclessified (chromophobe requires sercomatolid differentiation). \* Clear cell or non-clear cell.\* Assessed according to RECIST 1.1.

#### Primary analysis of centrally reviewed PFS (primary endpoint) (n=263) PFS events, n (%) 171 (65) 166 (64) Median PFS (95% CI), mo 10.6 (9.8, 12.3) 10.8 (10.0, 12.5) central review (%) 80 12-month PFS (95% CI), % 44 (38, 50) 48 (42, 54) Stratified HR (95% CI)a 1.03 (0.83, 1.28); P=0.784 60

#### 40 per PFS 20 10 12 14 22 Time (months) Number at risk Atezo + Cabo 133 100 68 71 253 226 188 158 43 22 263 34 130 12 Cabo 242 216 183 153 109 52

#### Interim analysis of OS (primary endpoint)





Choueiri et al ASCO 2023

R

1:1

N=522

## Conclusions

- Immunotherapy has become the backbone for bladder and kidney cancer treatment regimens.
- ADCs and IO combination in bladder cancer are very promising with high ORR and will change the treatment landscape.
- Multiple VEGF inhibitor + IO combinations have demonstrated superior disease control to sunitinib monotherapy in frontline advanced/metastatic RCC.
- Without direct comparisons in a clinical trial setting and positive results from each combination, differentiation among these approved VEGF + IO combinations relies on the ease of use for the regimen and selecting the appropriate regimen for each patient based on patient characteristics and risk factors.
- Biomarkers are required for better patient selection and treatment response.

