

Contemporary Pharmacotherapy Management of High-grade Gliomas

Alyssa Ströhbusch, PharmD, MS, BCOP, CPh December 1, 2022

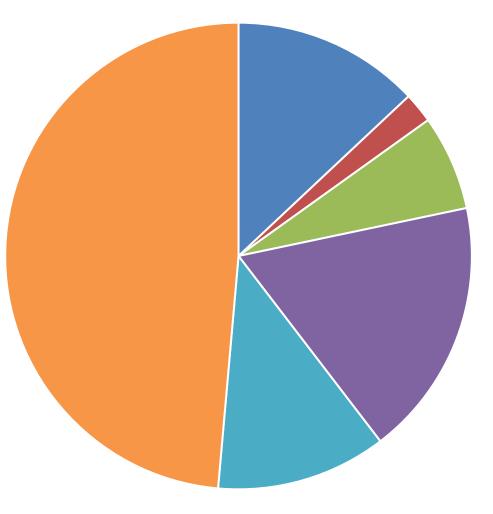
Rosetta Stone

	Shorthand
α -thalassemia mental retardation syndrome X-linked	ATRX
lomustine	CCNU
copy number alteration	CNA
central nervous system	CNS
glioblastoma	GBM
isocitrate dehydrogenase	IDH
Karnofsky performance scale	KPS
O ⁶ -methylguanine DNA methyltransferase	MGMT
Response Assessment in Neuro-Oncology	RANO
telomerase reverse transcriptase	TERT
temozolomide	TMZ
World Health Organization	WHO

Objectives

- 1. Understand the role of molecular markers in the diagnosis and management of high-grade gliomas
- 2. Develop a treatment/monitoring plan based on the assessment of patient information, available evidence, and current guidelines for the management of primary gliomas
- 3. Discuss future direction for precision oncology and immunotherapy approaches in the treatment of high-grade gliomas

Incidence, Survival, and Mortality


Malignant CNS tumors account for ~1% of all invasive cancer cases in the United States

- Most commonly diagnosed solid tumor in children/adolescents
- Leading cause of cancer death
 - Males <40 years
 - Females <20 years

Less than one-third of all CNS tumors are malignant – Majority of deaths from disease

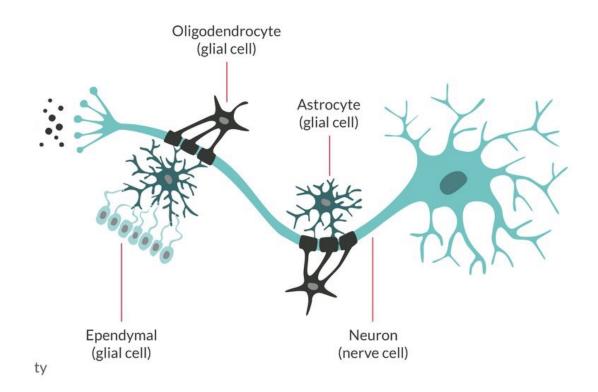
Incidence, Survival, and Mortality

Miscellaneous

- Tumors of meninges
- Lymphomas and hemopoietic neoplasms
- Other gliomas
- Diffuse/anaplastic astrocytoma
- Glioblastoma

What's In a Name?

Over 120 subtypes of CNS tumors in existence


- Cell type, histology, molecular characterization

Nervous tissue cell types

- Messaging
 - Neurons

– Structural/glial cells

- Ependymal
- Oligodendrocyte
- Astrocyte
- Microglia

Brain Tumor Pathology

Tumor classification using histopathology and molecular data

- Methods: IHC, sequencing (CNA-seq, pyro-seq, etc.)
- Performed at time of initial resection/biopsy

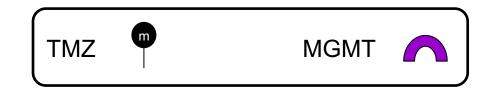
Molecular characterization to discern histologically similar neoplasms for prognosis and potential response to therapies


- MGMT promoter methylation
- IDH mutation
- ATRX mutation
- TERT mutation
- Co-deletion of 1p and 19q

