Update on T-cell Lymphomas

Yuliya Petrova Lumer Linhares, MD

Miami Cancer Institute, Baptist Health Chief of Lymphoma Services

T cell lymphomas- Heterogenous and Challenging to Diagnose

WHO classification	Proposed cell of origin
T-cell prolymphocytic leukemia	Unknown T cell with mature phenotype, possible intermediary between cortical thymocyte and mature T cell
T-cell large granular lymphocytic leukemia	CD8+ αβ T cell (rarely γδ T cell)
Chronic lymphoproliferative disorder of NK cells	Mature NK cell
Aggressive NK-cell leukemia	Activated NK cell
Systemic EBV-positive T-cell lymphoma of childhood	Cytotoxic CD8+ T cell or activated CD4+ T cell
Chronic active EBV infection of T- and NK- cell type, systemic form	CD4+ T cell, cytotoxic CD8+ T cell, NK cell (rarely γδ T cell)
Hydroa vacciniforme–like lymphoproliferative disorder	Skin-homing cytotoxic T/NK cell
Severe mosquito bite allergy	Activated NK cell
Adult T-cell leukemia/lymphoma	CD4+ T cell
Extranodal NK-/T-cell lymphoma, nasal type	Activated NK cell, less commonly cytotoxic T cell
Enteropathy-associated T-cell lymphoma	Intestinal intraepithelial T cell
Monomorphic epitheliotropic intestinal T-cell lymphoma	Intestinal intraepithelial T cell
Intestinal T-cell lymphoma, NOS	Heterogeneous, usually cytotoxic T cell
Indolent T-cell lymphoproliferative disorder of the gastrointestinal tract	Mature peripheral T cell
Hepatosplenic T-cell lymphoma	$\gamma\delta$ T cell, less commonly cytotoxic $\alpha\beta$ T cell
Subcutaneous panniculitis-like T-cell lymphoma	Mature cytotoxic $\alpha\beta$ T cell
Mycosis fungoides	Mature skin-homing CD4+ T cell
Sézary syndrome	Circulating memory T cell
Lymphomatoid papulosis	Activated skin-homing T cell
Primary cutaneous anaplastic large cell lymphoma	Activated skin-homing T cell
Primary cutaneous γδ T-cell lymphoma	Activated mature γδ T cell
Primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma	Skin-homing CD8+ T cell
Primary cutaneous acral CD8+ T-cell lymphoma	Skin-homing CD8+ T cell
Primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder	Skin-homing CD4+ T cell with TFH phenotype
PTCL, NOS	Activated, mature T cell
Angioimmunoblastic T-cell lymphoma	CD4+ TFH cell
Follicular T-cell lymphoma	CD4+ TFH cell
Nodal PTCL with TFH phenotype	CD4+ TFH cell
Anaplastic large cell lymphoma, ALK positive	Activated mature cytotoxic T cell
Anaplastic large cell lymphoma, ALK negative	Activated mature cytotoxic T cell
Breast implant-associated anaplastic large	Activated mature cytotoxic T cell

cell lymphoma

- 28 subtypes
- Derived post-thymic T lymphocytes
- International T-cell Lymphoma Project: diagnosis consensus in 74-81% Alk – sALCL, PTCL-NOS, AITL
- 10% initially misdiagnosed or unclassifiable
- rash changed Dx in 6% of all cases
- HTLV(+) -> 39% of PTCL-NOS reclassified to ATLL
- TCR rearrangements: false (+) in infection, autoimmune
- TCR rearrangements: false (-) low tumor burden, sampling

PTCLs of Different Histologies Differ Immunophenotypically and Molecularly

CD 30 Expression in PTCL Subtypes

MCG, cell membrane, cytoplasm and Golgi body staining

IHC Score	PTCL-NOS	AITL	ATLL	ENKTL	ALK-ALCL	ALK+ ALCL	EATL
0: <5%	42%	37%	44%	54%	0	0	50%
1+: 5-24%	26%	47%	11%	7%	0	0	0
2+: 25-49%	9%	10%	33%	11%	0	5%	0
3+: 50-75%	10%	5%	11%	14%	0	2%	7%
4+: >75%	13%	0	0	14%	100%	93%	43%

