

ALK, ROS1, and BRAF Positive Lung Cancer

Nathaniel Myall, MD MS Stanford Cancer Institute Stanford, CA

DISCLOSURES

Has no relevant financial relationships

Discussion Outline

ALK – Sequencing Next-Generation TKI Therapies
 MA13.03 – Integrated Efficacy and Safety of Brigatinib Following Alectinib Treatment in the
 ALTA-2 and J-ALTA Studies

2. ROS1 – Further Data with Entrectinib and Lorlatinib

MA13.04 – Entrectinib in Patients with ROS1 Fusion-Positive (ROS1-fp) NSCLC: Updated Efficacy and Safety Analysis

P2.14-02 – TP53 Mutations Affect Sensitivity to Lorlatinib in ROS1Positive NSCLC: Final Results of the PFROST Trial

3. BRAF – Supportive Care Insights

EP08.02-070 – High Incidence of Peridiagnosis Thromboembolic Events in Patients with BRAF Mutant Lung Cancer

Integrated Efficacy and Safety of Brigatinib Following Alectinib Treatment in the ALTA-2 and J-ALTA Studies

Sai-Hong I. Ou Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine

Next-Generation ALK Inhibitors vs Crizotinib

	Alectinib	Brigatinib	Lorlatinib					
Clinical trial	ALEX ^{9,18}	ALTA-IL ^{17,22}	CROWN					
OR (%) (95% CI)	02 0 (74 0 00 E)	76 (69 93)						
Median Ongoing questions								
Median (95% c 1. Preferred choice in the first-line setting?								
Median 2. Sequenc	ing of next-g	eneration age	ents? 🗤					
HR for disease progression of death (95% CI)	0.17 (0.51-0.05)	0.10 (0.55-0.00)	0.20 (0.17-0.41)					
OS rates (%) (95% CI)	5-year OS rate 62.5% (54.3–70.8)	3 year-OS probability 71% (62–78)	NA					
Median OS, HR (95% CI)	0.67 (0.46–0.98)	0.81 (0.53–1.22)	0.72 (0.41–1.25)					

Yun & Bazhenova, Cancer Manag Res, 2022

Study Schema

Overview of Integrated Study Design

ALTA-2 (NCT03535740),

post-alectinib cohort (n=86)¹

Single arm, open-label study conducted in Asia, Europe, North America, and Australia

- · Locally advanced or metastatic ALK+ NSCLC^a
- · Disease progression on alectinib
- ≤3 lines of systemic therapy for metastatic disease (included crizotinib prior to alectinib)

Ou et al, WCLC Abstract MA13.03, 2022

Patient Demographics

Characteristic, n (%)	Integrated Population N = 133
Age, median (range), years	54 (22–82)
Female, n (%)	68 (51)
Brain metastases at baseline by BIRC	66 (50)
Stage IV disease at study entry	131 (98)

Prior anticancer therapies	
Alectinib only	77 (58)
Crizotinib and alectinib	56 (42)
Chemotherapy for metastatic disease	41 (31)
2 prior therapies	53 (40)
3 prior therapies	24 (18)
Duration of prior alectinib, median (range), mo	15 (1–65)
Best response to prior alectinib as CR/PR	96 (72)

Efficacy of Brigatinib After Alectinib

Post-Alectinib Targeted Therapy Options

Post-Alectinib Therapy Options

Ou et al, WCLC Abstract MA13.03, 2022 Shaw et al, *J Clin Oncol*, 2019

Entrectinib in Patients with ROS1 Fusion-Positive NSCLC: Updated Efficacy and Safety Analysis

Yun Fan,¹ Alexander Drilon,² Chao-Hua Chiu,^{3*} Daniel W. Bowles,⁴ Herbert H.F. Loong,⁵ Salvatore Siena,^{6,7} Koichi Goto,⁸ Maciej Krzakowski,⁹ Myung-Ju Ahn,¹⁰ Haruyasu Murakami,¹¹ Rafal Dziadziuszko,¹² Harald Zeuner,¹³ Bethany Pitcher,¹⁴ Diarra Cheick,¹⁵ Matthew G. Krebs¹⁶

 Zhejiang Cancer Hospital, Hangzhou, China; 2. Memorial Sloan Kettering Cancer Center, and Weill Cornell Medical College, New York, NY, USA; 3. Taipei Veterans General Hospital, Taipei, Taiwan; 4. University of Colorado, Aurora, CO, USA; 5. The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong; 6. Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; 7. Università degli Studi di Milano, Milan, Italy; 8. National Cancer Center Hospital East, Kashiwa, Japan;
 Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; 10. Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; 11. Shizuoka Cancer Center, Shizuoka, Japan; 12. Medical University of Gdansk, Gdansk, Poland; 13. F. Hoffmann-La Roche Ltd, Basel, Switzerland;
 F. Hoffmann-La Roche Ltd, Mississauga, Canada; 15. Genentech, Inc., South San Francisco, CA, USA; 16. The University of Manchester and The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom *Currently at Taipei Cancer Center and Taipei Medical University Hospital, Taipei, Taiwan