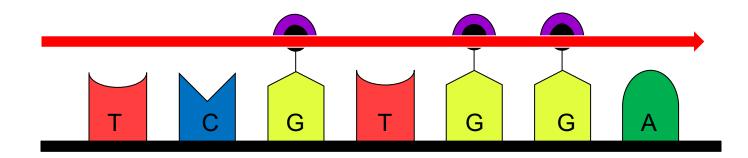
MGMT? IDK

Temozolomide

Alkylates DNA at the O⁶ and N⁷ positions of guanine

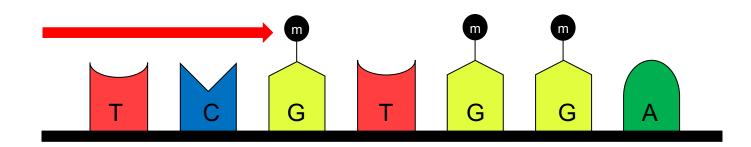

MGMT

Removes alkyl groups from the O⁶ position of guanine


Methylation silences gene expression

MGMT MECHANISM

Undesired effect: Accurate replication of malignant DNA



MGMT METHYLATION

Desired effect: Halt of malignant DNA replication

Molecular Characterization

MGMT promoter methylation

- <u>Recommendation</u>: essential for all high-grade gliomas (Grade 3 and 4)
- Prognostic value:
 - Confers survival advantage in GBM
 - Less benefit from TMZ if not MGMT promoter methylated

IDH1 and IDH2 mutation

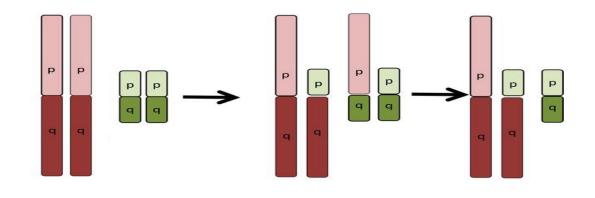
- <u>Recommendation</u>: testing *required* for the workup of all gliomas
- <u>Diagnostic value</u>: distinguishes lower-grade gliomas from GBM (WT)
- Prognostic value: associated with relatively favorable prognosis
 - Survival benefit for patients treated with radiation or alkylating systemic therapy

Molecular Characterization Continued

ATRX mutation

- <u>Recommendation</u>: testing *required* for the workup of glioma
- Diagnostic value:
 - Strongly associated with *IDH* mutations, nearly always mutually exclusive with 1p/19q co-deletion

TERT (promoter mutation)


- <u>Recommendation</u>: testing *required* for the workup of glioma
- <u>Diagnostic value</u>: found in most GBM
 - *TERT* absence in the presence of mutant *IDH* designates astrocytoma
- Prognostic value:
 - *TERT* presence in absence of *IDH* mutation in diffusely infiltrative gliomas associated with reduced overall survival

Molecular Characterization Continued

Co-deletion of 1p and 19q

- <u>Recommendation</u>: testing *essential* part of diagnostics for oligodendroglioma
- Diagnostic value:
 - must contain both *IDH* mutation and 1p/19q co-deletion for diagnosis of oligodendroglioma
- Prognostic value: confers favorable prognosis
 - Predictive of response to alkylating systemic therapy +/- radiation

WHO CNS5 Classification (2021)

Glioblastoma: IDH wild-type, TERT mutation, EGFR amp/mut, chr 10/PTEN del

Grade 4 astrocytoma: H3-3A mutation

Oligodendroglioma grade 2-3: IDH and TERT mutations, 1p/19q codel

Glioma findings

Astrocytoma grade 2–4: IDH, ATRX, TP53 mutation

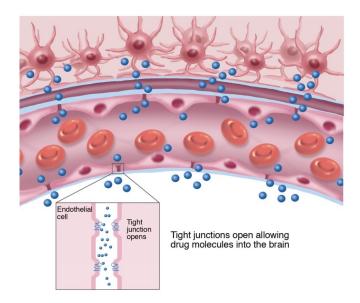
Ganglioglioma, PXA, PA, infiltrative glioma: BRAF mutation

PA: BRAF fusion

Treatment Strategies

Pharmacologic Challenges

Blood brain barrier (BBB)


- Selectively restricts blood to brain paracellular diffusion

Favorable characteristics for BBB penetrance

- Molecular weight <500 daltons
- Lipophilic: high Log P values

Dose modification

- Ex: methotrexate
 - Non-Hodgkin lymphoma: 1,000 mg/m²
 - CNS lymphoma: 8,000 mg/m²

General Treatment Approach

Surgery

* Overall survival benefit

- Stereotactic biopsy or open biopsy
- Gross total resection*
- Subtotal resection

