Myelodysplastic Syndromes

"Major Challenges Treating Myelodysplastic Syndrome"

Rami Komrokji, MD

Senior Member, Vice Chair, Department of Malignant Hematology Moffitt Cancer Center Professor of Oncologic Sciences University of South Florida Tampa, FL

COI Disclosures

Speaker bureau: BMS/Celgene, Jazz, Pharma Essential, AbbVie, Servier, CTI

Advisory board/honoraria: BMS/Celgene, Jazz Pharmaceuticals, PharmaEssentia, AbbVie, Novartis, Takeda, Geron, Taiho, CTI, Servier

- 71-yr-old female presented with pancytopenia (Hb 8.0 g/dL, platelets 90, ANC 900)
- Original bone marrow showed increased ring sideroblasts
- Patient treated in community with ESA for 3 mo then azacitidine for 6 mo but remains RBC TD

Patient 2

- 71-yr-old female presenting with anemia (Hb 8.0 g/dL, platelets 200, ANC 4000)
- Original workup no evidence of bleeding and no nutritional deficiencies

Patient 3

- 71-yr-old female presenting with anemia (Hb 8.0 g/dL, platelets 150, ANC 1200)
- Original workup no evidence of bleeding and no nutritional deficiencies

- Repeat bone marrow demonstrated RS >15%, no increased myeloblasts
- Normal karyotype, no somatic mutation detected by NGS
- Further workup revealed severe copper deficiency

Patient 2

- Bone marrow aspirate and biopsy revealed >15% RS and erythroid dysplasia
- Normal karyotype, SF3B1 K700E (VAF 30%) detected by NGS

Patient 3

- Bone marrow aspirate and biopsy revealed >15% RS and 10-15% myeloblasts
- Complex karyotype including del5q and -7, TP53 (VAF 65%) detected by NGS

- 71-yr-old female presented with pancytopenia (Hb 8.0 g/dL, platelets 90, ANC 900)
- Diagnosis: copper deficiency

Patient 2

- 71-yr-old female presenting with Anemia (Hb 8.0 g/dL, platelets 200, ANC 4000
- Diagnosis: MDS-RS

IPSS-M: low risk

IPSS-R: low-risk

0.25

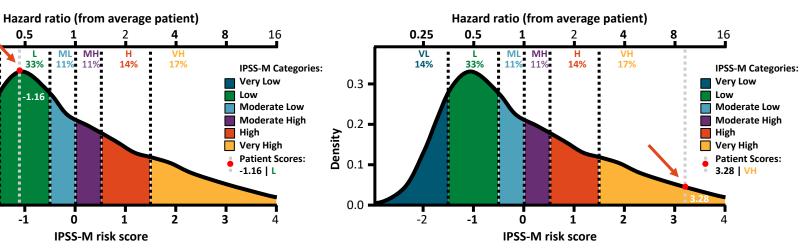
VL

14%

-2

0.3

0.2 **Density** 0.1


0.0

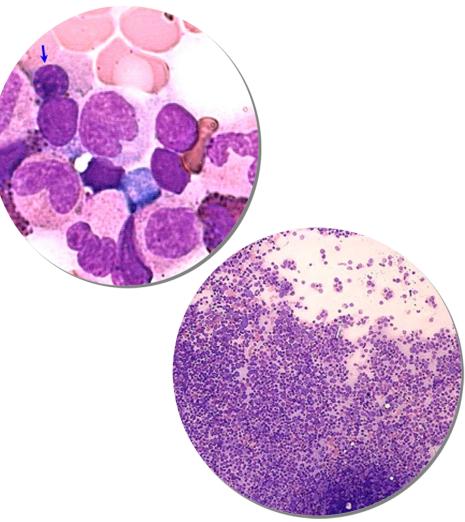
0.5

-1

- 71-yr-old female presenting with Anemia (Hb 8.0 g/dL, platelets 150, ANC 1200)
- Diagnosis: MDS-EB2
- IPSS-R: very high risk
- IPSS-M: very high risk