Updated Integrated Analysis (STARTRK-1, STARTRK2, ALKA-372-001)

ALKA-372-001 Phase I, doseescalation study NTRK / ROS1 fusion-positive tumors STARTRK-1 Phase I, doseescalation study NTRK / ROS1 fusion-positive tumors

	Overall efficacy population N=172	First-line population* n=67
Median age, years (range)	54.5 (20–86)	55.0 (33–86)
Female, n (%)	113 (65.7)	41 (61.2)
ECOG PS, n (%) 0 / 1 / 2	66 (38.4) / 90 (52.3) / 16 (9.3)	25 (37.3) / 37 (55.2) / 5 (7.5)
Smoking status, n (%) Never smoker / Previous or current smoker	111 (64.5) / 61 (35.5)	42 (62.7) / 25 (37.3)
Prior lines of systemic therapy in metastatic setting, n (%) 0 / 1 / ≥2	67 (39.0) / 65 (37.8) / 40 (23.3)	NA
CNS metastases at baseline by investigator, n (%) Yes / No	60 (34.9) / 112 (65.1)	26 (38.8) / 41 (61.2)

All patients in the overall efficacy population were ROS1 TKI-naive

Efficacy of Entrectinib

	Overall efficacy population (N=172)	Baseline CNS metastases* (n=60)	No baseline CNS metastases* (n=112)	First-line population [†] (n=67)
ORR, n (%)	116 (67.4)	38 (63.3)	78 (69.6)	46 (68.7)
[95% Cl]	[59.9–74.4]	[49.9–75.4]	[60.2–78.0]	[56.2–79.4]

Fan et al, WCLC Abstract MA13.04, 2022

Efficacy of Entrectinib

ſ		100 -	_	+	4	~			os	in	11	- c	oh	or	t							
		80- 70-						-		+	_	-	-		÷.,	-						
	S (%)	60 - 50 -																<u>*</u> L_+				
	0	40- 30-																				
			- Tot Cer	al (n nsore	=67) ed																_	
		0		6		12		18		24 Tim	ne (n	30	he)	36		42		48		54		
	No. patie	ents at 67	65 65	63	54	50	45	43	42	40	39	36	34	28	25	19	13	7	5	2	1	N

	Overall efficacy population (N=172)	Baseline CNS metastases* (n=60)	No baseline CNS metastases* (n=112)	First-line population [†] (n=67)
Median PFS, months [95% CI]	16.8 [12.2–22.4]	11.8 [7.2–15.7]	25.2 [15.7–36.6]	17.7 [11.8–39.4]
Median OS, months [95% Cl]	44.1 [40.1–NE]	28.3 [17.0–44.6]	NE [41.8–NE]	47.7 [43.2-NE]

Intracranial Efficacy of Entrectinib

Intracranial efficacy	Overall efficacy population (n=51)*	First-line cohort (n=23)*†
IC-ORR, n (%) [95% CI]	25 (49.0) [34.8–63.4]	14 (60.9) [38.5–80.3]
CR	8 (15.7)	3 (13.0)
PR	17 (33.3)	11 (47.8)
SD	0	0
PD	10 (19.6)	2 (8.7)
Non-CR / PD	12 (23.5)	6 (26.1)
Missing / non evaluable	4 (7.8)	1 (4.3)
Median IC-DoR, months [95% Cl]	12.9 [7.6–22.5]	12.9 [7.6–22.2]
No. remaining at risk (% event free): 6 / 12 mos	19 (79) / 14 (58)	12 (86) / 9 (64)
Median IC-PFS, months [95% Cl]	12.0 [6.7–15.6]	15.6 [7.7–21.1]
No. remaining at risk (% event free): 6 / 12 mos	33 (70) / 23 (48)	18 (78) / 13 (57)

Data cut-off: 02 Aug 2021. *In patients with BICR-assessed CNS metastases at baseline; [†]Exploratory analysis. BICR, blinded independent central review; IC, intracranial

TP53 Mutations Affect Sensitivity to Lorlatinib in *ROS1* Positive NSCLC: Final Results of the PFROST Trial

