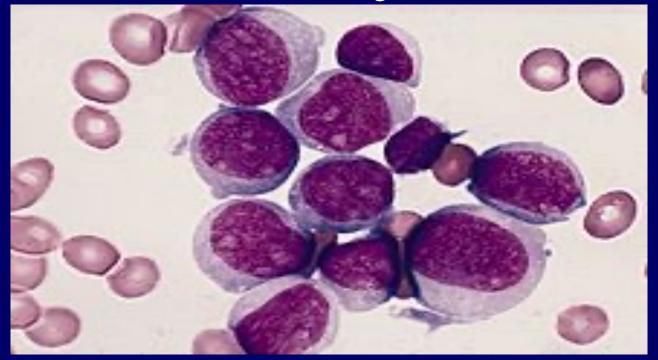
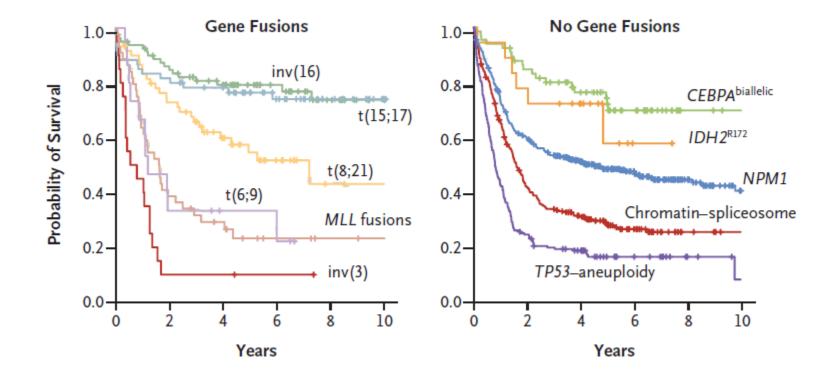
De Novo Acute Myeloid Leukemia

Richard M. Stone. MD

Lunder Family Chair in Leukemia Professor of Medicine, Harvard Medical School Chief of Staff, Dana-Farber Cancer Institute

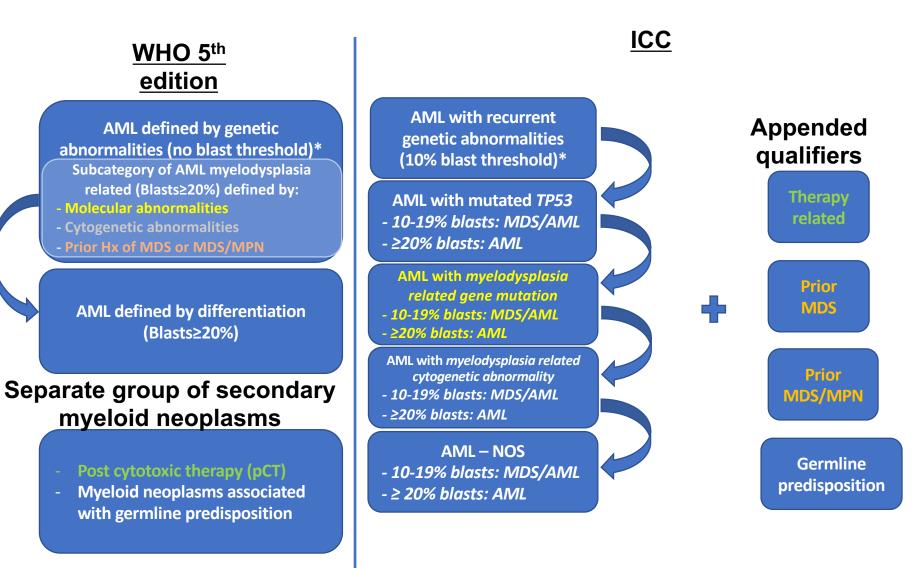

Boston, MA

July 15, 2023


AML: What is it and how did it get there?

- Unbridled proliferation of hematopoietic stem cells (myeloid lineage) resulting in marrow failure and patient death unless successfully treated
- Risk factors: AGE, prior chemo for other cancers, ionizing radiation, industrial solvents (last 3 probably <10% of incidence=15K new US cases annually); unusual but kindreds exist w germ-line mutations in >10 genes*

*CEBPA, DDX41 (monocytosis), MBD4, RUNX1 (t-penia), ETV6 (t-penia. GATA1, SAMD9/SAMD9L (-7), TP53 (LFS), TERC/TERT (lung and liver fibrosis; telemeropathy); Churpek J et al, UTD, 2022; Rio-MAchinA, et al, *Nat Commun* 11, 1044 (2020). https://doi.org/10.1038/s41467-020-14829-5


Genomic Classification and Prognosis in AML: Disease Heterogeneity

Paparmmanuil E et al. NEJM 2016;374:2209-2221.

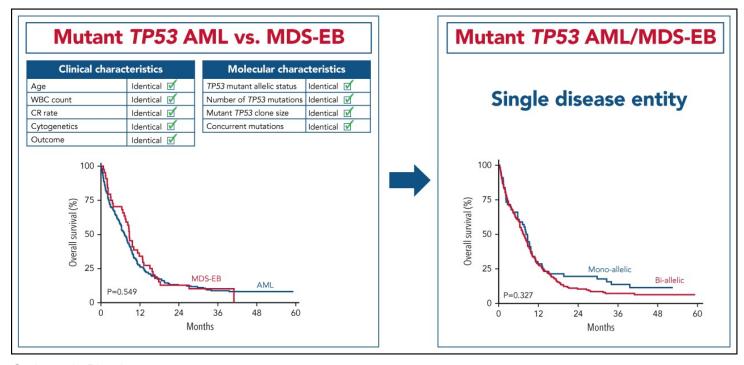
Rapid whole genome sequencing: more accurate and reliable than cytogenetics: Duncavage EJ, et al *NEJM* 2021; 384:924-935.

