Advanced Pancreatic and Biliary Track Cancers

Jaffer A. Ajani Oct 04, 2022 Acknowledging Dr. Javle for some slides

An Update

Jaffer Ajani Disclosures

Paid consultant (Ad hoc)

BMS Merck Astellas Taiho More Zymeworks Beigene Dava Astrazeneka Acrotech Daiichi Vaccinogen Innovent Merck Serrono Oncotherics Bayer OncLive FivePrime Amgen GRAIL Novartis Geneos Arcus Servier BI Gilead

Research Grants to UTMDACC

BMS Merck Astellas Taiho Delta Fly Roche Prolinx Zymewors Daiichi Leap Gilead LaNova Turning point

Biliary Tract Cancers

- Several areas of major interest
 - **IDH** mutations
- FGFR fusions and alterations
 - Immune modulations
 - Her2 over expression
 - **BRAF** mutations

NCI Bile Duct Cancer PDQ 2017

Cholangiocarcinoma Worldwide

Supriya K. Saha et al. The Oncologist 2016;21:594-599

Age-adjusted incidence of intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma, 1973–2012..

ICC ECC

 1973

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 1975

 <t

Incidence of mutations in targetable pathways in biliary cancers

CGP findings

Total GA/patient

CRGA/patient

ERBB2 amplifications

BRAF substitutions

KRAS substitutions

PI3KCA substitutions

FGFR1–3 fusions and amplifications

CDKN2A/B loss

IDH1/2 substitutions

ARID1A alterations

MET amplifications

ICCA
3.6
2.0
4%
5%
22%
5%
11%
27%
20%
18%
2%

ABC-02 – ADVANCED BILIARY CANCER

Phase 3 ABC-02 trial: survival data (ITT)

Valle J, et al. *N Engl J Med* 2010;362:1273–1281

-	
Cis	platin

Treatment arm	Gem	Gem+(
Number of patients	n=206	n=20
Deaths, n (%)	141 (68.5)	122 (59
Median survival, months	8.3	11.7
Log-rank p-value	0.0	02
HR (95% CI)	0.70 (0.54–0.89)	

TOPAZ-1 study design: durvalumab + chemotherapy in 1L BTC

Patient population

- Locally advanced, or metastatic BTC, or recurrence >6 months from curative surgery or last dose of adjuvant therapy
- Bili ≤2.0 × ULN,
- ECOG PS 0 and 1,
- Must have at least one measurable lesion by RECIST 1.1 at baseline
- Ampullary cancer excluded

NIH 2021. NCT03875235. https://clinicaltrials.gov/ct2/show/NCT03875235. Accessed November 30, 2021; Data on file. AstraZeneca. 2021

Stratification factors

• Disease status (initially unresectable vs recurrent) • Primary tumor location (ICC, ECC, GBC)

PRIMARY ENDPOINT

OS

SECONDARY ENDPOINTS

PFS, ORR, DOR, PROs, Safety, Biomarkers (PD-L1), PK/ADA

MTP at IA2

Statistical testing of PFS only if OS is statistically significant

OS: A vs B PFS: A vs B

Proprietary and Confidential © AstraZeneca 2021. For Advisory Board use only. This information is not to be shared, distributed or discussed outside of the Advisory Board

¹L, first line; ADA, anti-drug antibody; Bili, bilirubin; BTC, biliary tract carcinoma; DOR, duration of response; Durva, durvalumab; ECC, extrahepatic cholangiocarcinoma; BCC, extrahepatic cholangiocarcinoma; MTP, multiple testing procedure; ORR, overall response rate; OS, overall survival; PD, progressive disease; PD-L1, progression-free survival; PK, pharmacokinetics; PRO, patient-reported outcome; Q3W, every 3 weeks, Q4W, every 4 weeks; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors; ULN, upper limit of normal

Durv

Median age (range), y

Female, %

ECOG PS 0, %

Median follow-up, mo

Median OS (95% CI), mo

18-month OS (95% CI), %

24-month OS (95% CI), %

Median PFS (95% CI), mo

Grade 3/4 AEs, n (%)*

TRAEs leading to death, n (%)*

*Safety data percentages are calculated from the safety population (n=338 for durvalumab + GemCis and n=342 for placebo + GemCis).

