Georgetown | Lombardi

PATIENT CARE RESEARCH EDUCATION COMMUNITY

Novel Mechanisms of Resistance for ALK and ROS1 NSCLC

Stephen V. Liu, MD Associate Professor of Medicine Director of Thoracic Oncology Head of Developmental Therapeutics Georgetown University

🕥 @StephenVLiu

A Comprehensive Cancer Center Designated by the National Cancer Institute http://lombardi.georgetown.edu Lombardi CancerLine: 202.444.4000

ALK and ROS1 NSCLC

- ALK and ROS1 fusions are important genomic events
 - Define biology
 - Guide treatment
 - To targeted therapy
 - Away from immunotherapy
 - Critical to test for ALK/ROS1
 - Necessary for proper decisions

Jordan, Cancer Disc 2017 Georgetown | Lombardi

ALK and ROS1 NSCLC

- ALK fusions present in ~5% of advanced NSCLC
 - First described in 2007 in lung cancer
 - EML4–ALK most prevalent partner
- ROS1 fusions present in 1-2% of NSCLC
 - 2.4% in adenocarcinoma, 0.2% in non-adenocarcinoma
 - More common in non-smokers
- Validated therapeutic targets in NSCLC
 - Detection critical for proper management

Detection of ROS1+

• RNA may be advantageous

- 254 driver negative NSCLC cases subject to RNA-seq
 - Identified actionable alteration in 13% of cases, most frequently ROS1
 - Intron 31 poorly covered, two long interspersed nuclear elements

Benayed, CCR 2019; Davies, CCR 2019 Georgetown | Lombardi

Survival in ALK+ NSCLC

- Median OS from diagnosis 81 months (6.8 years)
 - University of Colorado, 2009-2017

Pacheco, JTO 2019 Georgetown | Lombardi

ALK+ NSCLC: Speed of Development

Early Generation Agents

Crizotinib and Ceritinib > Chemotherapy

Study	ALK+, n	Treatment	RR, %	PFS, months	PFS HR
PROFILE 1014 Solomon, 2014	343	Crizotinib Platinum/pemetrexed	74.0 45.0	10.9 7.0	HR 0.45
ASCEND-4 Soria, 2017	376	Ceritinib Platinum/pemetrexed	72.5 26.7	16.6 8.1	HR 0.55

Solomon, NEJM 2014; Soria, Lancet 2017 Georgetown | Lombardi

CNS as Site of First Progression

Crizotinib

- Retrospective analysis of PROFILE 1005 and 1007
- Patients with untreated brain metastases at baseline
 - In patients with nontarget or new lesions as PD, CNS progression in 70%
- Patients with treated brain metastases at baseline
 - In patients with nontarget or new lesions as PD, CNS progression in 72%
- Patients with no brain metastases at baseline
 - CNS metastases developed in 20% of patients (median of 30 weeks)
- Randomized trials
 - CNS progression ~ 45%

Next Generation Agents

- Developed to overcome resistance, high CNS efficacy
 - Alectinib
 - Brigatinib
 - Lorlatinib
- All superior PFS over crizotinib in phase III trial
- All FDA approved as initial and subsequent therapy

ALEX: Alectinib

- 303 patients randomized to alectinib or crizotinib
 - ALK+ by Ventana ALK D5F3 IHC
 - No prior systemic therapy
 - Brain metastases permitted
- Alectinib superior
 - Median f/u 18.6 months
 - Investigator PFS HR 0.47
 - IRC PFS 25.7 vs 10.7 months
 - HR 0.50

Peters, NEJM 2018 Georgetown | Lombardi

ALEX: Alectinib

November 7, 2017: FDA approval

Alectinib approved as first-line therapy for ALK+ NSCLC

Peters, NEJM 2018 Georgetown | Lombardi

ALEX: Alectinib

- Alectinib 600mg bid vs crizotinib
 - Alectinib with superior RR and inv PFS (HR 0.43)
 - 5y OS rate 62.5% vs 45.5%, OS HR 0.67

Mok, Ann Oncol 2020 Georgetown | Lombardi

ALTA-1L: Brigatinib

- Brigatinib 180mg qday vs crizotinib
 - Brigatinib with superior RR and inv PFS (HR 0.43)