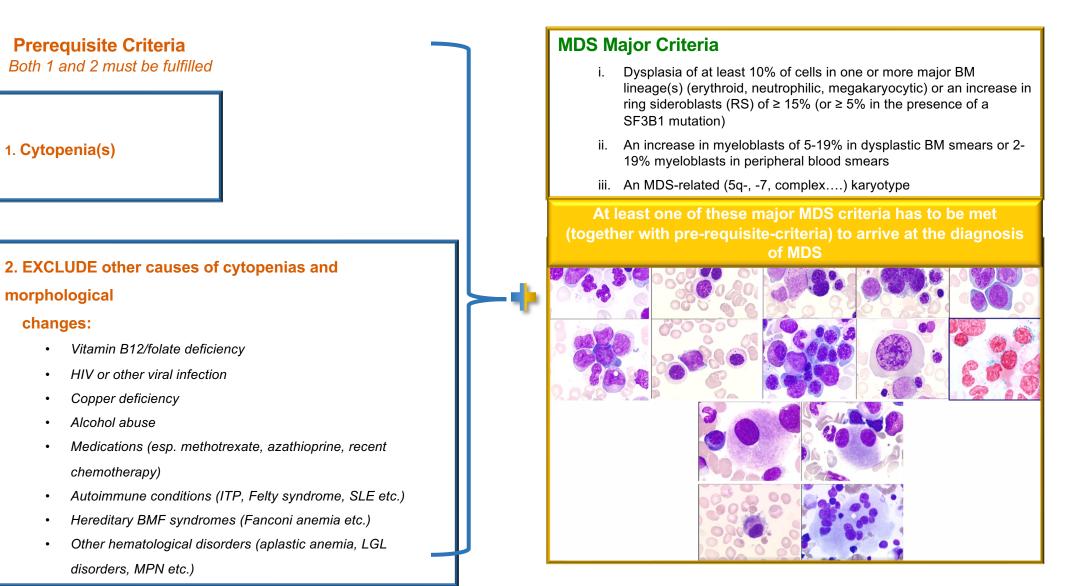
- Treatment:
- 1. Copper replacement.

Patient 2


- Treatment:
 - 1. ESA
 - 2. Luspatercept
 - 3. Lenalidomide
 - 4. HMA

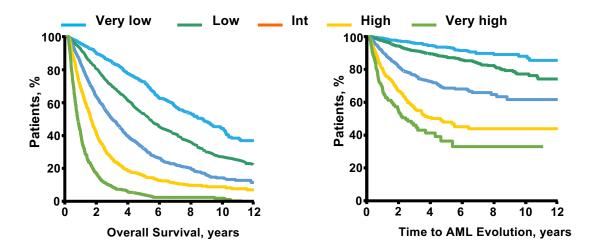
Patient 3

- Treatment:
- 1. Clinical trials
- 2. HMA
- 3. Allo-SCT if TP53 mutation is cleared


Myelodysplastic Syndromes (MDS)

- A group of malignant hematopoietic neoplasms characterized by¹:
 - Bone marrow failure with resultant cytopenia and related complications
 - Evidence of clonality by cytogenetic abnormalities or somatic gene mutations
 - Dysplastic cytologic morphology is the hallmark of the disease
 - Tendency to progress to AML
- Overall incidence 3.7-4.8/100,000²
 - In US (true estimates ≈37,000-48,000)
- Median age: 70 yrs; incidence: 34-47/100,000 >75 yrs³

1. Bennett J et al. *Clinical Oncology*. New York, NY: Churchill Livingstone; 2004:2849-2881; 2. SEER data. 2000-2009. 3. SEER 18 data. 2000-2009.