© 2022 by American Society of Clinical Oncology

alumab + GemCis	Placebo + GemCis
(N=341)	(N=344)
64 (20–84)	64 (31–85)
50.4	48.8
50.7	47.4
13.7	12.6
12.8 (11.1–14.0)	11.5 (10.1–12.5)
35.1 (29.1–41.2)	25.6 (19.9–31.7)
24.9 (17.9–32.5)	10.4 (4.7–18.8)
7.2 (6.7–7.4)	5.7 (5.6–6.7)
256 (75.7)	266 (77.8)
2 (0.6)	1 (0.3)

KEYNOTE-966: pembrolizumab plus GemCis versus GemCis alone in first-line advanced and/or unresectable BTC

BICR, blinded independent central review; BTC, biliary tract carcinoma; CNS, central nervous system; DOR, duration of response; GemCis, gemcitabine-cisplatin; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; Q3W, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors

NIH 2021. NCT04003636. https://clinicaltrials.gov/ct2/show/NCT04003636. Accessed November 17, 2021

Proprietary and Confidential © AstraZeneca 2021. For Advisory Board use only. This information is not to be shared, distributed or discussed outside of the Advisory Board.

Primary objective:

• OS

Secondary objectives:

- ORR (RECIST v1.1; BICR)
- DOR (RECIST v1.1; BICR)
- PFS (RECIST v1.1; BICR)

Safety outcomes:

- Number of patients experiencing more than one adverse event
- Discontinuations due to adverse events

Active, not recruiting

August 31, 2023

ClarIDHy: Study design and endpoints

for

Prescreening

mutation

IDH1

Key eligibility criteria

- \geq 18 years of age
- Histologically confirmed diagnosis of CCA
- Centrally confirmed m*IDH1*^a status by NGS
- ECOG PS score 0 or 1 •
- 1-2 prior therapies (at least 1 gemcitabine- or 5-FUcontaining regimen)
- Measurable lesion as defined by RECIST v1.1
- Adequate hematologic, hepatic, and renal function

^bAssessed using EQ-5D-5L, EORTC QLQ-C30, EORTC QLQ-BIL21, and PGI questions

Criteria in Solid Tumors

Abou-Alfa GK et al. Lancet Oncol. 2020;21:796-807.

ECOG PS = Eastern Cooperative Oncology Group Performance Status; EORTC = European Organisation for Research and Treatment of Cancer; EQ-5D-5L = 5-level EuroQoL-5 Dimension questionnaire; FU = fluorouracil; NGS = next-generation sequencing; PGI = Patient Global Impression; QD = once daily; QLQ-BIL21 = Cholangiocarcinoma and Gallbladder Cancer module; QLQ-C30 = Quality of Life Questionnaire Core 30; RECIST = Response Evaluation

Phase 3 ClarIDHy trial: IDH1 inhibitor ivosidenib vs placebo in second-line setting: PFS by IRC

Abou-Alfa GK, et al. Presented at: ESMO Congress 2019; 27 September–01 October 2019; Barcelona, Spain. Abs LBA10 NE, not estimated

	Ivosidenib	Placebo
PFS		
Median, months	2.7	1.4
6-month rate	32%	NE
12-month rate	22%	NE
DCR (PR+SD)	53% (2% PR, 51% SD)	28% (0% PR, 28% S

Phase 3 ClarIDHy trial: IDH1 inhibitor ivosidenib versus placebo in second-line setting: OS by ITT

		Ivosidenib	Placebo
 Placebo 	mOS, months	10.8	9.7
	6-month rate	67%	59%
	12-month rate	48%	38%
┺╼╼╼┓		RPSFT me reconstruct	thod used to the survival

curve for the placebo-treated patients as if they had never crossed over to ivosidenib; with this method, the mOS with placebo adjusts to 6 months

^aStudy cohorts (planned enrollment):

Cohort 1 (n=120): patients with *FGFR2* gene fusions/rearrangements Cohort 2 (n=20): patients with FGFR1&3 gene fusions/rearrangements and/or FGFR mutations (prior selective FGFR inhibitors are not permitted in Cohorts 1&2) **Cohort 3 (n=20):** patients with *FGFR2* gene fusions who have received prior treatment with a selective FGFR inhibitor other than infigratinib