Stuver Oncology 2022 Bossard Blood 2014 Karube Exp Rev Hematol 2021

CD30 positive PTCLsbrentuximab improves OS

ECHELON-2 Trial: BV-CHP vs CHOP, 5-year follow up

Primary Endpoint: PFS

N at risk (events)

CD30 >= 10%,ALCL 70%

A+CHP 226 (0) 179 (36) 150 (62) 138 (72) 123 (78) 104 (81) 85 (85) 67 (88) 44 (89) 31 (91) 21 (92) 10 (94) 4 (94) 2 (94) 0 (94) CHOP 226 (0) 159 (63) 128 (94) 116 (103) 101 (112) 94 (115) 79 (117) 70 (118) 55 (119) 39 (119) 24 (121) 6 (125) 0 (125) 0 (125) 0 (125)

N at risk	(events)
-----------	----------

A+CHP 162 (0)	136 (18)	117 (34)	107 (42)	95 (46)	81 (48)	67 (48)	55 (49)	33 (50)	23 (51)	15 (52)	7 (53)	2 (53)	0 (53)	0 (53)
CHOP 154 (0)	103 (48)	89 (62)	84 (66)	75 (69)	68 (72)	57 (73)	48 (74)	38 (74)	26 (74)	16 (75)	4 (77)	0 (77)	0 (77)	0 (77)

	ALL		ALCL		AITL		PTCL-NOS	
	BV-CHP	СНОР	BV-CHP	СНОР	BV- CHP	CHO P	BV- CHP	СНОР
5 yr PFS	51% HR 0.70 p=0.007	43%	61% HR 0.55 p=0.0009	48%	27%	48%	27%	26%
Median PFS	62 m	24m						
5 yr OS	70% HR 0.72 p=0.04	61%	76% HR 0.66 p=0.05	69%	68%	63%	46%	36%
Median OS	NR	NR						

 not powered to compare BV-CHP versus CHOP among non-ALCL histologic subtypes

Horwitz S, O'Connor OA, Pro B, et al. The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. *Ann Oncol*. 2022;33(3):288-298

ECHELON-2 Trial: 5-year follow up

PFS Subgroup Analysis

	Eve	nt/N			
ITT subgroups	A+CHP	CHOP			Hazard ratio (95% CI)
PFS per investigator	94/226	125/226	-∎-		0.70 (0.53-0.91)
IPI score					
0-1	14/52	27/48			0.42 (0.22-0.81)
2-3	59/141	79/145	⊢_ ∎		0.72 (0.51-1.01)
4-5	21/33	19/33	 - ∎		1.14 (0.61-2.15)
Age, years					
<65	51/157	74/156	⊢_∎_ _		0.64 (0.45-0.92)
≥65	43/69	51/70	┟╴╼╴┤		0.68 (0.45-1.04)
Sex					
Male	60/133	79/151	- ∎		0.84 (0.60-1.17)
Female	34/93	46/75			0.44 (0.28-0.69)
Baseline ECOG status					. ,
0	36/84	56/93			0.63 (0.41-0.96)
1	38/90	50/86			0.61 (0.40-0.93)
2	20/51	19/47			0.99 (0.52-1.88)
Disease stage					
1	3/12	2/9			- 2.15 (0.22-20.88)
11	12/30	18/37			0.93 (0.43-1.99)
III	26/57	36/67			0.63 (0.37-1.05)
IV	53/127	69/113			0.66 (0.46-0.95)
Disease indication					
ALK-positive sALCL	7/49	16/49			0.40 (0.17-0.98)
ALK-negative sALCL	46/113	61/105	⊢_∎		0.58 (0.40-0.86)
ATLL	2/4	2/3			0.69 (0.10-4.94)
AITL	19/30	12/24			1.41 (0.64-3.11)
EATL	1/1	2/2			Not estimable
PTCL-NOS	19/29	32/43		4	0.79 (0.43-1.43)
sALCL	53/162	77/154			0.55 (0.39-0.79)
Non-sALCL	41/64	48/72			0.96 (0.63-1.47)
		0 1	0.5 1	10	
		0.1	0.0 1	10	→