CROWN: Lorlatinib

- Lorlatinib 100mg qday vs crizotinib
 - Lorlatinib with superior RR and PFS (HR 0.27)
 - 3y PFS rate 63.5% vs 18.9%

Solomon, AACR 2022 Georgetown | Lombardi

Next Generation ALK Inhibitors

Study <i>(ref)</i>	Treatment	n	RR (%)	PFS (inv, m)	PFS HR
ALEX	Alectinib 600mg bid	152	82.9	34.8	0.43
Mok, Ann Oncol 2018	Crizotinib 250mg bid	151	75.5	10.9	
ALTA 1L	Brigatinib 180mg qday	137	74	30.8	0.43
Camidge, JTO 2021	Crizotinib 250mg bid	138	62	9.2	
CROWN	Lorlatinib 100mg qday	149	77.2	NR	0.27
Solomon, AACR 2022	Crizotinib 250mg bid	147	58.5	9.3	

Adverse Events

ALK Inhibitor	Rate of Dose Reduction	Rate of Discontinuation	Rate of Grade 3+ Adverse Events
Ceritinib 750mg qday ASCEND-4 <i>Soria et al, Lancet Oncol 201</i> 7	80%	5%	78%
Alectinib 600mg bid ALEX <i>Mok et al, Ann Oncol 2020</i>	20%	15%	52%
Brigatinib 180mg qday ALTA-1L <i>Camidge et al, JTO 2021</i>	44%	13%	70%
Ensartinib 225mg qday eXalt3 <i>Horn et al, JAMA Oncol 2021</i>	24%	9%	45%
Lorlatinib 100mg qday CROWN <i>Shaw et al, NEJM 2020</i>	21%	7%	58%

rdi

Adverse Events

ALK Inhibitor	Rate of Dose Reduction	Rate of Discontinuation	G3+ AST	G3+ ALT	G3+ Nausea	G3+ Diarrhea
Ceritinib 750mg qday ASCEND-4 <i>Soria et al, Lancet Oncol 2017</i>	80%	5%	17%	31%	3%	5%
Alectinib 600mg bid ALEX <i>Mok et al, Ann Oncol 2020</i>	20%	15%	5%	5%	1%	1%
Brigatinib 180mg qday ALTA-1L <i>Camidge et al, JTO 2021</i>	44%	13%	4%	4%	2%	2%
Ensartinib 225mg qday eXalt3 <i>Horn et al, JAMA Oncol 2021</i>	24%	9%	1%	4%	1%	-
Lorlatinib 100mg qday CROWN <i>Shaw et al, NEJM 2020</i>	21%	7%	2%	3%	1%	1%

0 1

Adverse Events

ALK Inhibitor	Rate of Dose Reduction	Rate of Discontinuation	Special Toxicity Considerations
Ceritinib 750mg qday ASCEND-4 <i>Soria et al, Lancet Oncol 2017</i>	80%	5%	Discontinuation rates likely quite different in real world practice and in current treatment landscape. Alternate dosing schedules better tolerated.
Alectinib 600mg bid ALEX <i>Mok et al, Ann Oncol 2020</i>	20%	15%	Any grade AST/ALT elevation in 17%/18% Any grade bilirubin elevation in 22% Any grade myalgias in 17%
Brigatinib 180mg qday ALTA-1L <i>Camidge et al, JTO 2021</i>	44%	13%	EOPE with changes in DLCO Any grade pneumonitis seen in 6% of patients G3+ CPK elevation in 26%
Ensartinib 225mg qday eXalt3 <i>Horn et al, JAMA Oncol 2021</i>	24%	9%	Any grade rash in 59% G3+ rash in 11% Any grade pyrexia in 20%
Lorlatinib 100mg qday CROWN <i>Shaw et al, NEJM 2020</i>	21%	7%	G3+ hypercholesterolemia in 16% G3+ weight gain in 17% Any grade cognitive effects in 21%, G3+ in 2%

Treatment for ROS1+ NSCLC

- Kinase domain has > 75% homology with ALK
 - Many ALK inhibitors are ROS1 inhibitors
 - Not all ALK inhibitors are ROS1 inhibitors
- Crizotinib is a multikinase inhibitor
 - ROS1, ALK, MET
- Phase I PROFILE 1001 study
 - Added ROS1 cohort in 2009
 - Crizotinib 250mg bid
 - Enrolled 50 patients (October 2010 August 2013)