Radiation therapy (RT)

- Standard: 60 Gy/30 fx, 6 week duration
- Hypofractionated: 34 Gy/10 fx or 40.05 Gy/15 fx, 2-3 week duration

Systemic treatment

- Age, performance status, MGMT methylation

High-grade Glioma: Initial Treatment

* Category 1 Recommendation

- **Age >70 years** – KPS ≥60
 - MGMT Methylated
 - Clinical trial
 - Hypofractionated RT ± concurrent/adjuvant temozolomide*
 - RT + concurrent/adjuvant temozolomide ± alternating electric field therapy*
 - Temozolomide
 - MGMT Unmethylated/Indeterminate
 - Clinical trial
 - Hypofractionated RT ± concurrent/adjuvant temozolomide
 - RT + concurrent/adjuvant temozolomide ± alternating electric field therapy*
 - Hypofractionated RT

– <u>KPS <60</u>

- Hypofractionated RT
- Temozolomide
- Palliative/best supportive care

High-grade Glioma: Initial Treatment

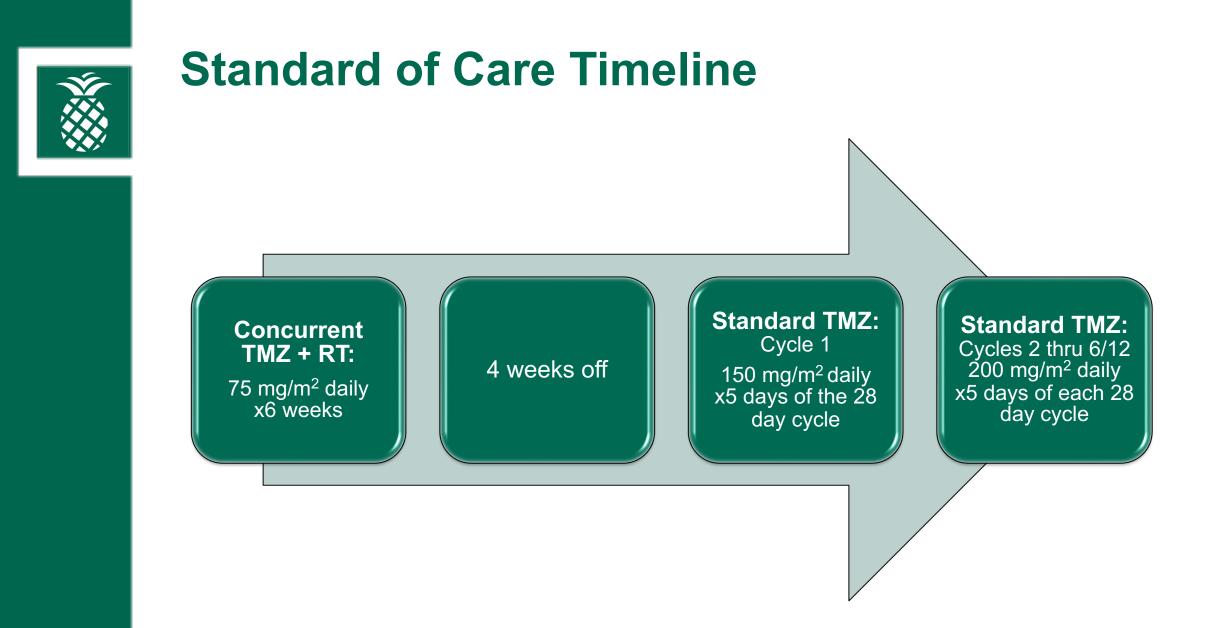
* Category 1 Recommendation

MGMT Methylated

- Clinical trial

- RT + concurrent/adjuvant temozolomide ± alternating electric field therapy*
- RT + concurrent/adjuvant temozolomide + CCNU
- MGMT Unmethylated/Indeterminate
 - Clinical trial
 - RT + concurrent/adjuvant temozolomide + alternating electric field therapy*
 - RT ± concurrent/adjuvant temozolomide

– <u>KPS <60</u>


– KPS ≥60

- Hypofractionated RT ± concurrent or adjuvant temozolomide
- Temozolomide
- Palliative/best supportive care

"You can't really know where you are going until you know where you've been."