MDS Minimal Diagnostic Criteria

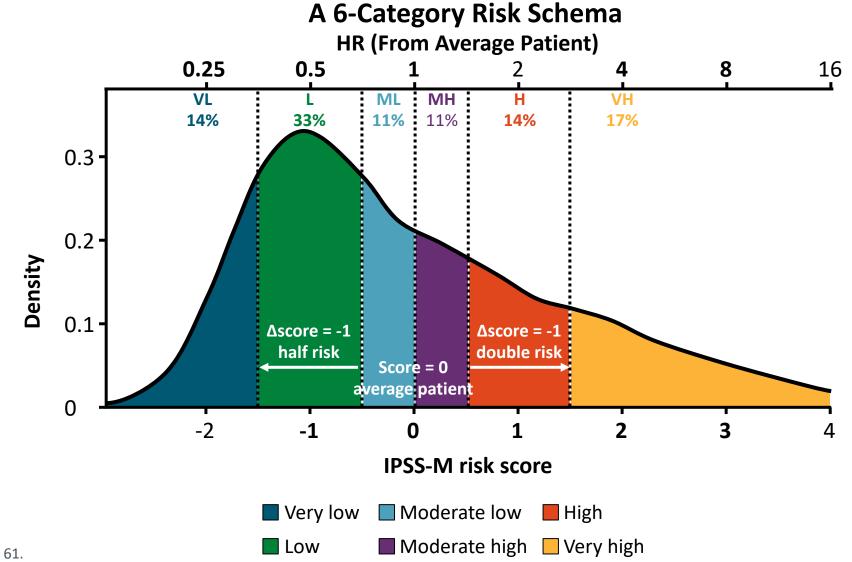
Valent, et al. Oncotarget. 2017 Sep 26; 8(43): 73483-73500.

Risk Groups for the IPSS-R

Risk group	Points	% of Patients	Median survival, years	Time until 25% of patients develop AML, years
Very low	≤ 1.5	19 %	8.8	Not reached
Low	> 1.5 - 3	38 %	5.3	10.8
Intermediate	> 3 - 4.5	20 %	3.0	3.2
High	> 4.5 – 6	13 %	1.6	1.4
Very High	> 6	10 %	0.8	0.73

Development of IPSS-M: Model Development Steps 1 and 2

Step	Development
Encoding for clinical and molecular variables	 Continuous encoding of clinical variables; linear function for BM blasts, Hg Platelet values capped at 250 x 10⁹/L; ANC not included Maintained 5 IPSS-R cytogenetic categories Gene mutations incorporated as binary variables aside from <i>TP53</i> allelic state and <i>SF3B1</i> subsets accounting for comutations
Determination of independent IPSS-M prognostic variables	 Model fit with a Cox multivariable regression adjusted for confounder variables (age, sex, primary vs therapy-related MDS) Continuous clinical parameters IPSS-R cytogenetic categories 17 genetic variables from 16 main effect genes 1 genetic variable from 15 residual genes (<i>BCOR, BCORL1, CEBPA, ETNK1, GATA2, GNB1, IDH1, NF1, PHF6, PPM1D, PRPF8, PTPN11, SETBP1, STAG2, WT1</i>)


Development of IPSS-M: Association Between Gene Mutations and Clinical Endpoints in Discovery Cohort

- After adjusting for age, sex, MDS type (primary vs therapy related), and IPSS-R raw score, multiple genes were associated with adverse outcomes including LFS (14 genes), OS (16 genes), and AML transformation (15 genes)¹
- Strongest associations found with:
 - TP53 multi-hit (multiple mutations, mutation with deletion or copy-neutral LoH)² (7% of patients)
 - MLL partial tandem duplication (2.5% of patients)
 - FLT3 mutations (1.1% of patients)

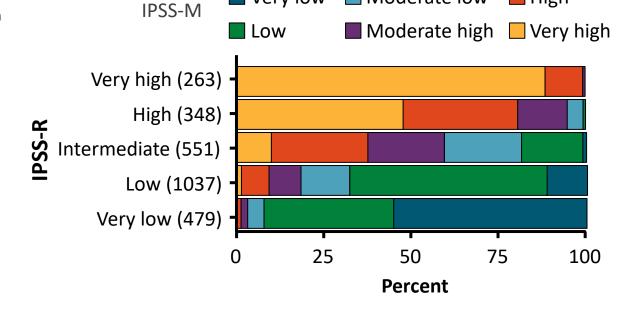
Development of IPSS-M: Association Between Gene Mutations and Clinical Endpoints in Discovery Cohort

- SF3B1 mutations were associated with favorable outcomes, modulated by pattern of comutations
 - SF3B1^{5q}: concomitant isolated del(5q) (7%)
 - SF3B1^β: co-occurrence of mutations in BCOR, BCORL1, RUNX1, NRAS, STAG2, SRSF2 (15%)
 - SF3B1^{α}: any other SF3B1 mutations

The IPSS-M Risk Categories

Bernard. ASH 2021. Abstr 61.

