Idiopathic Intracranial Hypertension: Updates on Imaging Findings, Pathophysiology and Treatment

Charif Sidani. MD

Learning objectives

- Classic imagining findings IIH
- Pathophysiology
 Imaging
- Venous Stenting
- IIH vs sCSF leak "spectrum"
- IIH vs Spaceflight-Associated Neuro-Ocular Syndrome (SANS)

Intracranial Hypertension

American Family Physician:

- Normal opening pressure ranges:
 - 10 to 100 mm H20 in young children
 - 60 to 200 mm H20 > 8 years of age
 - up to 250 mm H20 in obese patients

Cerebrospinal Fluid Analysis

DEAN A. SEEHUSEN, M.D., MARK M. REEVES, M.D., and DEMITRI A. FOMIN, M.D. Tripler Army Medical Center, Honolulu, Hawaii 2003

Intracranial Hypertension

- Secondary
 - Mass
 - DVST
 - Edema
 - Infection
 - Hydrocephalus....
- Idiopathic IIH

Pseudotumor Cerebri. → IIH Diagnosis

Table 2 Criteria for diagnosing idiopathic intracranial Tal hypertension 1. 1. If symptoms present, they may only reflect those of generalized intracranial hypertension or papilledema. ion, 2. If signs present, they may only reflect those of generalized intracranial hypertension or papilledema. 2^{-1} 3. Documented elevated intracranial pressure measured in the lateral decubitus position. ical 3. (4. Normal CSF composition. 5. No evidence of hydrocephalus, mass, structural, or vascular \mathbf{d} 4. [lesion on MRI or contrast-enhanced CT for typical patients, and MRI and MR venography for all others. d 6. No other cause of intracranial hypertension identified.

Friedman et al Diagnostic Criteria for Idiopathic Intracranial Hypertension. NEUROLOGY 2002

Pathophysiology

↑CP activity1

rec

rec

Vit A (Aquaporin 1

Mineralocorticoid

Mollan et al J Neurol Neurosurg Psychiatry 2015

Role of Obesity

- Consistent risk factor for development of IIH
- Correlation: BMI & risk of IIH
- Association:
 - ↑ weight & disease recurrence
 - induce weight loss → improvements in ICP, papilledema,
 VF, headache

Daniels AB. Am J Ophthalmol 2006

Ko MW *et al.* . Weight gain and recurrence in Idiopathic Intracranial Hypertension: a case-control study. Neurology 2011 3Sinclair AJ, *et al.*. BMJ 2010

Obesity: Cause Vs Effect ?

- \uparrow MC (mineralocorticoid) \rightarrow \uparrow CP \rightarrow \uparrow CSF production*
 - Obesity

. . . .

- Hyperaldosteronism
- Hypercortisolism
- Hypervitaminosis A

? No Hydrocephalus

*Salpietro V et al Endocrinol Lett 2012 *Andrews et al Jormone Research in Pediatrics 2014

IIH: Socioeconomic Burden, USA

- 320% ↑ in new CSF shunt procedures 1998-2002
- Total economic costs ~ \$444 million/ year
- 57% of patients report significant lost earnings
- 31% changing occupation
- ↑ depression & ↓ levels of quality of life

Curry et al. Neurosurgery 2005
 Friesner D et al. Obes Rev2011

3. Kleinschmidt, J et al. Idiopathic intracranial hypertension: Relationship to depression, anxiety, and quality of life. Neurology 2000

IIH: Socioeconomic Burden, UK

- Jan 2002 Dec 2016
- IIH incidence is rising (>>100%) highest in areas of social deprivation and mirroring obesity trends.

• Admission rates rose by 442%

Mollan, S.P., Aguiar, M., Evison, F. et al. The expanding burden of idiopathic intracranial hypertension. Eye 33, 478–485 (2019). https://doi.org/10.1038/s41433-018-0238-5

IIH In MEN

• IIH typically occurs in young, obese women

- Rare in men
- 721 patients
 - 66 men (9%)
 - 655 women (91%).