Shaw, NEJM 2014 Georgetown | Lombardi

Crizotinib

- Overall response rate 72%
 - Time to first response: 7.9 weeks
 - Duration of response 24.7 months
 - Median PFS 19.3 months

Shaw, Ann Oncol 2019 Georgetown | Lombardi

ROS1+ NSCLC Key Points

Shaw, NEJM 2014 Georgetown | Lombardi

ROS1 and CNS

- Incidence of CNS metastases not well defined
 - Not consistently reported in early trials
 - Prospective trials note CNS metastases in 18-58%
 - MGH comparison of ROS1 (39) and ALK (196) NSCLC treated with crizotinib
 - Brain metastases at diagnosis: 19.4% (ROS1) vs 39.1% (ALK)
 - Cumulative risk at 5 years: 34% (ROS1) vs. 73% (ALK)
 - Colorado comparison of ROS1 (33) and ALK (115) NSCLC treated with crizotinib
 - Brain metastases at diagnosis: 36% (ROS1) vs 34% (ALK)
 - Brain as 1st site of progression in 47%

Ou, Lung Cancer 2019; Gainor, JCO PO 2018; Patil, JTO 2018

Crizotinib

• Real world data with crizotinib in ROS1+ NSCLC

- Single institution retrospective analysis
- 35 patients from Fudan University, Shanghai Cancer Center
- 23% with brain metastases
- RR 71.4%
- PFS 11.0 months
- OS 41.0 months
- Most common site of progression was brain (47.6%)
- Crizotinib FDA approved for ROS1+ NSCLC 3/11/16

Liu, Target Oncol 2019 Georgetown | Lombardi

- Entrectinib is a potent multikinase inhibitor
 - Activity at ROS1, TRK, ALK
 - Highly CNS penetrant
- Integrated analysis of 3 clinical trials
 - ALKA-372-001 (Phase I)
 - STARTRK-1 (Phase 1)
 - STARTRK-2 (Phase 2)
- Included 161 patients with ROS1 fusion+ NSCLC
 - Entrectinib 600mg daily

Dziadziuszko, JCO 2021

- RR 67.1% (9% CR), mDOR 15.7m, mPFS 15.7m
- mOS not reached, 12m OS rate 81%

Dziadziuszko, JCO 2021 Georgetown | Lombardi

• BICR of scans from pts with measurable CNS mets

- Intracranial RR 79.2% (12.5% CR)
- Median time to response < 1m, intracranial PFS 8.3m

Dziadziuszko, JCO 2021 Georgetown | Lombardi

- Monitor for toxicity
 - Often mediated by NTRK
 - Paresthesias, dizziness
 - Weight gain, polyphagia
 - Withdrawal pain
- FDA approval 8/15/19

Treatment-Related Adverse Event	Safety-Evaluable Population ^a (N = 210)						
Patients, n (%)	Grades 1-2	Grade 3	Grade 4				
Dysgeusia	90 (42.9)	1 (0.5)	0				
Dizziness	72 (34.3)	1 (0.5)	0				
Constipation	66 (31.4)	0	0				
Fatigue	62 (29.5)	1 (0.5)	0				
Diarrhea	50 (23.8)	6 (2.9)	0				
Weight increased	43 (20.5)	17 (8.1)	0				
Paresthesia	39 (18.6)	0	0				
Blood creatinine increased	38 (18.1)	1 (0.5)	0				
Nausea	37 (17.6)	2 (1.0)	0				
Edema peripheral	37 (17.6)	1 (0.5)	0				
Myalgia	33 (15.7)	2 (1.0)	0				

DOOT Fundamente Deschland

Lorlatinib

- 3rd generation ALK/ROS1 kinase inhibitor
 - Enrolled 69 patients w/ ROS1+ NSCLC (Jan 2014 Oct 2016)
 - 21 TKI naïve, 40 post-crizotinib, 8 with other/further ROS1 TKI therapy
 - ROS1 TKI naïve, RR 62%, DOR 25.3m, PFS 21m
 - Post crizotinib, RR 35%, DOR 13.8m, PFS 8.5m