Endpoints

Primary endpoint:

- Objective response rate (ORR)^b
- Duration of response (DoR)

Secondary endpoints:

- Progression-free survival (PFS)
- Disease control rate (DCR)
- Best overall response (BOR)
- Overall survival (OS)
- Safety
- Pharmacokinetics (PK)

Clinical activity of infigratinib by prior lines of therapy

Objective response rate (confirmed), % (95% CI)

Complete response, n (%)

Partial response, n (%)

Stable disease, n (%)

Progressive disease, n (%)

Unknown, n (%)

Best overall response (confirmed/unconfirmed), % (95% CI)

Disease control rate, % (95% CI)

Median progression-free survival, months (95% CI)

Patients with ≤1 line of prior therapy (n=50)	Patients with ≥2 lines of pri therapy (n=58)
34.0 (21.2–48.8)	13.8 (6.1–25.4)
0	1 (1.7)
17 (34.0)	7 (12.1)
27 (54.0)	39 (67.2)
4 (8.0)	7 (12.1)
2 (4.0)	4 (6.9)
42.0 (28.2–56.8)	27.6 (16.7–40.9)
88.0 (75.7–95.5)	81.0 (68.6–90.1)
7.3 (5.6–9.3)	7.4 (5.6–7.7)

Phase 2 FIGHT-202 trial: pemigatinib in locally advanced or metastatic CCA

Variable	Cohort A (n=107) FGFR2 fusions/rearrangements	Cohort B (n=20) Other <i>FGF/FGFR</i> genetic alterations	Cohort C (n=18) No FGF/FGFR genetic alterations
ORR, % (95% CI)	35.5 (26.50–45.35)	0	0
Best OR, ^a n (%)			
CR	3 (2.8)	0	0
PR	35 (32.7)	0	0
SD	50 (46.7)	8 (40.0)	4 (22.2)
PD	16 (15.0)	7 (35.0)	11 (61.1)
Not evaluable ^a	3 (2.8)	5 (25.0)	3 (16.7)
Median DoR, months (95% CI)	7.5 (5.7–14.5)		
DCR (CR + PR + SD), % (95% CI)	82 (74–89)	40 (19–64)	22 (6–48)

*Patient nad a decrease in target lesion size but was not evaluable for response per RECISI V1.1 Vogel A, et al. ESMO Congress 2019; 27 September–01 October 2019; Barcelona, Spain. Abs LBA40

FGFR Inhibitors FGFR2 Fusion–Positive Cholangiocarcinoma¹⁻⁹

	Infigratinib (N = 108)	Pemigatinib(N = 107; Cohort A)	Futibatinib; TAS 120 (N = 103) ^a	Deranzantinib (N = 103)
Patient demographics				
Prior treatment lines, % 1 2+	34 14 30	51 32 17	47 31 24	52 30 17
Stage IV at enrollment, %	96	66	Not reported	Not reported
Outcomes				
ORR, %	23.1 2L: 34% 3L+: 16%	35.5	42	21
DCR, %	84.3	82	78.6	76
mPFS, mo	7.3	6.9	9	8
mOS, mo	12.5	21.1	21.7	16

Futibatinib: Selective Covalent FGFR1–4 Inhibitor

- In contrast to other FGFR inhibitors, futibatinib demonstrates:
- Covalent irreversible binding to a conserved cysteine in the FGFR kinase domain P-loop¹³
- Robust inhibition of FGFR2 kinase domain mutants resistant to reversible ATP-competitive inhibitors^{13–15}

Inhibitory activity against FGFR2 kinase domain mutations¹⁵

	Fold difference in IC ₅₀ vs WT FGFR2			
tants	Futibatinib	Erdafitinib	Pemigatinik	
	1	1	1	
19D	2	10	102	
I9K	8	13	164	
54	4	1	42	
54L	44	23	335	
55A	3	1	8	

Values in cells with yellow and red shading represent 5–15-fold and >15-fold attenuation with respect to wild-type inhibition, respectively.