-Maya Angelou

Stupp, et al. NEJM 2005

Compared the efficacy and safety of <u>RT alone</u> with <u>RT + TMZ</u> given concurrently and after RT in high-grade glioma patients – Randomized, multicenter, phase 3 trial

	RT (n=286)	RT + TMZ (n=287)
Age – no. (%) <50 years ≥50 years	81 (28) 205 (72)	90 (31) 197 (69)
Findings on pathological review – no. (%) Glioblastoma Anaplastic astrocytoma Inconclusive material/other	229 (93) 9 (4) 8 (3)	221 (92) 7 (3) 11 (5)

Stupp, et al. NEJM 2005: Outcomes

Median survival 14.6 months vs 12.1 months

– Overall survival benefit of 2.5 months with RT + TMZ

Hazard ratio for death in RT + TMZ group - 0.63 (95% CI, 0.52 to 0.75; P<0.001)

Median PFS: 6.9 (5.8-8.2) vs 5.0 (4.2-5.5) in favor of RT + TMZ

Grade 3/4 hematologic toxicity

- Concurrent RT + TMZ: 19/284 (7%) / Adjuvant TMZ: 32/223 (14%)

- Study duration: 46/284 (16%)

Stupp, et al. Lancet 2009

Median survival 14.6 months vs 12.1 months

– Overall survival benefit of 2.5 months with RT + TMZ

Hazard ratio for death in RT + TMZ group - 0.63 (95% CI, 0.52 to 0.75; P<0.001)

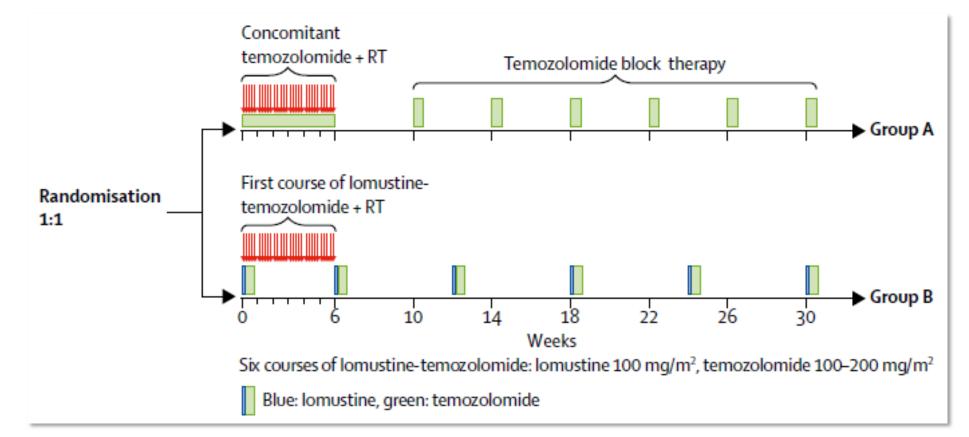
Median Overall Survival	RT	RT + TMZ
2 Years	10.9%	27.2%
3 Years	4.4 %	16.0%
4 Years	3.0%	12.1%
5 Years	1.9%	9.8%

Alternating Electric Field Therapy

Portable medical device that generates low-intensity alternating electric fields to stop mitosis/cell division

- FDA approved in 2015 for newly diagnosed glioblastoma

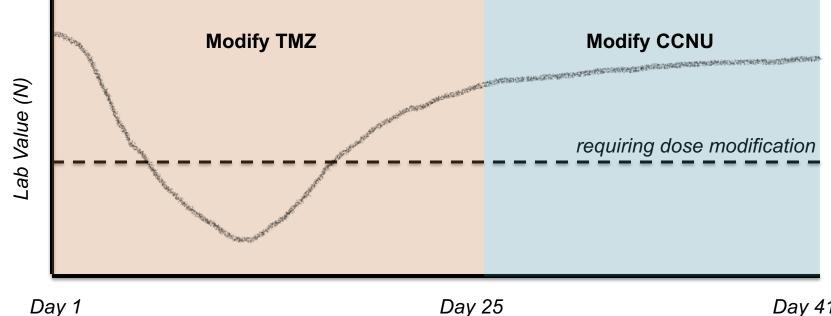
Open-label, Phase 3 EF-14 Trial (N=695)


- Treatment Arms
 - Adjuvant temozolomide + alternating electric field therapy
 - Adjuvant temozolomide
- mPFS: (6.7 vs. 4.0 months; HR, 0.63; 95% CI, 0.52–0.76; P < .001)
- -OS (20.9 vs. 16.0 months; HR, 0.63; 95% CI, 0.53-0.76; P < .001)