Idiopathic intracranial hypertension in men

<u>B.B.Bruce, MD, S.Kedar, MD, G.P. Van Stavern, MD, D.Monaghan, BS, M.D. Acierno, MD, R.A. Braswell, MD, P.</u> <u>Preechawat, MD, J.J. Corbett, MD, N.J. Newman, MD, and V.Biousse, MD</u>

Author information 🕨 Copyright and License information 🕨

IIH. MEN VS WOMEN

- Men were more likely to have sleep apnea
- Were older (37 vs 28 years) *p* = 0.02
- As their 1ST symptom of IIH, men were less likely to report headache but more likely to report visual disturbances
- Men continued to have less headache
- Visual acuity and visual fields at presentation and last follow-up were significantly worse among men.

IIH: Treatment

- Acetazolamide:
 ↓ CFS production
- Weight Loss
- ON Fenestration
- CSF Shunting : ↓ CSF volume
- TS stenting: ↓ Venous pressure

IIH: Radiology

?? \uparrow CSF production / \downarrow CSF absorption ??

Segmentation:

Parenchyma -GM -WM CSF -ICCSF -IVCSF

N Alperin et al . AJNR 2013

Table 1: Mean an	d SD values o	f cranial volu	imetric measu
	ICCSF (mL)	VCSF (mL)	EVCSF (mL)
Control $(n = 11)$		19 ± 6	1
IIH $(n = 11)$		19 ± 7	
P value		0.950	
	Nor ICCSF	Nor VCSF	Nor EVCSF
	(%)	(%)	(%)
	(%) 18 ± 2	(%) 1.4 ± 0.5	(%) 16 ± 1
	(%) 18 ± 2 21 ± 3	(%) 1.4 ± 0.5 1.3 ± 0.4	(%) 16 ± 1 20 ± 2

CONCLUSIONS: Increased IC CSF volume that accumulates in the EV SAS provides direct evidence for impaired CSF homeostasis in obesity-associated IIH

EVCSF indicates extraventricular CSF volume; ICCSF, intracranial CSF volume; Nor, normalized; VCSF, ventricular CSF volume.

N Alperin et al . AJNR 2013

	ICCSF (mL)	VCSF (mL)	EVCSF (mL)	GM (mL)	(mL)	ICV (mL)
Control $(n = 11)$	238 ± 25	19 ± 6	220 ± 24	557 ± 31	537 ± 47	1332 ± 81
IIH $(n = 11)$	309 ± 56	19 ± 7	290 ± 52	602 ± 57	528 ± 35	1438 ± 124
P value	0.002	0.950	0.0011	0.038	0.616	0.029

Note:—EVCSF indicates extraventricular CSF volume; ICCSF, intracranial CSF volume; Nor, normalized; VCSF, ventricular

CONCLUSIONS: Increased GM Volume ~ Interstitial fluid -Likely secondary to increased resistance to cerebral venous drainage

Glymphatic ?

N Alperin et al . AJNR 2013

IIH: Treatment

- Acetazolamide:
 ↓ CSF production
- Weight Loss
- ON Fenestration
- CSF Shunting : ↓ CSF volume
- TS stenting: ↓ Venous pressure

First-in-human endovascular treatment of hydrocephalus with a miniature biomimetic transdural shunt 8

Pedro Lylyk¹, ^(b) Ivan Lylyk², ^(b) Carlos Bleise¹, Esteban Scrivano¹, Pedro Nicolas Lylyk¹, Brandon Beneduce³, Carl B Heilman⁴, ^(b) Adel M Malek⁴

Correspondence to Dr Adel M Malek, Neurosurgery, Tufts Medical Center, Boston, MA 02111, USA;

Journal of Neurointerventional Surgery 6 November 2021

Α

sure (cm H2O) 52 05 52 eShunt Deployment

ICP and VENTRICULAR SIZE

normal to small vent Inc ICP Large Vent Normal ICP

Optic Nerve Sheath Complex

Findings seen in IIH, SIH and in <u>Astronauts</u>:

Tortuosity/Enlargement ONS 45%
 Flattening of the posterior sclera 80%
 Inward protrusion of the ON head