L. Landi *et al* National Cancer Institute Regina Elena Rome, Italy

PFROST Trial Schema

Patient Demographics

	N	%
	22	100
Age, median (range)	56 (3	9-82)
Male/Female	8/14	36.3/63.6
ECOG PS 0/1/2	8/14/0	36.3/63.6/0
Never Smoker/Past Smoker/Current smoker	13/7/2	59.1/31.8/9.1
Previous therapy lines, 1/2/>2	4/16/2	18.2/72.7/9.1
Number of disease sites, 1/2/>2	1/5/16	4.5/22.8/72.7
Brain mets at baseline	15	68.1
Availability of plasma at baseline	21	90.9
TP53 mutations	11	52.3

Overall Efficacy of Lorlatinib (Entire Cohort)

Best Percent Change in Target Lesions

- Entire cohort (n = 22) PFS 8.9 months (95% CI 2.2-15.8) OS 30.4 months (95% CI 10.6-50.2)
- Baseline brain metastases (n = 15) PFS 8,5 months (95% CI 4.3-12.7) OS 30.4 months (95% CI 0-62.4)

Efficacy of Lorlatinib With TP53 Mutations

PFS and OS according to TP53 status

ORR – 27.3% (ROS1+/TP53+) vs 50% (ROS1+/TP53-)

TP53 Mutations in Driver-Mutated Lung Cancer

- Negative effect of concurrent *TP53* mutations has been suggested in earlier studies of *EGFR/ALK/ROS1* (see figure)
- PFROST results suggest ongoing negative effect of *TP53* mutations even with more effective, CNS-penetrant, next-generation therapies
- Highlights the value of NGS testing

High Incidence of Peridiagnosis Thromboembolic Events in Patients with BRAF-mutant Lung Cancer

I. Aparicio Salcedo *et al* Hospital General Universitario Gregorio Maranon Madrid, Spain

Retrospective Multi-Center Study

Variable	n (%)
Sex: Male	107 (58.8%)
Female	75 (41.2%)
Mean Age at diagnosis (range)	59.7 (57.8-71.6)
Smoking status: Former/Current	153 (83.9%)
Never	29 (15.9%)
ECOG: 0-1	151 (83%)
≥2	31 (16.9%)
Histology: Adenocarcinoma	159 (87.4%)
Squamous	7 (3.8%)
NOS	16 (8.8%)
Stage IV: De novo	134 (73%)
Relapsed	48 (26.4%)
BRAF mutation: V600E	70 (38.5%)
non-V600E	112 (61.5%)
PDL1: <1%	51 (33.1%)
1-49%	48 (31.2%)
≥50%	55 (35.7%)
NOS	28 (15.3%)

CVC: No	169 (92.9%)
Yes	13 (7%)
Khorana Risk Score: 1-2	143 (78.1%)
3-4	34 (17.5%)
NE	6 (3.3%)
Previous thrombosis No	161 (89.4%)
history: Yes (arterial)	13 (7.2%)
Yes (venous)	6 (3.3%)
Regular treatment with anticoagulants or antiplatelet agents:	42 (23%)
CVRF (HBP, DL , DM)	109 (60%)

NOS: not otherwise specified, CVC: central venous catheter; CVRF: cardiovascular risk factors (high blood pressure, dyslipidemia, diabetes).

Incidence of Thromboembolic Events

CVA: cerebrovascular accident; MIS: mesenteric ischemia; PAD: peripheral arterial disease; MI:myocardial infarction; Other (arterial): aorta artery (2), carotid artery; PE: pulmonary embolism; DVT: deep venous thrombosis; CVCT: thrombosis associated with CVC; VVT: visceral venous thrombosis; Other (venous): superficial venous thrombosis, superior vena cava, jugular vein, subclavian vein.

Associated Clinical Outcomes

TEE = thromboembolic event

- Median time to onset of TEE: 1.5 months
- Incidence not associated with history of thrombosis, type of BRAF mutation (V600E/non-V600E), type of therapy), or Khorana risk score
- Worse outcomes associated with TEE: mOS 10.5 vs 19.4 months (TEE vs non-TEE; p 0.4) mOS 9.8 vs 41 months (arterial vs venous TEE; p 0.01)

Comparison to Other Drivers in Lung Cancer?

- ALK and ROS1 mutations have been associated with an increased risk of VTE (e.g., incidence rates 17% and 30%, respectively, versus ~7% for EGFR or wild-type).
- How BRAF mutations compare to these other drivers warrants further investigation.

Conclusions

- Sequencing next-generation targeted therapies, such as brigatinib after progression on alectinib, is feasible and effective in *ALK*-rearranged NSCLC.
- Entrectinib and lorlatinib are effective therapies in ROS1-rearranged NSCLC, but concurrent TP53 mutations may still portend a worse prognosis.
- Attention to thromboembolic events may be warranted in BRAF-positive NSCLC.