OS Subgroup Analysis

	Eve	ent/N			
ITT subgroups	A+CHP	CHOP			Hazard ratio (95% CI)
Overall survival	68/226	89/226		-	0.72 (0.53-0.99)
IPI score					
0-1	8/52	13/48			0.58 (0.24-1.39)
2-3	40/141	59/145			0.61 (0.41-0.91)
4-5	20/33	17/33			1.23 (0.64-2.34)
Age, years					
<65	37/157	44/156			0.79 (0.51-1.23)
≥65	31/69	45/70	-	-	0.62 (0.39-0.98)
Sex					
Male	41/133	59/151		-1	0.73 (0.49-1.08)
Female	27/93	30/75			0.68 (0.40-1.16)
Baseline ECOG status					
0	25/84	38/93		_	0.59 (0.35-0.99)
1	25/90	38/86			0.54 (0.33-0.90)
2	18/51	13/47			1.42 (0.69-2.93)
Disease stage					
1	2/12	2/9			1.34 (0.12-14.81)
П	7/30	14/37			0.66 (0.26-1.68)
III	18/57	22/67			0.70 (0.37-1.33)
IV	41/127	51/113		-1	0.73 (0.48-1.10)
Disease indication					. ,
ALK-positive sALCL	5/49	10/49			0.48 (0.16-1.40)
ALK-negative sALCL	34/113	39/105	_	-1	0.71 (0.44-1.12)
ATLL	2/4	3/3			0.70 (0.11-4.27)
AITL	12/30	8/24		•	1.01 (0.40-2.55)
EATL	1/1	2/2			Not estimable
PTCL-NOS	14/29	27/43			0.75 (0.37-1.48)
sALCL	39/162	49/154		-	0.66 (0.43-1.01)
Non-sALCL	29/64	40/72			0.76 (0.46-1.23)
		г	1	1	
		0.	1 0.5	1 10	`
			A+CHP better	CHOP better	,

The PFS and OS analyses for key prespecified subgroups were generally consistent with the overall study results

Does CD30 Expression Correlate with CR Rate in PTCL-NOS and AITL Patients Treated with BV-CHP?

Level of CD30 expression did not correlate with CR

- responses were observed across the range of CD30 expression
- BV-CHP median time to BV re-treatment: 15 m, ORR 59% CR 38%
- CHOP median time to BV re-treatment: 8 m, ORR 50% CR 30%

BV-CHP Take Home Points

- Trial population CD30 >= 10% or greater
- CD30 1% to 9%- BV-CHP benefit unproven
- CD30 expression level has not been shown to predict response
- NCT04569032: BV-CHP in treatment-naive PTCL with less than 10% CD30 expression
- Trial not powered to show BV-CHP superiority in subtypes other than sALCL
- Exploratory analysis of CR pts who underwent ASCT improved 3-year PFS rate (76.1% vs 53.3%; HR, 0.38; 95% CI, 0.18-0.82), but this population was small
- BV-CHP for all CD30 +; BV CHEP for those who need more intensive induction

How do we improve outcomes in CD30 negative PTCL?