ALK and ROS1 NSCLC

- ALK inhibitors approved for ALK+ NSCLC
 - Crizotinib, ceritinib, alectinib, brigatinib, lorlatinib
- ROS1 inhibitors approved for ROS1+ NSCLC
 Crizotinib, entrectinib

- Very effective and more durable than many other targeted agents
- Resistance still expected

Camidge, JTO 2021 Georgetown | Lombardi

ALK and ROS1 TKI Resistance

- CNS-only resistance
 - Potentially a PK problem
- Solutions
 - Increase dose?
 - Change to a more CNS-penetrant agent
 - Local therapies

ALK and ROS1 TKI Resistance

- Kinase-dependent resistance
 - ALK/ROS1 amplification
 - ALK/ROS1 mutation
- Next-generation ALK/ROS1 kinase inhibitors
 - Rational design to overcome resistance mutations

ALK TKI Resistance

Gainor, Cancer Disc 2017 Georgetown | Lombardi

ROS1 TKI Resistance

- 42 post-crizotinib
 - 38% with ROS1 mutations
- 28 post-lorlatinib
 - 46% with ROS1 mutations
- ROS1 G2032R in ~ 1/3

Georgetown | Lombardi

Cellular ALK phosphorylation mean IC ₅₀ (nmol/L)									
Mutation status	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib				
Parental Ba/F3	763.9	885.7	890.1	2774.0	11293.8				
EML4–ALK V1	38.6	4.9	11.4	10.7	2.3				
<i>EML4–ALK</i> C1156Y	61.9	5.3	11.6	4.5	4.6				
<i>EML4–ALK</i> I1171N	130.1	8.2	397.7	26.1	49.0				
<i>EML4–ALK</i> I1171S	94.1	3.8	177.0	17.8	30.4				
<i>EML4–ALK</i> I1171T	51.4	1.7	33.6 ^a	6.1	11.5				
<i>EML4–ALK</i> F1174C	115.0	38.0 ^a	27.0	18.0	8.0				
<i>EML4–ALK</i> L1196M	339.0	9.3	117.6	26.5	34.0				
<i>EML4–ALK</i> L1198F	0.4	196.2	42.3	13.9	14.8				
<i>EML4–ALK</i> G1202R	381.6	124.4	706.6	129.5	49.9				
<i>EML4–ALK</i> G1202del	58.4	50.1	58.8	95.8	5.2				
<i>EML4–ALK</i> D1203N	116.3	35.3	27.9	34.6	11.1				
<i>EML4–ALK</i> E1210K	42.8	5.8	31.6	24.0	1.7				
<i>EML4–ALK</i> G1269A	117.0	0.4	25.0	ND	10.0				
<i>EML4–ALK</i> D1203N+F1174C	338.8	237.8	75.1	123.4	69.8				
<i>EML4–ALK</i> D1203N+E1210K	153.0	97.8	82.8	136.0	26.6				

	TKI Activity, IC ₅₀ (nM)									
ALK Variant	Crizotinib 250 mg twice daily	Ceritinib 750 mg once daily	Alectinib 600 mg twice daily	Brigatinib 180 mg once daily						
Native	107	37	25	14						
1151Tins	1109 ^b	283	201	114						
L1152R	844 ^b	437 ^b	62	11						
L1152P	721	451	48	20						
C1156Y	529 ^b	195	67	45						
l1171N	532 ^b	119	724 ^b	124						
F1174C	238	109 ^b	31	58						
F1174L	253 ^b	117	44	55						
F1174V	257 ^b	121 ^b	46	64						
V1180L	170	16	597	11						
L1196M	589 ^b	67	133	41						
L1198F	17	697	84	82						
G1202R	617 ^b	354 ^b	695 ^b	184						
D1203N	459 ^b	159	42	79						
S1206F	199 ^b	39	34	43						
S1206Y	179 ^ь	42	19	36						
E1210K	240	80	59	107						
G1269A	509 ^b	29	56	9						