Herrlinger et al. Lancet 2019

Randomized, multicenter, open-label, phase 3 trial

Combination CCNU + TMZ vs standard of care in nGBM



Herrlinger Protocol Dosing/Modifications

Treatment Regimen

- Lomustine 100 mg/m², Day 1 of 42 each 42 day cycle
 - 25% reduction \rightarrow 50% reduction
- Temozolomide 100-200 mg/m², Days 2 thru 6 of each 42 day cycle
 - $50 \text{ mg/m}^2 \leftarrow 75 \text{ mg/m}^2 \leftarrow 100 \text{ mg/m}^2 \rightarrow 120 \text{ mg/m}^2 \rightarrow 150 \text{ mg/m}^2 \rightarrow 200 \text{ mg/m}^2$

Herrlinger et al. Lancet 2019: Outcomes

Efficacy Outcomes

- Median OS
 - 48.1 months (32.6 not assessable) vs 31.4 months (95% CI, 27.7-47.1)
 - p=0.0492
- Median PFS
 - 16.7 months (95% CI, 12.0-32.0) vs 16.7 months (95% CI, 11.4-24.2)
 - p=0.4735

Safety Outcomes

- Grade 3/4 adverse effects: 59% vs 51%
- High grade hematologic events: 36% vs 29%
- Percent of patients with cycle delays >2 weeks: 40% vs 17%

Recurrence Treatment Options

Preferred Regimens	Dosing Schedule*
Bevacizumab	10 mg/kg q14d OR 15 mg/kg q21d
Temozolomide	150-200 mg/m ² , daily, days 1-5 of each 28 day cycle
Lomustine	80-110 mg/m ² , oral, day 1 of each 42 day cycle
Carmustine	200 mg/m ² , IV, day 1 of each 42 day cycle
Procarbazine/Lomustine/ Vincristine (PCV)	Procarbazine: 60 mg/m ² , oral, days 8-21 Lomustine: 110 mg/m ² , oral, day 1 Vincristine: 1.4 mg/m ² [max 4 mg], IV, day 8 & 29 of each 42 day cycle
Regorafenib	160 mg, oral, days 1-21 of each 28 day cycle

Recurrence Treatment Options

Preferred Regimens	Dosing Schedule*
Bevacizumab	10 mg/kg q14d OR 15 mg/kg q21d
Temozolomide	150-200 mg/m ² , daily, days 1-5 of each 28 day cycle
Lomustine	80-110 mg/m ² , oral, day 1 of each 42 day cycle
Carmustine	200 mg/m ² , IV, day 1 of each 42 day cycle
Procarbazine/Lomustine/ Vincristine (PCV)	Procarbazine: 60 mg/m ² , oral, days 8-21 Lomustine: 110 mg/m ² , oral, day 1 Vincristine: 1.4 mg/m ² [max 4 mg], IV, day 8 & 29 of each 42 day cycle
Regorafenib	160 mg, oral, days 1-21 of each 28 day cycle

Lombardi, et al. Lancet 2018 (REGOMA)

Randomized, multicenter, open-label, phase 2 trial

- Regorafenib vs lomustine in treatment of recurrent glioblastoma

Inclusion criteria

- Patients with first progression following surgery and chemoradiation
- $-Age \ge 18$ years, KPS ≥ 70 , known MGMT status

Exclusion criteria

- Previous treatment with VEGF targeting kinase inhibitor
- Uncontrolled hypertension, use of strong CYP3A4 inhibitors/inducers

Lombardi, et al. Lancet 2018: Outcomes

Median overall survival

- 7.4 months (95% CI, 5.8-12.0) vs 5.6 months (95% CI, 4.7-7.3)
- HR 0.50 (95% CI, 0.33-0.75; log rank p=0.0009)