WHO:(Khoury J et al, *Leukemia* 2022) ICC: (Arber D et al, *Blood* 2022)

Outline: Myeloid neoplasms with mutated *TP53*

ICC 2022

- MDS with mutated TP53
 - 0-9% blasts (marrow or blood)
 - Multi-hit TP53 mutation


• MDS/AML with mutated TP53

- 10-19% blasts (marrow or blood)
- Any TP53 mutation (VAF >10%)
- AML with mutated TP53
 - ≥20% blasts (marrow or blood)
 - Any TP53 mutation (VAF >10%)

WHO 5th edition

- Myelodysplastic neoplasm with biallelic *TP53* inactivation
 - Myeloid neoplasm fulfilling diagnostic criteria for MDS
 - Detection of ≥2 *TP53* mutations
 - ≥2 SNVs / small indels
 - ≥1 SNV / small indel + *TP53* copy loss
 - ≥1 SNV / small indel + *TP53* copy neutral loss of heterozygosity

Mutant TP53 AML vs. MDS-EB

Grob et al., Blood, 2022

Current Risk Assessment in AML

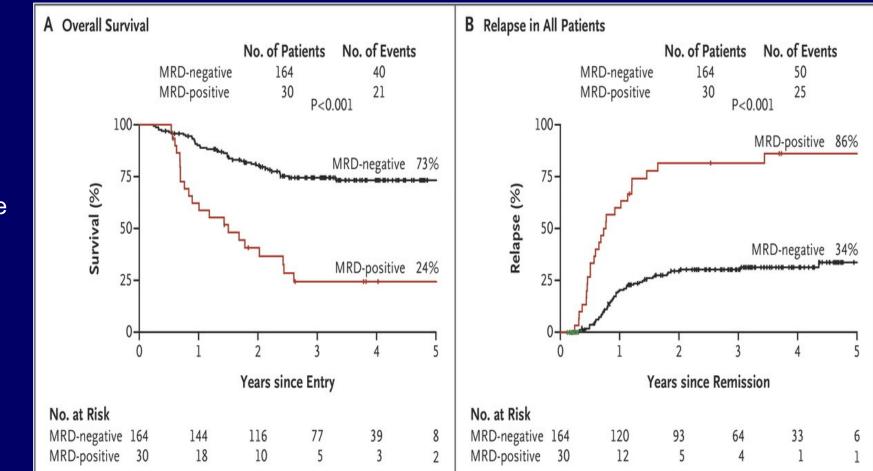
Kow	Drogno	stic Dat	AT in	2022
	ΓΙΟΖΠΟ	SUC Dal		
- J				

Patient age (FH, bleeding hx; ?Therapy related; ?Prior MDS)			
Cytogenetics / fusion mRNA (screen for APL, MLL, Ph+, CBF)			
Multiparameter flow			
Molecular studies:			
• <i>FLT3</i> ITD (internal tandem duplication) mutation	Unfavorable		
• <i>NPM1</i> mutation or <i>CEBPα bZIP</i> mutation	Favorable		

• RUNX1, TP53, ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2 Unfavorable

Importance for future rx: *IDH1/2*

Favorable	t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 (FLT3 or KIT mut don't affect)
	inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11(FLT3,KIT mut don't affect)
	Mutated NPM1 without FLT3-ITD (adverse risk CG takes precedence)
	bZIP in-frame mutated CEBPA (mono- or bi-allelic)
Intermediate	<i>FLT3</i> -ITD (irrespective of allelic ratio or NPM1 mutation)
	t(9;11)(p21.3;q23.3)/MLLT3::KMT2A
	Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
	t(6;9)(p23;q34.1)/ <i>DEK::NUP214</i>
Adverse	t(v;11q23.3)/KMT2A rearranged (excluding KMT2A-PTD)
	t(9;22)(q34.1;q11.2)/BCR::ABL1
	(8;16)(p11;p13)/KAT6A::CREBBP
	inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1)
	t(3q26.2;v)/MECOM(EVI1)-rearranged
	-5 or del(5q); -7; -17/abn(17p)
(NEW) ELN 2022 classification	Complex karyotype (3 or more, not hyerpdiploid); Monosomal Karyotype
	Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2
Dohner H, et al, <u>Blood</u> 2022.	Mutated TP53 (Variant Allele Frequency ≥ 10%)


AML: General Treatment Principles

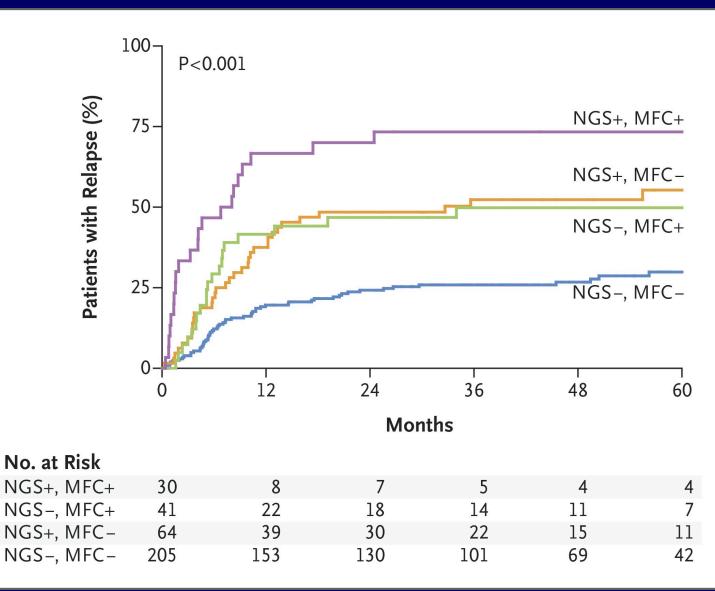
- Goal 1: Induction therapy to reduce gross leukemia to undetectable levels (2-3 log cell kill); to achieve CR (no AML, nl CBC)
- Goal 2: Reduce 10⁹ 10¹⁰ cells, undetectable by standard means, present at CR, to a level low enough to achieve prolonged disease-free survival ('cure')