CD30 Expression by IHC Does Not Predict BV Response- Analysis of 5 BV Monotherapy Trials

Objective response rate at end of treatment by baseline CD30 expression N=275

Response to BV and duration of response were not associated with CD30 expression level above or below 10% BV-CHP in <10% CD30 expression NCT04569032

Etoposide addition to anthracycline based regimens

	СНОР	СНОЕР
NHL-B1 <60 yo	3 yr EFS 51%	3 yr EFS 75.4% p= .003
NHLB1+NHLB2 (>60 yo)	3 yr EFS 51%	70.5% p=.004
	OS 75.2%	OS 81.3% P=.285

- CHOEP: improved EFS, NOT OS
- CHOEP: increased infections, transfusions and hospitalizations in >60 yo
- With ALK + sALCL exclusion-> EFS significance is lost (P = .057)

N=41 (PTCL <i>,</i> AITL)	ORR/CR	ORR/CR <60 up	2 yr PFS/OS	2 yr PFS/OS <60
DA-R-EPOCH	78%/61%	94%/70%	53%/73%	82%/66%

BV+ CHEP (cyclophosphamide, doxorubicin, etoposide, and prednisone) followed by BV consolidation in patients with CD30-expressing peripheral T-cell lymphomas: Phase II Trial

Febrile neutropenia 23%

Is It Prime Time for Epigenetic Therapies? Can they improve outcomes in tTFH

T follicular helper phenotype TCL (tTFH) has unique biology and predicts response to histone deacetylase inhibitors in R/R PTCL

Ghione Blood Adv 2020

Romidepsine-CHOP vs CHOP: Phase III

Azacitidine-CHOP in Upfront Treatment of PTCL: Phase II Study

Azacitidine: DNMT inhibitor, single agent activity in R/R PTCL: ORR 53%, CR 26%, ORR 75% in AITL

Primary endpoint: CR rate PTCL-TFH 17/20 (85%) St III-IV 90%

CD30 <5% - 76%

	ALL N=20	tTFH N=17
EOT ORR and CR	77%	88%
2 yr PFS	66%	69%
2 yr OS	68%	76%

- Median PFS 36 m
- CR did not correlate with CD30 expression
- TET2 associated with CR, favorable PFS, OS (p<0.05)
- DNMT3A mutations: adverse OS (p=0.028), emergence of DNMT3A mutant clones in early relapse

Ruan ASH Blood 2021 NCT03542266

Romidepsine-Lenalidomide for Untreated PTCL: Chemo-Free Regimen

romidepsin and lenalidomide combination is feasible and effective as initial PTCL therapy for patients who are not candidates for cytotoxic chemotherapy

Alliance A059102: A randomized phase II U.S. intergroup study of CHO(E)P versus CC-486-CHO(E)P versus duvelisib-CHO(E)P in previously untreated, CD30-negative, peripheral T-cell lymphomas.

• **Correlatives: TFH phenotype**, cell free DNA to predict outcomes

R/R PTCL- IS MORE CHEMO BETTER? Epigenetic therapies take center stage

Single agents vs combination chemotherapy in T cell lymphoma: Results from the Comprehensive Oncology Measures for Peripheral T-cell lymphoma treatment (COMPLETE) registry

- R/R PTCL median OS 6 m, ORR around 30% to approved therapies, CR rates <50%
- Analyzed: PTCL-NOS, ALTL, AITL, EATL, HSTCL, NKT
- Pralatrexate (16%), romidepsin (23%), BV (39%), belinostat, bendamustine, alisertib, denileukin diftitox, or lenalidomide
- R/R s/p 1 prior systemic Tx
- **Primary endpoint: best response to treatment**, BV cohort analyzed separately
- Median f/u= 2 yrs

	Single Agent N=31	Combination Chemo N=26	р
CR %	41	19	0.02
PFS months	11.2	6.7	0.02
OS months	39	17	0.02
SCT	26	8	0.07
Gr 3-4 AEs %	65	81	0.17

Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: a multicenter phase 2 study

Falchi Blood. 2021

A real-world experience of combined treatment with romidepsin and azacitidine in patients with peripheral T-cell lymphoma.