2 & 3 have Sens & Spec raging between 80-100% *

*Agid et al . Neuroradiology 2006 Rohr et al. AJNR 2011 Friedman et al Diagnostic Criteria for Idiopathic Intracranial Hypertension. NEUROLOGY 2002

SPACEFLIGHT-ASSOCIATED NEURO-OCULAR SYNDROME (SANS)

 \uparrow

Automated Quantitation of the Posterior Scleral Flattening and Optic Nerve Protrusion by MRI in Idiopathic Intracranial Hypertension

AJNR 2013

N. Alperin, A.M. Bagci, B.L. Lam, and E. Sklar

Sella & Pituitary

Sella & Pituitary

Magnetic resonance imaging finding of empty sella in obesity related idiopathic intracranial hypertension is associated with enlarged sella turcica 15 May 2013

Sudarshan Ranganathan • Sang H. Lee • Adam Checkver • Evelyn Sklar • Byron L. Lam Gary H. Danton • Noam Alperin

Sella and Pituitary

Measurement	Controls (n=11) (mean±SD)	IIH patients (<i>n</i> =10) (mean±SD)	<i>p</i> value
H1 (mm)	14.83±2.44	16.27±2.69	0.173
H2 (mm)	9.94±1.82	12.46 ± 2.11	0.009*
H1–H2 (mm)	4.89±1.36	3.81±1.30	0.067
(H1–H2)/H1	0.33±0.06	0.23±0.06	0.004 *
M1_A1 (mm ²)	124.15±24.63	200.39±24.18	< 0.0001 *
M2_A1 (mm ²)	71.97±22.25	116.09±25.01	0.001 *
A2 (mm ²)	57.20±14.45	62.02±16.74	0.557
A2/M1_A1	0.47±0.11	0.31 ±0.07	0.003 *
A2/M2_A1	0.82±0.15	0.54±0.11	0.0004*

Sella and Pituitary: Post treatment

IIH patient	Sella area	$(A1) (mm^2)$	Gland are	$(A2) (mm^2)$	Normalized g	land area (A2/A1)
(n=8)	Pre	Post-1 week	Pre	Post-1 week	Pre	Post-1 week
P2	212.0	218.0	56.3	56.0	0.27	0.26
Р3	198.0	206.0	52.8	68.5	0.27	0.33
P4	216.0	221.0	48.5	69.0	0.22	0.31
P6	183.0	175.0	49.3	53.0	0.27	0.30
P7	182.0	185.0	64.3	65.0	0.35	0.35
Р9	224.0	227.0	58.0	65.0	0.26	0.29
P11	216.9	219.1	82.8	85.7	0.38	0.39
P12	152.0	146.0	41.8	54.5	0.27	0.37
Mean	197.9	199.6	56.7	64.6	0.29	0.33
SD	24.4	28.4	12.6	10.6	0.05	0.05
<i>p</i> value	0.54	7	0.01	6*	0.031*	

13yo F with decreased vision ICP 45

Presentation

D2 after large volume tap 2 years after LP shunt

Venous Sinuses & Venous Drainage

- Why does it happen: Cause &/or Effect?
- Why at this location?
- Correlation with severity?
- Correlation with outcome?
- Stenting?

STENOSIS LOCATION

1. Why is stenosis in TS at a fixed anatomic point?

- Distal TS is collapsible. Autopsy
- Acts as a "dynamic resistor" (Starling resistors)
- Location of TSS is consistent and is above the Asterion

TSS: Cause Vs Effect

- Manometry*:
 - Elevated Venous pressure in SSS
 - Significant pressure gradient across the "stenosis"

Clinical course of idiopathic intracranial hypertension with transverse sinus stenosis B Riggeal et al Neurology 2013

• Evaluate the effect of TSS on course of IIH. 51 patients

Results

- TSS ~ 100% & almost always bilateral
- Always same location

TSS and Disease course/Outcome

- No correlation between % TSS and
 - Opening Pressure
 - Patient w highest ICP (60 cm):lowest % stenosis ~ 19%
 - Clinical course and outcome
 - VF
 - Clinical Course
 - Having unilateral TSS did not correlate with the clinical course
 - Incidentally: Patients with highest stenosis → good outcome & normal VFs