Gainor, Cancer Disc 2017; Kim, JCO 2016 Georgetown | Lombardi

IC ₅₀ (nmol/L)	Crizotinib	Entrectinib	Lorlatinib	Repotrectinib	Cabozantinib	Ceritinib	Brigatinib	Taletrectinib	Alectinib
Parental	840.5	1,801.0	>3,000	1,218.0	>3,000	1,117.0	>3,000	>3,000	1,207.0
Nonmutant	5.4	2.7	0.7	2.0	2.8	16.4	9.4	2.6	995.4
G2032R	609.6	436.3	196.6	23.1	17.5	346.4	472.7	53.3	1,091.0
L2000V	37.1	25.9	2.5	10.1	7.6	124.9	78.9	29.8	985.0
L2086F	536.8	440.0	>3,000	587.9	3.6	226.9	159.3	1,265.0	672.5
S1986F/L2000V	159.4	36.1	2.4	7.2	5.1	86.9	62.5	20.3	1,080.0
S1986F/L2086F	469.7	344.2	>3,000	241.2	1.3	154.8	48.5	662.6	919.9
G2032R/L2086F	498.6	335.4	>3,000	248.9	5.0	573.9	450.9	744.2	1,254.0
S1986F/G2032R	594.4	718.5	990.6	65.1	70.1	614.7	717.0	105.4	1,137.0
S1986F/G2032R/L2086F	562.8	1,111.0	2,131.0	1,178.0	9.4	1,116.0	1,341.0	2,432.0	1,150.0

IC₅₀ ≤ 50 nmol/L

50 nmol/L < IC₅₀ <200 nmol/L

IC₅₀ ≥ 200 nmol/L

Lin CCR 2021 Georgetown | Lombardi

After 1L lorlatinib in CROWN, 21 of 33 patients (63.6%) who received \geq 1 subsequent therapy received an ALK TKI (alectinib, 12), of whom 6 (28.6%) had objective responses (*Solomon BJ et al., ASCO 2022*)

Jessica J. Lin, Massachusetts General Hospital, USA

#NACLC22

ALK TKI Resistance

- ALK L1256F mutation
 - Confers resistance to lorlatinib
 - Still retains sensitivity to alectinib

Lin, NACLC22, Okada, EBioMed 2019, Georgetown | Lombardi

ALK/ROS1 TKI Resistance

- Identification of acquired solvent front mutations possible with biopsy or plasma testing
 - Challenges
 - Heterogeneity (intratumor, intertumor)
 - Clinical relevance (mostly preclinical)
 - Practical concerns: risk of biopsy, time, cost (NGS), sensitivity
 - May help guide therapy in the future
 - Is it necessary? Is it helpful?
 - Can we predict mutations and anticipate resistance?

ALK Variants

- Many different EML4–ALK fusion variants
 - Variants 1 and 3 most common
 - Variant impacts outcomes

Lin, JCO 2018 Georgetown | Lombardi

ALK Variants

• EML4–ALK variant impacts outcomes

Camidge, JTO 2021 Georgetown | Lombardi

ALK TKI Resistance

Lin, JCO 2018 Georgetown | Lombardi

ALK Variants

• Co-mutations may also impact outcomes

PFS by TP53 Status in Patients With EML4-ALK Fusion Detected at Baseline

TP53 Tant, crizotinib — TP53 mutant, brigatinib — TP53 WT, crizotinib - TP53 WT, brigatinib ___ 1.0 +---Comparison HR (95% CI) Brigatinib versus crizotinib in patients with TP53 mutant 0.48 (0.23-1.03) 0.8 Brigatinib versus crizotinib in patients with TP53 WT 0.50 (0.27-1.03) **PFS Probability** 0.6 0.4 0.2 0.0 Months No. at risk Crizotinib, WT 41 Crizotinib, mutant 23 Brigatinib, WT 35 Brigatinib, mutant 22

Camidge, JTO 2021 Georgetown | Lombardi

Complex Resistance

- Fewer progression events is preferred
 - Each event carries clinical risk
 - Each line influences resistance
 - Solvent front mutations develop
 - Complex mutations expected