AML: Key Endpoints

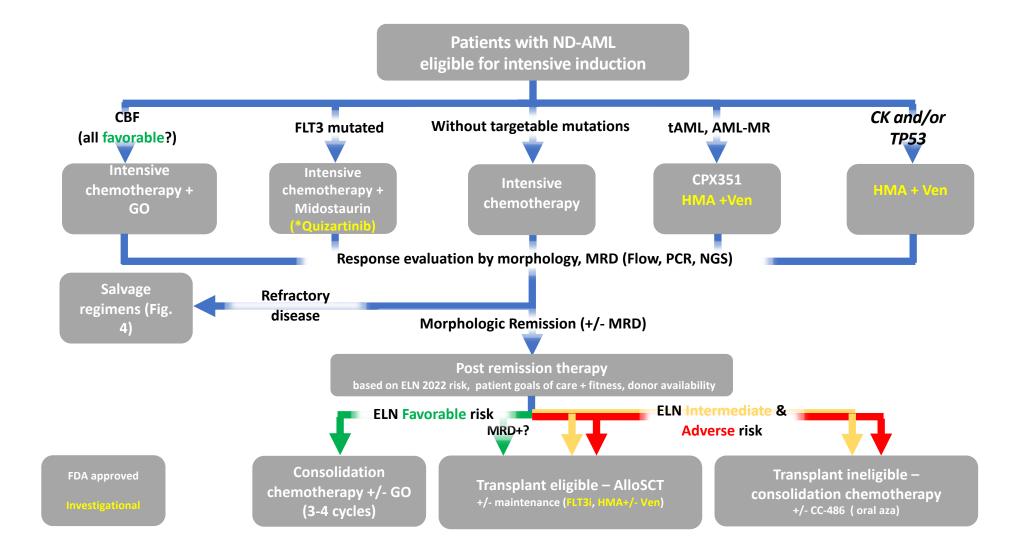
- Overall survival (OS)
- Event-free survival (event= no CR, relapse, death)
 - Somewhat correlated with OS
 - Has intrinsic value to pts: when no event they are in CR with acceptable counts
- Complete remission (CR)
 - CR with incomplete plt (or ANC) recovery has value
 - CR at MRD negative level has most value !

MRD Based on PCR for Mutant NPM1 in Peripheral Blood After the Second Cycle of Chemotherapy Independently Predicts Clinical Outcomes

MRD = minimal residual disease; PCR = polymerase

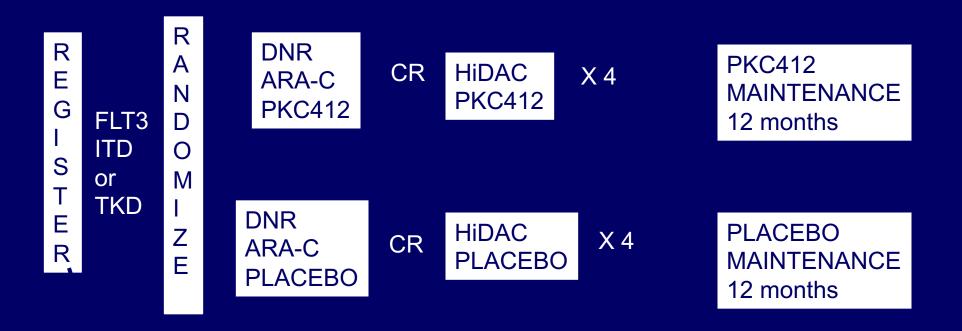

chain reaction.

Ivey A et al. N Engl J Med. 2016;374:422-433.


MP flow and PCR are currently sensitive in the 1 in 10,000 range c/w 1 in 20 for CG and morph

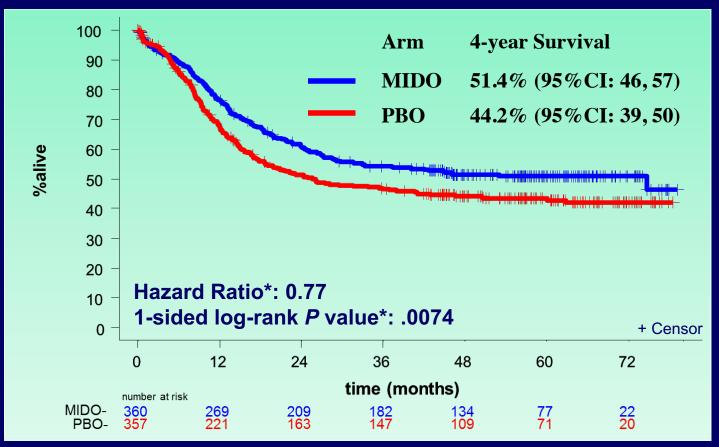
Rate of Relapse According to Results of Next-Generation Sequencing and Multiparameter Flow Cytometry.

Note: DNMT3A, TET2, ASXL1 mutaions do not 'count'



Jongen-Lavrencic M et al. N Engl J Med 2018;378:1189-1199

Shimony S, Stahl M, Stone R, Am J Hematol, 2023


CALGB 10603: Prospective Phase III, double-blinded randomized study of induction and consolidation +/- Midostaurin (PKC412) in newly diagnosed patients < 60 years old with FLT3 mutated AML

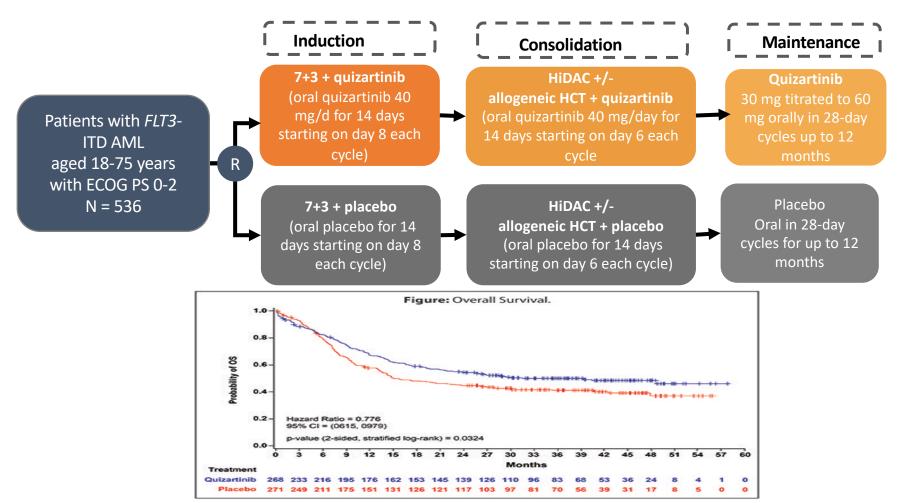
Study drug is given on Days 8-21 after each course of chemotherapy, and Days 1-28 (note change) of each 28 day Maintenance cycle.