	Regorafenib Events/N (%)	Lomustine Events/N (%)		HR (95% Cl)	p value for interaction
Age (years)					
<65	35/50 (70%)	43/45 (96%)	_	0.49 (0.31-0.77)	0.81
≥65	7/9 (78%)	14/15 (93%)		0.55 (0.22-1.39)	
Sex					
Male	30/41 (73%)	40/43 (93%)	_	0.62 (0.38-1.00)	0.07
Female	12/18 (67%)	17/17 (100%)	-	0.27 (0.13-0.59)	
Surgery at relapse					
Yes	9/13 (69%)	11/14 (79%)	· · · · · · · · · · · · · · · · · · ·	0.74 (0.31–1.79)	0.32
No	33/46 (72%)	46/46 (100%)	_	0.45 (0.28-0.71)	
MGMT					
Methylated	17/29 (59%)	25/27 (93%)	e	0.43 (0.23-0.80)	0.50
Unmethylated	25/30 (83%)	31/32 (97%)	_	0.57 (0.33-0.97)	
Dexamethasone use					
No	14/27 (52%)	19/21 (90%)	_	0.34 (0.17-0.70)	0.08
Yes	28/32 (88%)	38/39 (97%)	_	0.75 (0.45-1.22)	
ECOG PS		, ,			
0	14/27 (52%)	27/28 (96%)	_	0.30 (0.16-0.58)	0.03
1	28/32 (88%)	30/32 (94%)	B	0.76 (0.45-1.27)	
Overall	42/59 (71%)	57/60 (95%)	— B —	0.50 (0.33-0.77)	0.0009
			0·25 0·5 1·0 1·5 2·0 3·0		
			Favours regorafenib Favours lomustine		

Old Drugs, New Tricks?

Biomarkers

Final Report

Biomarker	
IDH1	
IDH2	
MSI	
NTRK1/2/3	
Tumor Mutational Burden	
ATRX	
BRAF	
CDKN2A	

Biomarker
CDKN2B
CIC
EGFR
EGFRVIII
FGFR1
FGFR2
FGFR3

Biomarker
FUBP1
H3F3A
HIST1H3B
NF1
NOTCH1
PDGFRA
PIK3CA
POT1

PTEN TERT promoter TP53 TSC1 TSC2

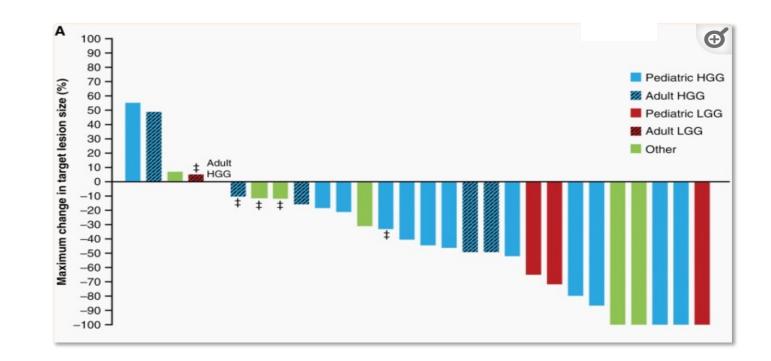
NTRK 1/2/3 Inhibitors

0.56-1.69% adult GBM patients

Larotrectinib 100 mg oral BID

Entrectinib 600 mg oral once daily

Relative Adverse Event Profiles			
Larotrectinib	Entrectinib		
Anemia 42% (grade 3/4: 10%)	Anemia 67% (grade 3/4: 9%)		
Neutropenia 36% (grade 3/4: 14%)	Neutropenia 28% (grade 3/4: 7%)		
Nausea/vomiting 25%	Nausea/vomiting 34%		
Increased ALT 45% / AST 52%	Increased ALT 38% / AST 44%		
Cognitive dysfunction 11%	Cognitive dysfunction 27%		
Fever 24%	Fever 21%		
MISC: musculoskeletal pain 42%, rash 19%, cough 32%, edema 19%	<u>MISC</u> : visual disturbances 21%, ↑ SCr 73%, edema 40%, peripheral neuropathy 18%		



Doz et al. Neuro-Oncology 2022

Efficacy Outcomes

- ORR: 30% (95% CI, 16-49) for all patients
- PFS & OS: 56% (95% CI, 38-74) 85% (95% CI, 71-99) respectively
- Twenty-three of 28 patients (82%) experienced tumor shrinkage

BRAF/MEK Inhibitors

Medication	Number of Tablets	Frequency	Total Pill Burden	
Dabrafenib	2 caps	2 caps BID		
Trametinib	1 tab	Daily	5	
Encorafenib	4 caps	Daily	10	
Binimetinib	3 tabs	BID		
Vemurafenib	/emurafenib 4 tabs BID		44	
Cobimetinib	3 tabs	Daily	11	