Cellular ALK phosphorylation mean IC ₅₀ (nmol/L)										
Mutation status	Brigatinib	Lorlatinib								
Parental Ba/F3	763.9	885.7	890.1	2774.0	11293.8					
EML4–ALK V1	38.6	4.9	11.4	10.7	2.3					
EML4–ALK C1156Y	61.9	5.3	11.6	4.5	4.6					
<i>EML4–ALK</i> 11171N	130.1	8.2	397.7	26.1	49.0					
<i>EML4–ALK</i> I1171S	94.1	3.8	177.0	17.8	30.4					
<i>EML4–ALK</i> I1171T	51.4	1.7	33.6 ^a	6.1	11.5					
EML4-ALK F1174C	115.0	38.0 ^a	27.0	18.0	8.0					
EML4-ALK L1196M	339.0	9.3	117.6	26.5	34.0					
EML4-ALK L1198F	0.4	196.2	42.3	13.9	14.8					
EML4-ALK G1202R	381.6	124.4	706.6	129.5	49.9					
EML4-ALK G1202del	58.4	50.1	58.8	95.8	5.2					
EML4-ALK D1203N	116.3	35.3	27.9	34.6	11.1					
EML4-ALK E1210K	42.8	5.8	31.6	24.0	1.7					
EML4–ALK G1269A	117.0	0.4	25.0	ND	10.0					
<i>EML4–ALK</i> D1203N+F1174C	338.8	237.8	75.1	123.4	69.8					
EML4-ALK D1203N+E1210K	153.0	97.8	82.8	136.0	26.6					

Complex Resistance

Complex / compound mutations

Shiba-Ishii, Nat Cancer 2022; Lin, NACLC 2022 Georgetown | Lombardi

Complex Resistance

- French study exploring ctDNA and TKI efficacy
 - Collected 74 samples at progression on ALK TKI therapy
 - Presence of complex mutations associated with poor OS

Overcoming On-Target Resistance

• NVL-655 (ALKOVE-1)

		Cell with ALK fusion	NUV-655	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib
No kinase	٢	NCI-H2228 (EML4-ALK v3)	0.70	90	55	13	13	< 1.1
domain -	$\left\{ \right.$	NCI-H3122 (EML4-ALK v1)	2.0	180	48	22	22	3.5
mutations Wil	Wild-type	1.6	270	90	25	42	4.2	
	ſ	G1202R	< 0.73	950	570	1600	400	120
G1202R+		G1202R/L1196M	7.0	1500	1400	2200	820	3900
mutations	G1202R/G1269A	3.0	1100	350	1300	240	970	
		G1202R/L1198F	2.0	170	1300	2200	470	720

Overcoming On-Target Resistance

• TPX-0131 (FORGE1)

Ba/F3 EML4-ALK		TPX-0131	Crizotinib*	Alectinib	Brigatinib	Ceritinib	Loriatinib
L1196M/L1198F	N=3	<0.2	252	2250	253	1410	1310
L1198F/C1156Y	N=3	<0.2	19.3	776	102	1310	140
G1202R/C1156Y	N=3	0.2	745	2420	810	1300	521
G1202R/L1196M	N=3	0.7	808	>10000	1100	1260	4780
G1202R/L1198F	N=3	<0.2	188	3000	2040	2010	1710
G1202R/G1269A	N=3	9.9	705	7200	164	303	636
G1202R/G1269A/L1204V	N=3	14.9	634	6740	176	345	673
G1202R/G1269A/L1198F	N=3	0.2	596	>10000	907	1670	6330

^a Proxy reagents purchased from commercial sources

Repotrectinib (TPX-005)

- Next-generation ROS1/TRK inhibitor
 - FDA Breakthrough Therapy Designation for ROS1+ NSCLC

ROS1+ Advanced NSCLC				NTRK+ Advanced Solid Tumors	
EXP-1 ROS1 TKI naïve (n=55)	EXP-2 1 prior ROS1 TKI AND 1 platinum-based chemotherapy (n=60)	EXP-3 2 prior ROS1 TKIs AND No prior chemotherapy (n=40)	EXP-4 1 prior ROS1 TKI AND No prior chemotherapy (n=60)	EXP-5 TRK TKI naïve (n=55)	EXP-6 TRK TKI pretreated (n=40)
ORR 86% (6/7) 95% CI, 42–100	ORR 40% (2/5) 95% CI, 5–85	ORR 40% (2/5) 95% Cl, 5–85	ORR 67% (4/6) 95% Cl, 22–96	Not Reported	ORR 50% (3/6) 95% CI, 12–88

Repotrectinib (TPX-005)