- N=17 (11 AITL, 2 ATLL, 2 TFH PTCL, 1PTCL NOS, 1 TFH+DLBCL)
- ORR 76% and CR 52%
- 4 pts- bridge to allo SCT

A Randomized, Phase IIB, Multicenter, Trial of Oral Azacytidine Plus Romidepsin versus Investigator's Choice in Patients with R/R PTCL NCT04747236

EZH2 Inhibitor Valmetostat Phase 1/2 Study

	ALL PTCL (n=44)	AITL (n=17)	PTCL-NOS (n=20)	ATLL (n=25)
ORR	55%	65%	50%	48%
CR	27%	47%	20%	20%

ATLL- median DOR NR PTCL Median DOR 56 wks

Gan Biomarker Research 2018, Yoshimitsu Blood (ASH) 2021, Mehat-Shah Chicago Lymphoma Symposium, Foss Blood (ASH) 2021

Romi-Len Combinations in R/R TCL: Phase I

Romi and Len are synergistic in vitro: induce of apoptosis through generation of reactive oxygen species, caspase activation, and downregulation of PI3K/AKT and MAPK/ERK pathways

MTD: Romi 14 mg/m2 d1,8, 15 Len 25 mg d 1-21 TCL n= 27

- ORR 50%
- CR 13%
- CRs: MF 1, ATLL 1, AITL 1
- Median PFS: 4.8 m, OS 18 m
- Allo 3 pts

All AITL responded Allo SCT 6 pts- chemo-free SCT bridge

MTD:

Romi 1 mg/m2 d1,8 Len 10 mg d 1-14 Carfilzomib 36 mg/m2 D 1, 8 TCL n=16

- ORR 50%
- CR 31%
- CRs: PTCL-NOS 1, AITL 4
- Median EFS: 3 m, OS 22 m

Targeted Therapies and Combinations in PTCL

- PI3K inhibitors
- Jak inhibitors

Duvelesib in R/R PTCL: Phase II PRIMO trial

- **Duvelesib:** gamma delta PI3K inhibitor, changes macrophage distribution from immunosuppressive to immunostimulatory xenografts and changes serum cytokine profile
- median age of 66.5 years, median 3 lines of Tx
- Dose-optimization (N=33): 75 mg bid- ORR 54% 25 mg po bid
 ORR 35%
- Dose expansion (N=78): 75 mg BID X 2 cycles -> 25 mg BID
- ALT/AST increased 24-21%
- LFT elevation most common reason for d/c

		ORR	CR	
	ALL (78)	50%	32%	
	PTCL NOS (42)	52%	29%	
	AITL (21)	67%	48%	
	ALCL (11)	9%	9%	

5 patients bridged to transplant

Brammer ASH Blood 2021 Horwitz Blood 2018

Romidepsine-Duvelisib in R/R PTCL and CTCL: Phase 1

- MTD of Duvalesib 75mg BID + Romi 10 mg/m2 on days 1, 8, 15 q 28 days; 10 pt Duvalesib lead in only
- 4/10 transaminitis in lead-in, 4/29 all
- PTCL n=52 ORR 58%, CR 42%
- PTCL-NOS n=19 ORR 53% CR 32%
- AITL ORR n=19 68% CR 58%
- CTCL ORR n=11 was 36% all PR
- 43% proceeded to allo-SCT
- median PFS 6.9 m (PTCL) and 5.5 m (CTCL)
- median DOR 8.1 m

Histology	Treated	Evaluable 53	ORR N (%) 31 (58)	CR N (%) 22 (42)	Bridged to Allo SCT N (%)	
PTCL					15 (28)	
PTCL NOS	20	19	10 (53)	6 (32)	3 (16)	
AITL/TFH	19	19	13 (68)	11 (58)	7 (37)	
ΡСγδ	3	3	1 (33)	1 (33)	1 (33)	
ALCL	3	3	3 (100)	2 (67)	2 (66)	
HSTCL	2	2	1 (50)	0	1 (50)	
Aggr epidermotropic CD8+	2	2	1 (50)	1 (50)	0	
Other TCL	6	5	2 (40)	1 (20)	1 (20)	
CTCL	11	11	4 (36)	0	0	
MF	7	7	2 (29)	0	0	
LCT	3	3	0	0	0	
SS	4	4	2 (50)	0	0	
LCT	1	1	0	0	0	
Overall	66	64	35 (55)	22 (34)	15 (23)	