Overall Survival (Primary Endpoint) 23% Reduced Risk of Death in the MIDO Arm

• Median OS: MIDO 74.7 (31.7-NE); PBO 25.6 (18.6-42.9) months

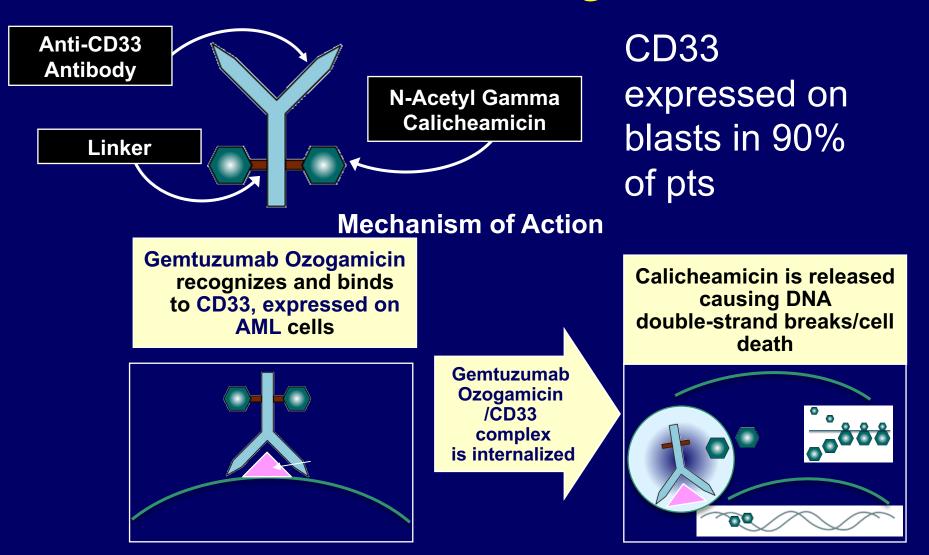
Controlled for FLT3 subtype (TKD, ITD-Low, ITD-High)

Stone RM, et al. <u>NEJM</u> 2017.

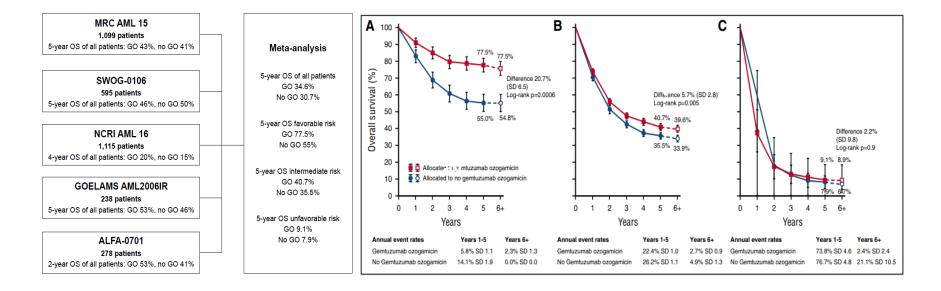

Multivariate Analysis for OS

Factor	2-sided <i>P</i> value
ELN subgroups (NPM1/FLT3-ITD)	<.001
Treatment (midostaurin vs placebo)	.012
Allogeneic HCT	<.001
WBC (≥ vs <50 x10 ⁹ /L)	.028
Age (difference of 10 years)	.335
Sex	.689

• Döhner K, et al. *Blood.* 2017;130:467.

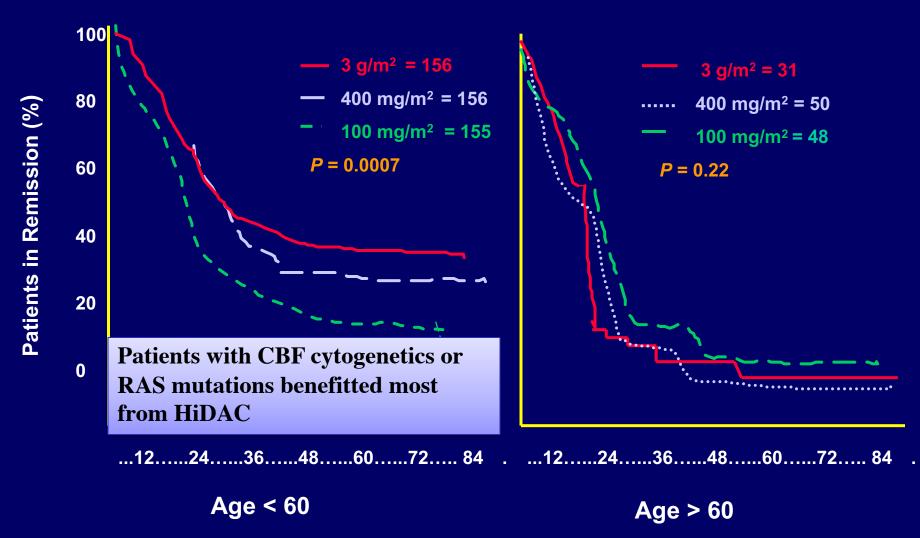

QUANTUM-FIRST: Quizartinib in Induction, Consolidation, and as Maintenance in *FLT3*-ITD+ AML