Activity of Futibatinib in Patients with Prior FGFRi

BRAF V600E mutated cholangiocarcinoma

Efficacy of Dabrafenib + Trametinib

Trastuzumab plus pertuzumab for HER2/neu-amplified BTC

Javle M, et al. Lancet Oncol 2021 Sep;22(9):1290-1300.

Proprietary and Confidential © AstraZeneca 2021. For Advisory Board use only. This information is not to be shared, distributed or discussed outside of the Advisory Board.

09:06 - 09:07	61P - Clinical and molecular cholangiocarcinoma
	<u>F. Castet^{1,} Q</u> . Serra Camprubí ^{2,} Tian ^{2,} T. Macarulla Mercade ^{1, 1} d'Hebron Institute of Oncology (
09:07 - 09:08	62P - Proteomic and single-co of HBV-infected intrahepatic
	<u>X. Shuaishuai</u> , W. Wu, R. Chen, C Hospital, Zhejiang University Sc
09:08 - 09:09	63P - Intrahepatic cholangioc low tumor mutational burden
	<u>TY. Tang</u> ^{1,} J. Ross ^{2,} J. Rodon ^{1,} N Center, Houston, US, ² Foundatio
09:09 - 09:10	64P - Phase I/II study of nivol cancer (JCOG1808/NCCH181'
	<u>M. Ueno^{1,} C. Morizane^{2,} M. Iked</u> Mizusawa ^{2,} A. Ohba ^{2,} S. Kobaya

[•] characterisation of IDH1/2 mutant

[,] C. Fabregat-Franco^{1,} H. Verdaguer^{1,} G. Castillo^{1,} T. ¹Vall d'Hebron University Hospital, Barcelona, ES, ²Vall (VHIO)-Cellex Center, Barcelona, ES

cell landscape reveals novel pathogenic mechanisms c cholangiocarcinoma

C. Ye, Q. Li, J. Chen, Q. Jiang, J. Ruan, The First Affiliated chool of Medicine, Hangzhou, CN

ocarcinoma (iCCA) genomic findings with high versu ns

M. Javle¹, ¹The University of Texas MD Anderson Cancer ion Medicine, Inc, Cambridge, US

olumab plus lenvatinib for advanced biliary tract 17, SNIPE)

eda^{3,} M. Ozaka^{4,} F. Nagashima^{5,} T. Kataoka^{2,} J. ashi^{1,} H. Imaoka^{3,} A. Kasuga^{4,} N. Okano^{5,} Y. Nagasaka^{2,}

09:03 - 09:04

58P - Spectrum of germline pathogenic mutations in 1087 Chinese patients with biliary tract cancer

Simcere Diagnostics Co., Ltd, Nanjing, CN

09:04 - 09:05

patients with FGFR2 fusions, mutations or amplifications

<u>M. Borad¹</u>, M. Javle², W.L. Shaib³, K. Mody⁴, F. Bergamo⁵, W. Harris⁶, N. Damjanov⁷, T. Macarulla Mercade⁸, G. Brandi⁹, G. Masi¹⁰, M. Droz Dit Busset¹¹, A. Boncompagni¹², M.

J. Shen¹, R. Kong², D. Guo², S. Chen², T. Han², M. Wang², G. Lu², W. Deng², R. Ding³, F. Bu³, ¹Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, Shanghai, CN, ²Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, CN, ³Jiangsu

59P - Efficacy of derazantinib in intrahepatic cholangiocarcinoma (iCCA)

57P - Immune-mediated adverse event (imAE) incidence, timing and association with efficacy in the phase III TOPAZ-1 study of durvalumab (D) or placebo (PBO) plus gemcitabine and cisplatin (+ GC) in advanced biliary tract cancer (BTC)

<u>L. Antonuzzo¹</u>, H. Takahashi², J.O. Park³, A. Sookprasert⁴, R. Gillmore⁵, S.-S. Yang⁶, J.