- In TKI-naïve, RR 91% (n=22)
 - Phase I median time on treatment: 30.9m (29% ongoing)
 - Phase II median time on treatment: 5.3m (93% ongoing)

Georgetown | Lombardi

Overcoming On-Target Resistance

• NVL-520 (ARROS-1)

ROS1	NUV-520	Crizotinib	Entrectinib	Lorlatinib	Repotrectinib
Wild-type	1.2 nM	40 nM	23 nM	1.3 nM	4.4 nM
G2032R	3.5 nM	960 nM	1500 nM	300 nM	25 nM
S1986F	< 0.58 nM	39 nM	26 nM	< 0.27 nM	0.84 nM
L2026M	1.5 nM	110 nM	41 nM	0.77 nM	3.3 nM
D2033N	1.0 nM	77 nM	79 nM	0.44 nM	2.5 nM

ALK/ROS1 TKI Resistance

- Bypass tracts
 - Mutation/amplification of other drivers/pathways
 - KRAS
 - MET
- Histologic transformation (EMT)
 - Squamous cancer
 - Small cell lung cancer

Lovly ASCO Educ Book 2015

2022 North America Conference on Lung Cancer

SEPTEMBER 23-25, 2022 | CHICAGO, IL, USA

Overcoming ALK-Independent Resistance: Combination Strategies

Combination	Partner Target	Sponsor	ClinicalTrials.gov
Lorlatinib + Crizotinib	MET	MGH	NCT04292119
Alectinib + Cobimetinib	MEK	MGH	NCT03202940
Brigatinib + Binimetinib	MEK	UCSF	NCT04005144
Lorlatinib + Binimetinib	MEK	MGH	NCT04292119
Lorlatinib + PF-07284892	SHP2	Pfizer	NCT04800822
Lorlatinib + TNO155	SHP2	MGH	NCT04292119
Ceritinib + Everolimus	mTOR	MD Anderson	NCT02321501
Brigatinib + Bevacizumab	VEGF	City of Hope	NCT04227028

ALK/ROS1 and Chemotherapy

- Among NSCLC, retrospective analysis of patients treated with pemetrexed-based therapy
 - PFS in KRAS+ was 7.0 months
 - PFS in EGFR+ was 5.5 months
 - PFS in ALK+ was 9.0 months
- Retrospective analysis of patients with NSCLC
 receiving pemetrexed based chemotherapy
 - 102 EGFR+, 32 ALK+, 19 ROS1+
 - ROS1 cohort had best outcomes: RR 58%, PFS 7.5m

Immunotherapy

- EGFR/ALK+ tumors can (highly) express PD-L1
- In EGFR/ALK+ NSCLC treated with PD-(L)1 inhibitors
 - Response rate 3.6% (vs. 23.3% in wild type)
- Among light/never smokers
 - Response rate 4.2% (vs. 20.6%)

Gainor, CCR 2016 Georgetown | Lombardi

ROS1 and Immunotherapy

- Retrospective analysis included 7 patients with ROS1+ NSCLC treated with PD(L)1 monotherapy
 - Median PDL1 expression was 90%
 - RR 17%
 - Rapid PD in 42.9%

Mazieres, Ann Oncol 2019 Georgetown | Lombardi

ALK Mediating Resistance

- Acquired ALK fusion mediating EGFR TKI resistance
 - EGFR del19 with initial response to osimertinib
 - Chemotherapy at progression
 - Biopsy after progression revealed EGFR del19 and an acquired EML4 ALK fusion

Xu, JTO 2020 Georgetown | Lombardi

ROS1 Mediating Resistance

- Acquired ROS1 fusion mediating EGFR TKI resistance
 - EGFR L858R with initial response to chemotherapy, icotinib, and osimertinib
 - Biopsy after progression on osimertinib showed ROS1 fusion
 - Responded to osimertinib + crizotinib

Xu, JTO 2020 Georgetown | Lombardi

Summary

- Next–generation ALK and ROS1 TKIs effective
 - Long PFS and high CNS efficacy
 - High landmark PFS and OS rates
 - Consistently well tolerated
- Resistance is still expected
 - Understanding resistance can permit overcoming resistance and eventually, preventing resistance
 - Kinase dependent, independent, histologic transformation