Clinical features, not the degree of TSS, should be used to determine management in IIH

TSS: Cause Vs Effect

Transverse Sinus Stenting for Idiopathic Intracranial Hypertension: A Review of 52 Patients and of Model Predictions

INTERVENTIONAL

Transverse Sinus Stenting for Idiopathic Intracranial Hypertension: A Review of 52 Patients and of Model Predictions AJNR 2011

AJNR 2014

Department of Neurology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, Sydney, NSW, Australia

G. Michael Halmagy

Geoffrey D. Parker

"It became clear that when one is faced with a positive feedback loop or a "vicious cycle," the loop just needs to be broken and the answer to the question of causation becomes irrelevant—rather like the question of which came first: the chicken or the egg".

Table 1: Clinical parameters in patients with IIH before and after transverse sinus stent placement							
Clinical Parameter	Before Stent			After Stent			
	Mild	Moderate	Severe	Mild	Moderate	Severe	
Papilledema	11ª	27	7	0 ^b	0	0	
Visual acuity loss	4	4	5	3	1	0	
Visual field loss	19 ^c	6	5	5	2	0	
Headache	6	22	15	0	8 ^d	0	
Transient visual obscurations	3	10	6	0	0	0	
Pulsatile tinnitus	6	9	2	0	0	0	
Diplopia	3	2	1	0	0	0	

Table 4: Venous pressures in 40 patients with IIH with papilledema requiring only 1 stent placement procedure versus 6 (all with papilledema at first stent) requiring a second stent placement procedure^a

	Superior Sagittal Sinus Pre-stent (mm Hg)	Superior Sagittal Sinus Post-stent (mm Hg)	Gradient Pre-stent (mm Hg)	Gradient Post-stent (mm Hg)
Single stent	31	17	19	0.4
(n = 40, all with papilledema)	(15-94)	(11-33)	(6-36)	(0-5)
	(n = 40)	(n = 39)	(n = 40)	(n = 40)
Repeat stents, on 1st stent	43	18	29	2.8
(n = 6, all with papilledema prior to first stent)	(18-56)	(11-32)	(15-41)	(0-14)
	(n = 6)	(<i>n</i> = 5)	(n = 6)	(n = 6)
^a Ranges indicated in parentheses.				

Pascal Jabbour MD FAANS, FACS, FAHA • 2nd The Angela and Richard T. Clark Distinguished Professor of ... 2mo • 🚱

For the non believers :

Progressive blindness with headaches

- 1- Venous manometry 98 with a gradient of 70!
- 2- Severe T-S stenosis stented with Zilver 9x40 with post plasty
- 3- Pressure down to 18 !
- 4- significant vision improvement in 24 hours

#IIH #SinusStenting

Jefferson Neurosurgery JEFFERSON HOSPITAL FOR NEUROSCIENCE Thomas Jefferson University Hospitals

+ Follow •••

March 2023

Journal of MEDICAL IMAGING and RADIATION ONCOLOGY

Medical Imaging—Original Article

Intracranial venous stenting for idiopathic intracranial hypertension

Frederick Ong 🔀, Timothy Phillips, Gregory Selkirk, William McAuliffe

First published: 16 January 2023 | https://doi.org/10.1111/1754-9485.13505

Results

MIRC

89.2% patients were able to cease Acetazolomide post stenting. 78.3% patients reported resolution of headaches. 84.3% patients demonstrated resolution of their papilloedema. 91.6% patients demonstrated improvement of their visual acuity. Compared with a recent meta-analysis by Satti and Chaudry in 2015, our results demonstrated a higher technical success rate and lower complication rates.

Is There a Different Imaging/Clinical Presentation for IIH ?

Case presentation

- 40 y.o Male
- 4 weeks prior to presentation: rapid onset of severe headaches when traveling followed by constant dripping of clear fluid from the left nostril.
- BMI 32, questionable weight gain over the past year
- PMH none
- SH none
- Meds none

C/O Zoukaa Sargi, MD MPH NASBS 2020

- Ophthalmology: No Papilledema, No VF defect
- 2 team surgery for resection of meningocele and repair of CSF leak with Lumbar drain placement and intrathecal fluorescein injection
- Lumbar drain placed preoperatively, <u>normal</u> opening pressure, Fluorescein injected intrathecally.