Wen et al. Lancet 2022

Dabrafenib plus trametinib in patients with recurrent/refractory BRAF^{V600E} mutant low-grade and high-grade glioma

- Multicenter, open-label, single arm, phase 2, basket trial

High-grade cohort inclusion criteria

 $-ECOG \leq 2$, measure baseline disease, previously treated with SOC

Outcomes

- Objective response rate 33% (95% CI, 20-49)
 - 3 complete responses, 12 partial responses
- Grade 3 or worse adverse events reported in 53% patients
 - Fatigue (9%), decreased neutrophil count (9%), headache (5%), neutropenia (5%)

BRAF/MEK Inhibitors

Dabrafenib 150 mg oral BID

– Dosage form: capsules

Administration:

At least 1 hour before or 2 hours after meal

Adverse Effects:

 Hand/foot syndrome, hyponatremia, arthralgias, constipation, cough, VTE

Warnings/Precautions:

 Cardiomyopathy, febrile reactions, hyperglycemia, ocular toxicity

Monitoring:

 Confirm BRAF V600 mutation status, CBC w/ diff, CMP, ECHO, derm evaluation

Trametinib 2 mg oral daily

– Dosage form: tablets

Administration:

At least 1 hour before or 2 hours after meal

Adverse Effects:

 Edema, hypertension, hypoalbuminemia, diarrhea, increased AST/ALT, anemia

Warnings/Precautions:

 Cardiomyopathy, hemorrhage, hypertension, pulmonary toxicity

Monitoring:

- CBC w/ diff, CMP, ECHO, BP

Biomarkers

Final Report

Biomarker		
IDH1		
IDH2		
MSI		
NTRK1/2/3		
Tumor Mutational Burden		
ATRX		
BRAF		
CDKN2A		

Biomarker		
CDKN2B		
CIC		
EGFR		
EGFRVIII		
FGFR1		
FGFR2		
FGFR3		

Biomarker
FUBP1
H3F3A
HIST1H3B
NF1
NOTCH1
PDGFRA
PIK3CA
POT1

Biomarker		
PTEN		
TERT promoter		
TP53		
TSC1		
TSC2		

Drug-Target Pairs

<u>IDH 1</u> ivosidenib

<u>IDH 2</u> enasidenib

NTRK 1/2/3 larotrectinib entrectenib

PIK3CA alpelisib

PDGFR* avapritinib <u>BRAF</u>

dabrafenib/trametinib encorafenib/binimetinib vemurafenib/cobimetinib

<u>CDKN 2A/B</u> abemaciclib palbociclib ribociclib

FGFR 1/2/3 erdaftinib pemigatinib futibatinib <u>EGFR</u>

osimertinib afatinib erlotinib getitinib lapatinib vandetanib

PIK3CA alpelisib duvelisib umbralisib idelalisib copanlisib

IDH1 Inhibitor

Ivosidenib 500 mg oral daily

- Do not administer with high fat meal
- Dosage forms: tablets

Adverse effects

– Endocrine/metabolic disturbances, stomatitis, arthralgia, dyspnea, edema

Monitoring

- IDH1 mutation status, CBC w/ diff, CMP, CPK, EKG

Warnings/Precautions

- QT prolongation (patients with baseline QTc \ge 450 or \ge 470 msec excluded)

– Differentiation syndrome

IDH2 Inhibitor

Enasidenib 100 mg oral daily

- Dose adjustments: moderate hepatic impairment (-50%), if severe do not use
- Dosage forms: tablets

Adverse effects

- Endocrine/metabolic disturbances, diarrhea, increased serum bilirubin
- Emetic potential: moderate/high

Monitoring

- IDH2 mutation status, CBC w/ diff, CMP

Warnings/Precautions

- Electrolyte imbalances, hepatotoxicity
- Differentiation syndrome

CDK4/6 Inhibitor

Abemaciclib 150 mg oral BID

- Dose adjustments: Child-Pugh C reduce frequency to once daily
- Dosage form: tablets

Adverse Effects

 Hepatotoxicity, diarrhea, VTE, bone marrow suppression, pulmonary toxicity, nausea/vomiting (mod/high), increased SCr, increased AST/ALT

Supportive Care

- Scheduled anti-emetic, loperamide

NCT02977780 NCT02981940

Monitoring

- CBC w/ diff, CMP, s/sx of pneumonitis and PE/DVT

EGFR Inhibitor

Osimertinib 160 mg oral daily

- Dose adjustments: Child-Pugh B/C reduce initial dose 50%
- Dosage form: tablets