13:00 - 14:30	Type: Industry Satellite Symposium Title: Incyte Biosciences International alterations in cholangiocarcinoma and frontier in personalised medicine
	Chair(s): David Malka, FR; Juan Valle, GB
13:00 - 13:05	Welcome and introduction <u>J. Valle</u> , The Christie NHS Foundation True
13:05 - 13:18	Cholangiocarcinoma: The little-known F.G.M. De Braud, Fondazione IRCCS - Istit
13:18 - 13:31	The challenges associated with diagno targeted therapies
	J. Valle, The Christie NHS Foundation True
13:31 - 13:44	Optimising molecular profiling and th cholangiocarcinoma
	<u>A. Lamarca</u> , Hospital Universitario Funda
13:44 - 13:58	Clinical practice guidelines for biliary of patients with locally advanced or m D. Malka, Institut Gustave Roussy, Villeiui
	<u>2, 1 1 ama</u> , 110 and 0 abba to 110 abby, 1 moja
13:58 - 14:11	Targeting FGFR alterations in cholang <u>A. Hollebecque</u> , Institut Gustave Roussy, V
14:11 - 14:29	Panel discussion
	<u>J. Valle^{1,} D. Malka^{2,} F.G.M. De Braud^{3,} A.</u> Foundation Trust, Manchester, GB, ² Instit ³ Fondazione IRCCS - Istituto Nazionale de Fundacion Jimenez Diaz, Madrid, ES
14:29 - 14:30	Closing remarks
	<u>D. Malka,</u> Institut Gustave Roussy, Villejui

posium ernational Sàrl - Targeting FGFR inoma and other solid tumours: A new icine

7.2.F -Fécamp Auditorium

dation Trust, Manchester, GB

ttle-known, rare cancer of the biliary tract

RCCS - Istituto Nazionale dei Tumori, Milan, IT

ith diagnosing intrahepatic cholangiocarcinoma for

dation Trust, Manchester, GB

ing and the multidisciplinary team approach in

ario Fundacion Jimenez Diaz, Madrid, ES

for biliary tract cancer: Updates for the management nced or metastatic intrahepatic cholangiocarcinoma

ssy, Villejuif, Cedex, FR

in cholangiocarcinoma and other solid tumours

ve Roussy, Villejuif, Cedex, FR

<u>Braud^{3,} A. Lamarca^{4,} A. Hollebecque², ¹The Christie NHS</u> GB, ²Institut Gustave Roussy, Villejuif, Cedex, FR, azionale dei Tumori, Milan, IT, 4Hospital Universitario id, ES

ssy, Villejuif, Cedex, FR

Pancreatic Cancer

Several areas of major interest

Many other targets but not yet successful

Cytotoxic Combos

gBRACA 1/2

Pancreatic Cancer: Scope of the Problem

- in 2021, 48,220 died of the disease
- Stage for stage, pancreatic cancer is associated with the lowest survival rates of any major cancer type^[2]
- (after lung cancer)^[3]
- diagnosis^[1]
- 1. American Cancer Society. Cancer facts & figures 2021.
- 2. Siegel RL, et al. CA Cancer J Clin. 2016;66:7-30.
- 3. Rahib L, et al. Cancer Res. 2014;74:2913-2921.

• About 60,430 people diagnosed with pancreatic cancer in US

• By 2030, pancreatic cancer is expected to rise to the second leading cause of cancer-related mortality in the United States

The vast majority of pts (> 80%) are inoperable at time of

TIMELINE FOR DRUG APPROVALS IN PDAC

Pre-1996 1996	The dark ages. Not Gemcitabine impro Gemcitabine is app
1996-2005	Many agents tested Gemcitabine
2005	Erlotinib + Gemcita with Gemcitabine. Erlotinib is approve
2005-2009	More drugs tested.
2010	FOLFIRINOX impre
2012	<i>nab</i> -Paclitaxel + Ge Gemcitabine
2016	Nal-IRI + 5FU/ LVF
2017	Pembrolizumab ap pancreatic cancer
2019	Olaparib approve

othing works oves survival compared with 5-FU. proved for PC

d. No drug or drug combination is better than

abine modestly improves survival compared

ed for PC

Many more negative trials

roves survival compared with Gemcitabine

emcitabine improves survival compared with

approved for 2nd line therapy for PC

proved for MSI-H cancers including

d for gBRCA PDAC

FOLFIRINOX vs. Gemcitabine Advanced Pancreatic Cancer PS 0-1

N Engl J Med 2011; 364:1817-1825

Overall Survival

Overall Survival

Multi-agent chemotherapy is feasible in community setting with PS 0-2 •

		OS, months		
	Evonts/n (%)	Modian (95% CI)	75th	
		Median (95% CI)	Percentile	
Gem	333/431 (77)	8.5 (7.89-9.53)	14.8	
	359/430 (83)	6.7 (6.01-7.23)	11.4	

Von Hoff et al. ASCO 2013. 33

NAPOLI-1: Nanoliposomal Irinotecan ± 5-FU/LV vs 5-FU/LV—OS

Nal-IRI + 5-FU/LV

Wang-Gillam A, et al. Lancet. 2016;387:545-557.