Case presentation

- Reconstruction done using multilayer technique (Allograft + left sided nasal septal flap)
- Lumbar drain kept open at 5 ml an hour for 4 days.
- LD clamped on POD 4, patients started leaking on POD 6.

C/O Zoukaa Sargi, MD MPH NASBS 2020

Case presentation

- Taken back to the OR one week later for revision repair:
- Abdominal fat graft and nasal septal flap
- Repair challenged intraoperatively
- Lumbar Drain kept managed similarly
- with every clamp attempt, the patient starts leaking again. <u>ICP measures start</u> going up.
- Starts developing intermittent leaking despite the drain in place
- →VP shunt

sCSF leak Vs IIH

- S-CSF leak is a form of IIH, occurring in a subset of patients ¹⁻³
- Evidence: S-CSF leak patients post surgical repair of skull base defect develops elevated ICP and signs and symptoms of IIH⁴

- 1. Goddard JC, et al. Otol Neurotol 2010
 - 2. Lloyd KM et al. Radiology 2008
 - 3. Silver RI et al. Am J Rhinol. 2007
- 4. Mokri B et al. Mayo Clinic Proc. 2002

Skull Base Thickness: A Proposed Factor Linking the Pathogenesis of <u>Spontaneous CSF Leak & IIH</u>*

Two Different Diseases

Vs

One Disease with Two Manifestations?

* N Nguyen, R Bhatia, Roy Casiano. In Press

One Disease: Two Manifestations

Statistically Significant Results

* N Nguyen, R Bhatia, Roy Casiano. In Press

Statistically Significant Results

• IIH: younger age

Female
 Predominance in
 Both groups

 Av BMI > 30 in both groups

Mean Aggregate Skull Base Thickness

Statistically Significant Results

Intervention for Elevated Intracranial Pressure Improves Success Rate After Repair of Spontaneous Cerebrospinal Fluid Leaks

> William Teachey, BS; Jessica Grayson, MD; Do-Yeon Cho, MD; Kristen O. Riley, MD; Bradford A. Woodworth, MD, FACS D Laryngoscope . 2017

56 articles, 679 patients

TABLE III. Comparison of ICP Intervention.						
No. No. of Success Mean Follow-up Patient Cohort Treated Failures Rate mo						
ICP intervention	348	25	92.82%	24.1 ± 2.9		
No ICP intervention 331 60 81.87% 26.9 ± 3.7						
ICP = intracranial pressure.						

Take home points

↑CP activity1

Mineralocorticoid

rec

rec

Mollan et al J Neurol Neurosurg Psychiatry 2015

Take Home Points

1481

References

- W. Whitely el al. CSF opening pressure: Reference interval and the effect of body mass index. NEUROLOGY 2006
- Friedman et al Diagnostic Criteria for Idiopathic Intracranial Hypertension. NEUROLOGY 2002
- Mollan et al J Neurol Neurosurg Psychiatry 2015
- *Cserr HF et al . Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation.Ann N Y Acad Sci 1988
- *Johanson CE, et al. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 2008;
- Abdolreza Tabassi et al. Serum and CSF vitamin A concentrations in idiopathic intracranial hypertension. NEUROLOGY 2005
- Malm J. CSF hydrodynamics in idiopathic intracranial hypertension: a long-term study. Neurology 1992
- Jeffrey J. Is there a cerebral lymphatic system? Stroke. 2013 June
- Kleinschmidt, J et al. Idiopathic intracranial hypertension: Relationship to depression, anxiety, and quality of life. Neurology 2000
- N Alperin et al . AJNR 2013
- RM Ahmed et al AJNR 2011
- King JO et al. Manometry combined with cervical puncture in idiopathic intracranial hypertension. Neurology 2002
- B Riggeal, Sindane, Biousse et al Clinical course of idiopathic intracranial hypertension with transverse sinus stenosis Neurology 2103