Administration: can be dispersed in 60 mL water for oral administration, 15 mL water for nasogastric

Adverse Effects

 Nail disease, stomatitis, myelosuppression, increased AST/ALT, hypermagnesemia, constipation/diarrhea

Warnings/Precautions

 – QTc prolongation (withhold until <481 msec), interstitial lung disease, bone marrow suppression

Monitoring

- CBC w/ diff, CMP, EKG, ECHO

New Drugs, New Tricks

Vorasidenib

Dual inhibitor of mutant *IDH1/2*

- Oral, daily until unacceptable toxicity or progression

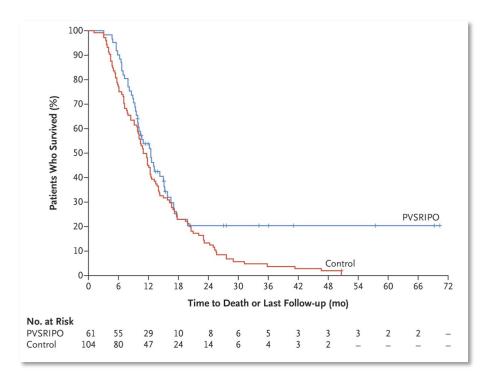
Objective response rate per RANO criteria – Non-enhancing glioma: 18% (1 partial, 3 minor responses)

Median PFS

– Non-enhancing glioma: 36.8 months (95% CI, 11.2-40.8)

– Enhancing glioma: 3.6 months (95% CI, 1.8-6.5)

Preliminary antitumor activity in patient with recurrent or progressive *IDH* mutated <u>low-grade gliomas</u>


Recombinant Polio Virus

Polio-rhinovirus chimera (PVSRIPO)

– Targets poliovirus receptor CD155 expressed on neoplastic cells – PVSRIPO $5.0*10^7$ TCID₅₀ administered over 6.5 hours

Adult patients with supratentorial recurrent WHO Grade 4 gliomas

- OS reached plateau of 21%(95% CI, 11-33) at 24 months
- 19% of patients experienced a
 Grade 3 or higher adverse event

Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination (DCVax-L)

Phase 3, prospective, externally controlled, nonrandomized trial

Compared OS in newly diagnosed and recurrent GBM

- Standard of care adjuvant TMZ + placebo
- Standard of care adjuvant TMZ + DCVax-L

Inclusion criteria

- Age 18-70 years, KPS \geq 70, life expectancy of \geq 8 weeks

Excluded if radiographic evidence of progression following chemoradiation

HOT OFF THE PRES

Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination (DCVax-L)

Newly diagnosed GBM (nGBM) results

- From randomization
 - Median OS: 19.3 (95% CI, 17.5-21.3) months vs 16.5 (95% CI, 16.0-17.5) months
 - HR=0.80; 98% CI, 0.00-0.94; *P* = .002

	Patients, %			
Time	ECP	DCVax-L group	Relative rate, DCVax-L vs ECP, %	
nGBM				
No.	1366	232	NA	
Landmark survival rate				
36 mo	15.5	20.2	130	
48 mo	9.9	15.7	159	
60 mo	5.7	13.0	228	

Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination (DCVax-L)

Recurrent GBM results (rGBM)

- From relapse
 - Median OS: 13.2 (95% CI, 9.7-16.8) months vs 7.8 (95% CI, 7.2-8.2) months
 - HR=0.58; 98% CI, 0.00-0.76; P < .001

Table 2. Landmark Survival Rates in Patients With nGBM and rGBM					
rGBM					
No.	640	64			
Landmark survival rate measure from date of progression	d				
6 mo	64.0	90.6	142		
12 mo	30.8	54.1	175		
18 mo	15.9	31.8	200		
24 mo	9.6	20.7	215		
30 mo	5.1	11.1	217		

The Takeaways

Multimodal approach remains essential for best patient outcomes

Advanced role of molecular diagnostics in tumor classification

Despite >400 clinical trials since 2005, minimal meaningful benefit in patient outcomes particularly overall survival

- Distinct pharmacologic challenges
- Substantial efforts in exploring precision medicine and immunotherapy

Contemporary Pharmacotherapy Management of High-grade Gliomas

Alyssa Ströhbusch, PharmD, MS, BCOP, CPh AlyssaStr@baptisthealth.net