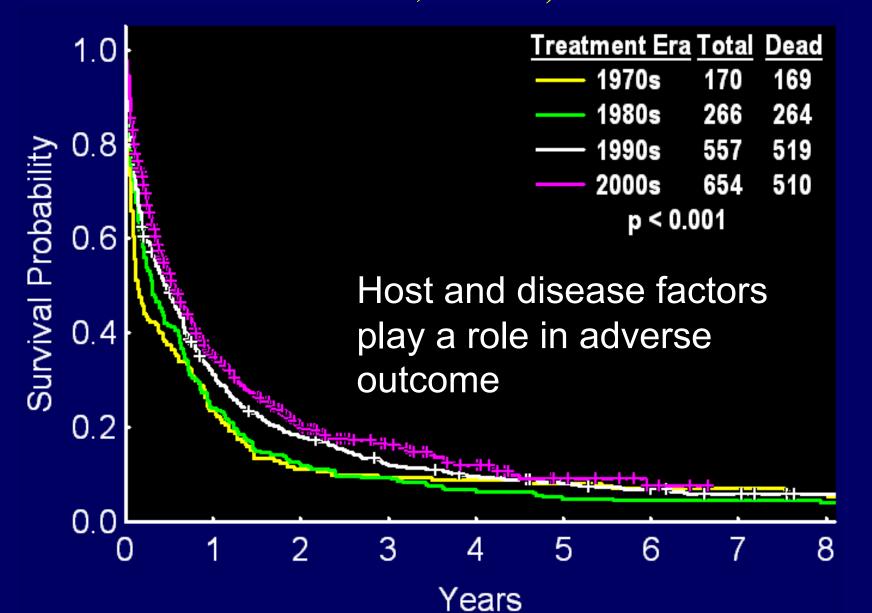
Erba H, et al; *Lancet* 401; 1571-1583, 2023



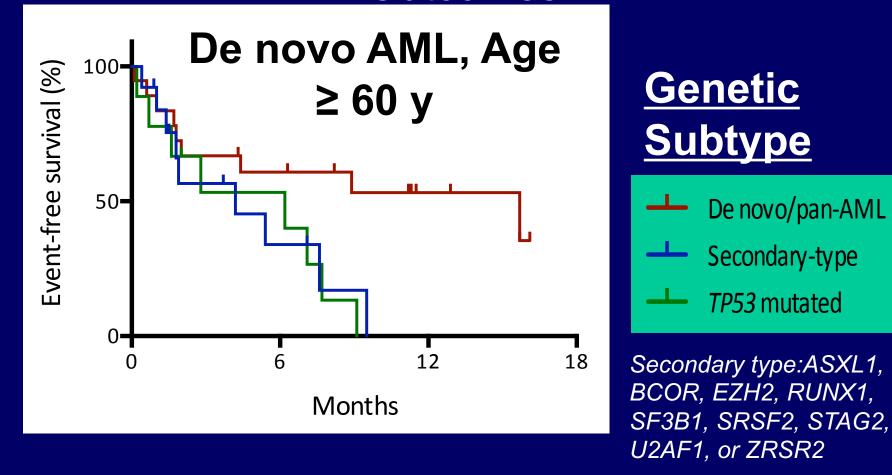
17

(Gemtuzumab Ozogamicin)

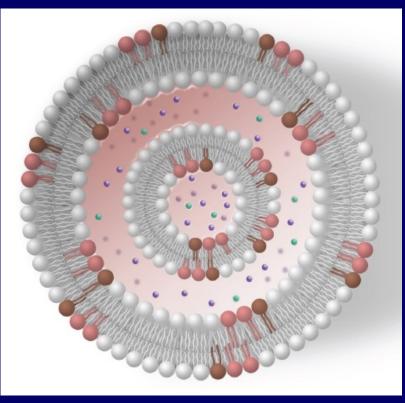

The Return of Gemtuzomab Ozogamycin


FAV INT UNFAV Karytoype-based risk

Hills RT, et al, Lancet Oncol 15: 986-996, 2014


Consolidation: DFS (and OS) Benefit Only in Patients < 60 Years Receiving High-Dose Ara-C

Bloomfield CD, et al. *Cancer Res*.1998;58(18):4173-4179; Neubauer A, et al. *J Clin Oncol.* 2008; 26(28):4603-4609; Mayer RJ, et al. *N Engl J Med*. 1994;33(1):896-903. Survival in AML in Age \geq 60 Years (MDACC, 1973-Present, n=1647)


In Elderly de novo AML, Secondary-Type Mutations Are Associated With Adverse Outcomes

Lindsley RC et al. Blood. 2015;125:1367-1376.

CPX-351

- CPX-351 is a liposomal coformulation of cytarabine and daunorubicin designed to achieve synergistic antileukemia activity
 - 5:1 molar ratio of cytarabine:daunorubicin provides synergistic leukemia cell killing *in vitro*¹
 - In patients, CPX-351 preserved delivery of the 5:1 drug ratio for over 24 hours, with drug exposure maintained for 7 days²
 - Selective uptake of liposomes by bone marrow leukemia cells in xenograft models³

CPX-351 Phase III Study Design

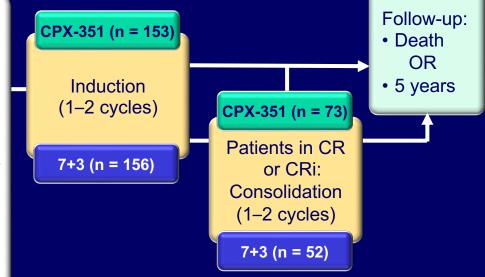
- Randomized, open-label, parallel-arm, standard therapycontrolled
 - 1:1 randomization, enrolled from December 2012 to November 2014
 - Patients with CR or CRi could be considered for allogeneic HCT, based on institutional criteria

Stratifications:

Key Eligibility

Previously

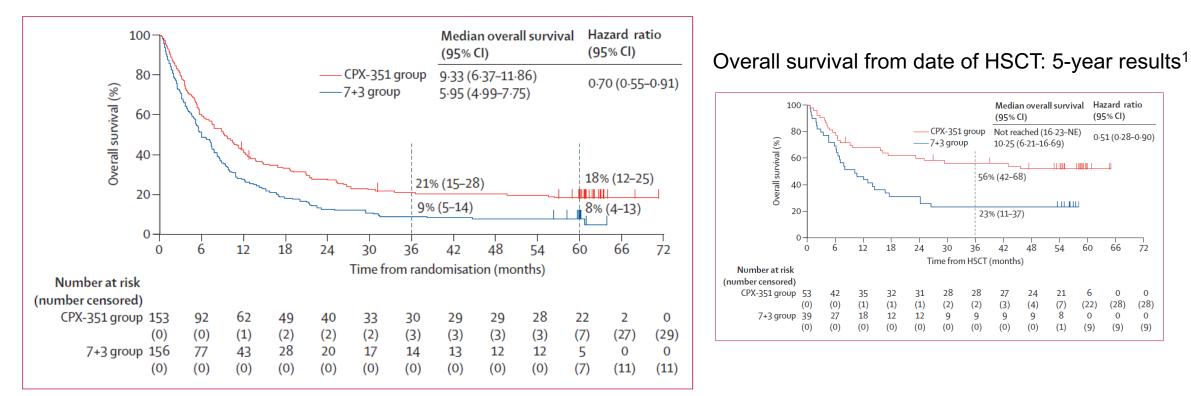
untreated


• Ages 60–75 years

intensive therapy

• Able to tolerate

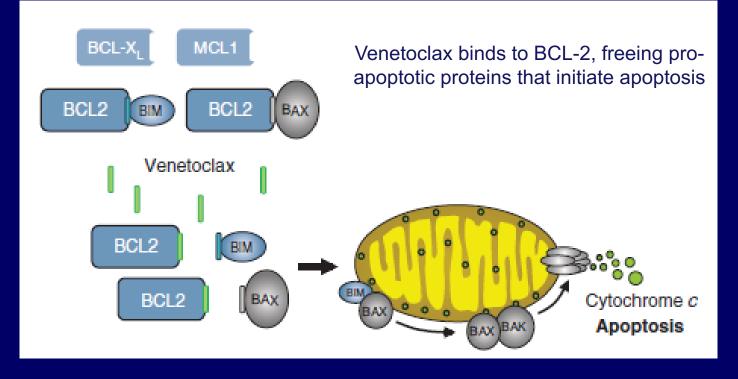
• ECOG PS 0-2


- Therapy-related AML
- AML with history of MDS with and without prior HMA therapy
- AML with history of CMML
- De novo AML with MDS karyotype
- 60–69 years
- 70–75 years

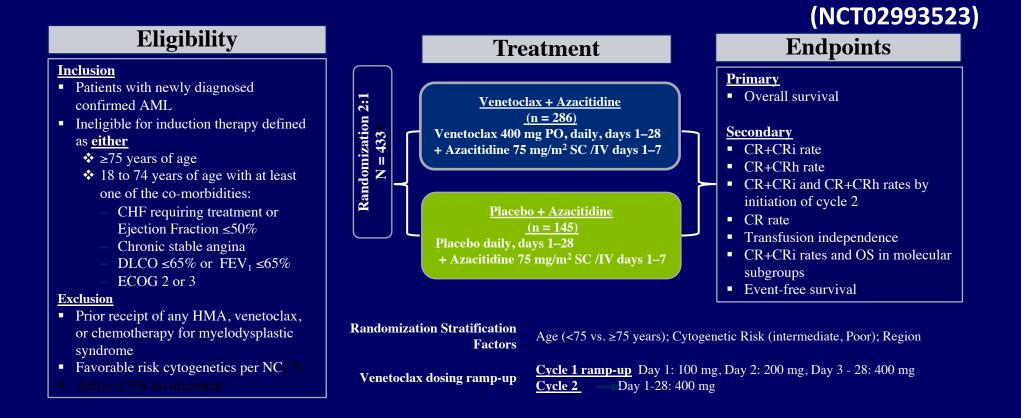
recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HMA, hypomethylating agents; MDS, myelodysplastic syndrome.

1. World Health Organization. WHO Classification of Tumours of Haematopoitic and Lymphoid Tissues. Swerdlow S et al (ed). Lyon, 24 IRAC Press, 2008.

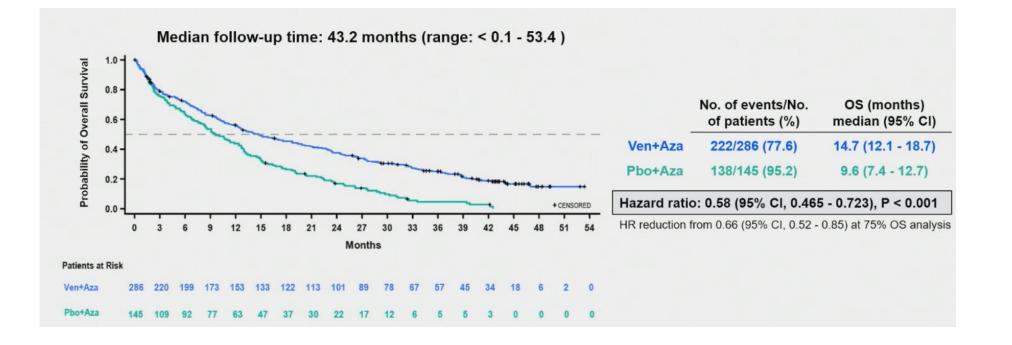
Overall survival CPX 351 v 3+7 in sec AML, age 60-75: 5-year results¹



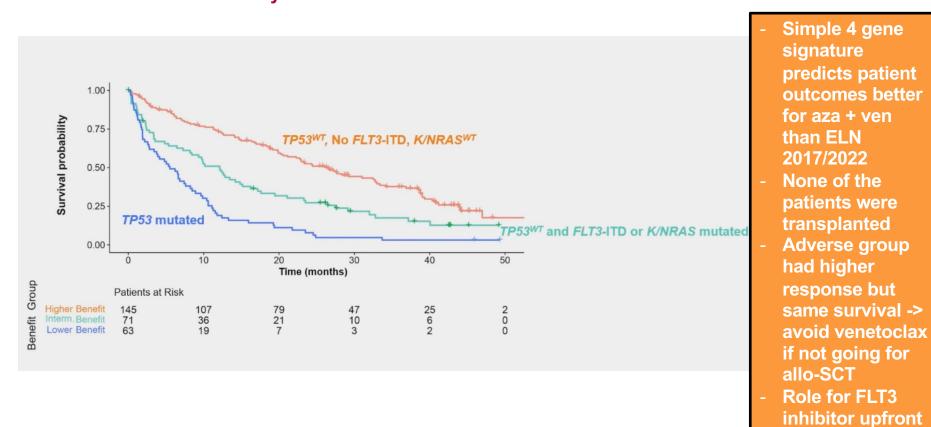
3-year and 5-year Kaplan-Meier-estimated survival rates are shown with 95% CI. 7+3=cytarabine and daunorubicin.