Nal-IRI

Inherited Pancreatic Cancer Syndromes

20

Inherited (5-10%)
 Sporadic (70-80%)

Familial (15-20%)

Genetic Syndrome	Gene
Hereditary breast and ovarian cancer	BRCA1, BRCA2
Peutz Jegher	STK11/LKB1
Hereditary pancreatitis	PRSS1, SPINK1
HNPCC	MMR genes
FAMMM	CDKN2
Familial pancreatic cancer	?

DNA repair defects common in hereditary pancreatic cancers

Pancreatic cancer risk	Histology
3.5-10	Ductal adenocarcinoma
132	IPMN
53	Ductal adenocarcinoma
?	Medullary carcinoma
13-22	Ductal adenocarcinoma
9-32	

Overall prevalence of gBRCA1/2: 6.2% (196/3175)

DNA Repair as Target

Ashworth, A. J Clin Oncol; 26:3785-3790 2008

Olaparib maintenance reduced the risk of disease progression or death by 47% in patients with gBRCAm mPDAC who have disease control following PBC

Median PFS (BICR) was improved by 3.6 months with olaparib treatment vs. placebo

Note: PFS by BICR assessmen

Data cut-off: 15 January 2019

Progression-free survival (PFS) measures the time from randomisation to objective disease progression or death

BICR=blinded independent central review; bid=twice daily; CI=confidence interval; HR=hazard ratio; mPDAC=metastatic pancreatic ductal adenocarcinoma; PBC=platinum-based chemotherapy; PFS=progression-free survival 1. Golan T et al. N Engl J Med 2019;381:317–327.

	Olaparib (n=92)	Placebo (n=62)
Events, n (%)	60 (65.2)	44 (71.0)
Median PFS, months (BICR)	7.4	3.8
Median difference, months	+3.6	
	HR=0.53 95% CI (0.35-0.82) p=0.004	

Median PFS by BICR was almost doubled with olaparib maintenance, with a 95% improvement over

placebo

Nearly twice as many patients treated with olaparib were alive vs. those on placebo after 3 years (33.9% vs. 17.8%)

Although final OS did not demonstrate a statistically significant difference between treatment arms, the HR numerically favoured olaparib compared with placebo (HR 0.831; p=0.3487)

Data cut-off: 21 July 2020 ^aCensored patients

Overall survival is defined as the time from the date of randomisation until death due to any cause

bid=twice daily; CI=confidence interval; PARP=poly(ADP-ribose) polymerase; OS=overall survival.

Golan T, et al. Oral presentation presented at: ASCO Gastrointestinal Cancers Symposium 2021. Virtual Meeting. 15–17 January, 2021. Abstract 378

_		Olaparib (n=92)	Placebo (n=62)	
E	Events, n (%)	61 (66.3)	47 (75.8)	
[r	Median OS, months	19.0	19.2	
r L	Median survival follow- up, months (range) ^a	31.3 (0.3 –63.5)	23.9 (3.9 –50.6)	
	lazard ratio (95% CI)	0.83 (0.56, 1.2	1.22); p=0.3487	

46 48 50 52 54 56 58 60 62 64

6 5 4 3 3 3 2 1 1 0 4 4 1 0

1298P - Extended overall survival results from the POLO study of active 9:12maintenance olaparib in patients with metastatic pancreatic cancer and a germline BRCA mutation <u>P. Hammel¹, T. Golan², M. Reni³, E. Van Cutsem⁴, T. Macarulla Mercade⁵, M. Hall⁶, J.O.</u>

Park⁷, D. Hochhauser⁸, D. Arnold⁹, D.-Y. Oh¹⁰, A. Reinacher-Schick¹¹, G. Tortora¹², H.