Horwitz Blood 2018 Horwitz ICML 2021

Ruxolitinib in R/R PTCL: a Biomarker Driven Phase 2 Trial

JAK/STAT pathway mutations and pathway activation are common in T cell lymphomas

*clinical benefit rate = CR+PR+SD >= 6 months

Golidocitinib, a selective JAK1 inhibitor, in R/R PTCL (JACKPOT8 phase 1/2 clinical trial)

- Golidocitinib oral potent JAK1 specific inhibitor
- In Part A: dose escalation 150 mg (n=35) or 250 mg QD (n=16)
- PTCL-NOS 41.2%, AITL 39.2% n=49 evaluable
- ORR 42.9%, CR 22.4 %
- median DOR NR, longest DoR > 14 months
- Most common AEs hematologic, manageable
- Promising activity and manageable toxicity
- FDA fast track for RR PTCL

6-	
	NH
N	

TOLINAPANT (ASTX660) MONOTHERAPY IN R/R PTCL and CTCL: Phase 2

TOLINAPANT: oral small-molecule antagonist of cellular/X-linked inhibitors of apoptosis proteins (cIAP1/2 and XIAP), induces necroptosis in T-cell lymphoma models, induces immunomodulatory antitumoral effect

R/R PTCL n=98 R/R CTCL n=51 PTCL median prior lines 3 CTCL median prior lines 6	Tolinapant 180 mg po daily d 1-7 and 15-22	Lipase/amylase elevation 35/35% Rash 24% ALT/AST elevation 15% PTCL ORR 22% 9 CRs, DOR 133 d CTCL ORR 26% 2 CRs, DOR 148 d
--	---	--

Novel mechanism of action, potential for combination therapies

Michot Foss EHA 2022

CARs for T cell Lymphomas

THE COBALT-LYM STUDY OF CTX130: A PHASE 1 STUDY OF CD70-TARGETED ALLOGENEIC CAR T CELLS IN R/R T Cell Lymphomas

MHC I

disruption

CD70

disruption

- Challenges with CARs in TCLs
 - poor function of donor T cells
 - fratricide
 - risk of infusing transduced malignant CAR T cells into pts
- CD70 highly expressed on many TCLs
- CTX130TM: is a first-in-class, CD70-targeting allogeneic CAR T therapy, modified with CRISPR/Cas9-editing to eliminate expression of:
 - T-cell receptor
 - MHC I expression by β2-microglobulin disruption
 - CD70 to mitigate fratricide and enhance performance
- Median follow up 3.1 months
- At DL ≥3: ORR 71%, CR rate 29%
- No DLTs, no Grade (Gr) ≥3 CRS or ICANS
- Gr 1-2 CRS and ICANS 47% and 20%.

A Phase 1/2, Open-Label, First-in-Human, Multiple Ascending Dose Multicenter Study of MT-101 in Subjects with CD5+ Relapsed/ Refractory Peripheral T Cell Lymphoma

- Myeloid cells: up to 75% of tumor mass
- Activate, Target, Attack & Kill (ATAK) CAR myeloid cell platform: receptors combine tumor recognition with multiple proprietary innate-immune signaling domains
- The anti-CD5 CAR is incorporated into myeloid cells via mRNA transfection
- Trail candidates: PTCL-NOS, AITL, ALCL Alk-, ALCL Alk+ RR to two lines of systemic therapy

Summary

- CD30 +: brentuximab improves efficacy in upfront and relapsed CD30+ T cell lymphomas
- CD30-: etoposide can improve CR and PFS
- T follicular helper phenotype PTCL (AITL and TFH-PTCL) are more sensitive to epigenetic therapies including HDACi and hypomethylating agents
- HD therapy and ASCT in 1st CR can improve PFS and OS
- In R/R setting, greater response and survival is achieved with single agents as first retreatment, while maintaining the ability to achieve transplantation
- Multiple novel regimens for targeted PTCL treatment are under development