	CPX-351 (n = 153)	7+3 (n = 156)	Odds ratio	P value
CR+CRi	47.7%	33.3%	1.77 (1.11, 2.81)	0.016
HSCT rate	34.0%	25.0%	1.54 (0.92, 2.56)	0.098
Deaths ≤30 days [*]	5.9%	10.3%		
Deaths ≤60 days [*]	13.7%	21.2%		

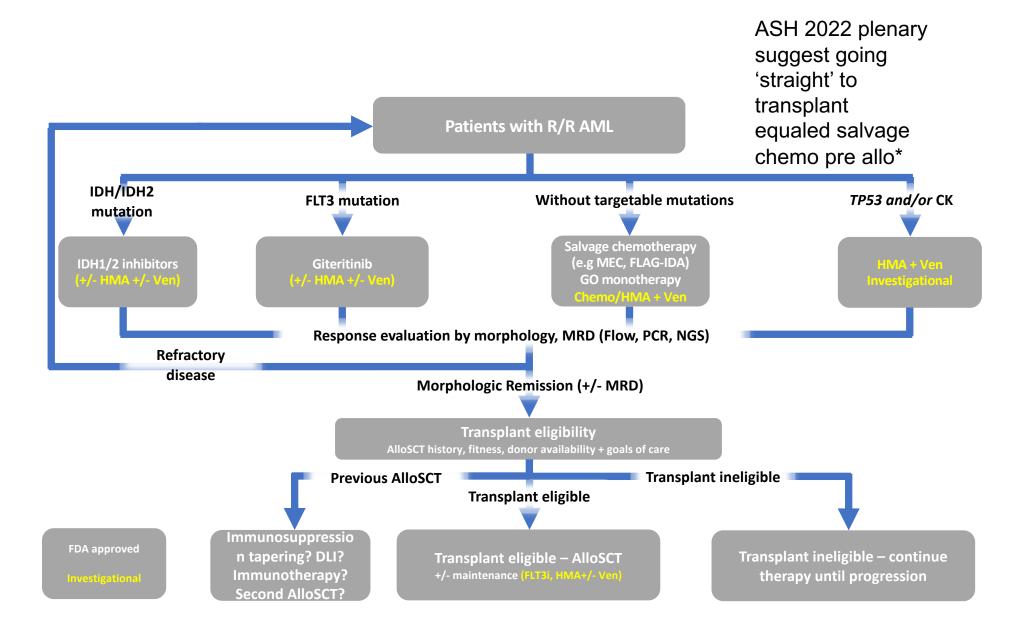
Venetoclax: BCL-2 Selective Inhibitor


BCL-2 overexpression allows cancer cells to evade apoptosis by sequestering pro-apoptotic proteins

Azacitidine ± Venetoclax (VIALE-A) Study Design



219:Long-Term Follow-up of the Phase 3 Viale-a Clinical Trial of Venetoclax Plus Azacitidine for Patients with Untreated Acute Myeloid Leukemia Ineligible for Intensive Chemotherapy


Keith Pratz, MD (ASH 2022) Abramson Cancer Center University of Pennsylvania

602: ELN Risk Stratification Is Not Predictive of Outcomes for Treatment-Naïve Patients with Acute Myeloid Leukemia Treated with Venetoclax and Azacitidine

for FLT3 ITD?

*Schetelig J, et al , ASh 2022.

Shimony S, Stahl M, Stone R, Am J Hematol, 2023

Magrolimab (Anti-CD47 ('Don't eat me' signal) Ab + AZA Induces High Response Rates in AML (Sallman et al, ASH 2020)

Also promising outcomes in HR MDS; Sallman et al; JCO 2023

Best Overall Response	All AML (N=43)	<i>TP53</i> -mutant AML (29)
ORR	27 (63%)	20 (69%)
CR	18 (42%)	13 (45%)
CRi	5 (12%)	4 (14%)
PR	1 (2%)	1 (3%)
MLFS	3 (7%)	2 (7%)
SD	14 (33%)	8 (28%)
PD	2 (5%)	1 (3%)

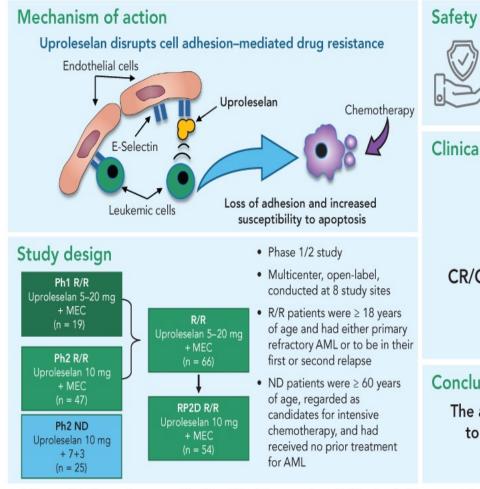
Figure 14.2.2.7 Best Relative Change from Baseline in Bone Marrow Blast (Treated Subjects with At Least 1 Response Assessment - TN/U AML cohort)

Patient*

Magrolimab + AZA induces a 63% ORR and 42% CR rate in AML, including similar responses in *TP53*-mutant patients

Median time to response is 1.95 months (range 0.95 to 5.6 mo), more rapid than AZA monotherapy

9.6% of patients proceeded to bone marrow stem cell transplantation


Magrolimab + AZA efficacy compares favorably to AZA monotherapy (CR rate 18%–20%)^{1,2}

- Ongoing ENANCE -2: AZA/ven v AZA/magro in TP 53 mut
- Ongoing ENHANCE 3: aza/ven v AVM in all ND unfit AML

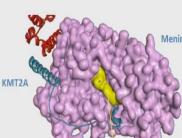

Response assessments per 2017 AML ELN criteria. Patients with at least 1 post-treatment response assessment are shown. *Three patients not shown due to missing values; <5% blasts imputed as 2.5%. 1. Fenaux P, et al. *J Clin Oncol*. 2010;28(4):562-569. 2. Dombret H, et al. *Blood*. 2015;126(3):291-299.

Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory AML and in newly diagnosed patients with AML

- Uproleselan at doses ranging from 5-20 mg/kg was well tolerated with an adverse event profile similar to that for background chemotherapy
- Just 2% of patients treated with uproleselan + MEC experienced severe mucositis, a percentage that is substantially lower than historically reported with MEC alone

Conclusion

The addition of uproleselan to chemotherapy was well tolerated with high remission rates, low-induction mortality, and low rates of mucositis.


7+3 = combination regimen cytarabine/darubicin; AML = acute myeloid leukemia; CR = complete response; CRi = complete response with incomplete blood count recovery; MEC = mitoxantrone, etoposide, cytarabine; ND = newly diagnosed; Ph1 = phase 1; Ph2 = phase 2; R/R = relapsed/refractory.

DeAngelo, DJ et al , Blood 2022; 139: 1139-1146

The Menin Inhibitor SNDX-5613 (revumenib) Leads to Durable Responses in Patients (Pts) with KMT2A-Rearranged or NPM1 Mutant AML: Updated Results of a Phase (Ph) 1 Study

Revumenib (SNDX-5613) is a potent, selective menin-KMT2A interaction inhibitor

- The menin-KMT2A interaction is a critical dependency in *KMT2Ar* (*MLL1r*) and *mNPM1* leukemias responsible for the leukemogenic gene expression
 - KMT2Ar: ~ 10% AML or ALL (~ 80% infant ALL)¹
 - mNPM1: ~ 30% AML²
- Revumenib competitively binds a discrete, well-defined pocket within menin, where both wild-type KMT2A (MLL1) and KMT2A fusion proteins bind
 - \rightarrow disassembling abnormal transcription complexes in *KMT2Ar, mNPM1*, and other leukemia subtypes³

Gene transcription OFF

1. Issa GC, et al. Leukemia. 2021;35:2482–2495; 2. Papaemmanuil, E. et al. N Engl J Med. 2016;374: 2209-2221; 3. Krivtsov A, et al. Cancer Cell. 2019;36(6):660-673. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; KM72Ar, lysine methyltransferase 2A rearrangements; MLLr, mixed lineage leukemia rearranged; mNPM1, mutated nucleophosmin 1

🚯 American Society of Hematology

GR 3 QT and DS in 10-15%

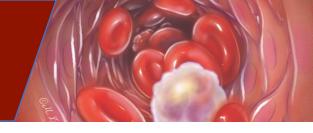
ana-Farber Cancer Institute

esponse	Efficacy population $(n = 60)$	<i>KMT</i> 2Ar (<i>n</i> = 46)	Mutated $NPM1$ ($n = 14$)
Overall response [*]	32 (53%)	27 (59%)	5 (36%)
Median time to first morphologic response (range), months	0.95 (0.9–3.7)	0.95 (0.9–3.7)	0.99 (1.0–1.9)
Best response [*]	8		
CR/CRh	18 (30%)	15 (33%)	3 (21%)
CR	12 (20%)	9 (20%)	3 (21%)
CRh	6 (10%)	6 (13%)	0
Median time to CR or CRh (range), months	1.9 (0.9–4.9)	2.0 (0.9–4.9)	1.9 (1.0–1.9)
CRi	0	0	0
CRp	5 (8%)	5 (11%)	0
MLFS	9 (15%)	7 (15%)	2 (14%)
Partial remission	0	0	0
No response	19 (32%)	12 (26%)	7 (50)
Progressive disease	7 (12%)	6 (13%)	1 (7%)
Missing	2 (3%)	1 (2%)	1 (7%)
MRD [†] neg. rate within CR/CRh	14/18 (78%)	11/15 (73%)	3/3 (100%)
Median time to MRD [†] neg. among patients with CR/CRh (range), months	1.9 (0.9–4.9)	1.9 (0.9–4.9)	1.9 (1.0–2.8)

33

Issa, G, et al, Nature 615: 920-924, 2023

ERK, BET. SYK, inhibitors Anti CD123, antiCD33 ADC/BiTe/CAR Checkpoint inhibitors


New FLT3 inhibitors (e.g., quizartinib) Anti CD47 (e.g., magrolimab) Menin inhibitors E-selectin inhibitors (e.g., uproleselan)

Acknowledgements

- Clinical Team at DFCI:
 - Dan DeAngelo, Martha Wadleigh, Jacqueline Garcia, Goyo Abel, Eric Winer, Marlise Luskin, Chris Reilly, Rahul Vedula, Max Stahl
 - Ilene Galinsky, NP
 - Kelly Ling, PA, Mary Girard, PA, Theresa Ngyuen, NP, Patrice O'Sullivan, NP, Ryan Osborne, PA
 - BMT Team: Alyea, Antin, Cutler, Ho, Gooptu, Kelkar, Koreth, Romee, Shapiro, Soiffer
- Scientific Team at Dana-Farber/Harvard Cancer Center
 - Jim Griffin, Ben Ebert; Andy Lane, Coleman Lindsley, Tony Letai, Mark Murakami, Zuzana Tothova, Kim Stegmaier, Donna Neuberg, Tom Look, S Armstrong
- Alliance
 - R Larson, G Marcucci, W Blum, G Uy, G Roboz, J Kolitz, S. Mandrekar, W Stock, G Uy, C. Bloomfield*
- Academic Collaborators
 - Local: D Avigan, J Rosenblatt; P Amrein, A Fathi, A Brunner, T Graubert
 - Worldwide: E. Estey*, C Schiffer, H Dohner, C Thiede, F. LoCoco* and many others.

* In memorium

The End

Questions or need help?

Email: rstone@partners.org Phone: 617-632-2214 Administrative Assistant: 617-632-2168 New Patients: 617-632-6028 Page: 617-632-3352 #42194