Molecular IPSS for MDS


- Discovery cohort: diagnostic MDS samples (N = 2957) with <20% blasts and WBC <13 x 10⁹/L were profiled for mutations in 156 driver genes
- Candidate target risk variables consisted of blood counts, blasts, cytogenetics and gene mutations, while patient age, sex and MDS type (de novo or not) were treated as confounders
 Leukemia-Free Survival

— Very low — Moderate low - High IPSS-M Moderate high — Very high - Low 1.00 *P* <.0001 **Probability of LFS** 0.75 0.50 0.25 -Q Yr Patients at Risk, n

Restratification of Patients From IPSS-R to IPSS-M Categories

- 46% (n = 1,223) of patients were restratified
- 7% (n = 196) of patients were restratified by more than 1 strata

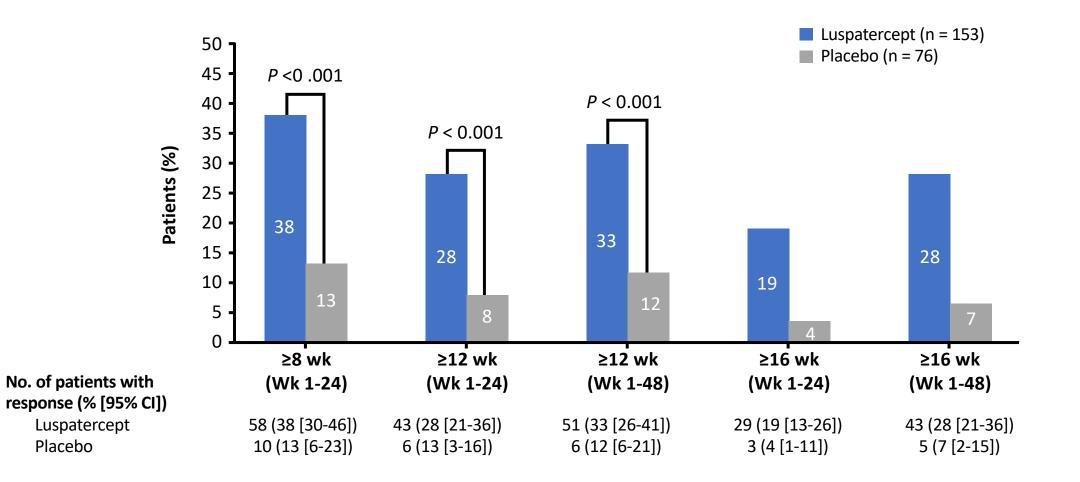
📕 Very low 📃 Moderate low 📕 High

Bernard. ASH 2021. Abstr 61

Management of Lower-Risk MDS

Lenalidomide in MDS

- Lenalidomide is standard of care for lower risk MDS with del(5q)^{1,2}
 - Transfusion independence by IWG (67%)
 - 90% of patients respond within 3-4 month and duration of response is almost 3 years
 - MDS-004 supports 10 mg as appropriate starting dose
 - Higher TI for 10 mg
 - Greater proportion of cytogenetic responses vs 5 mg (41% vs 17%)
 - No significant differences in hematological toxicity
- MDS-001, MDS-002, and MDS-005 provided evidence that lenalidomide could be a choice for anemia treatment in lower-risk non-del(5q) pts with adequate platelets and neutrophil count^{3,4}


1. Fenaux P et al. Blood. 2011;118(14):3765-3776; 2. List AF et al. *N Engl J Med*. 2006;355(14):1456-1465; 3. List AF et al. *N Engl J Med*. 2005;352(6):549-557; 4. Raza A et al. *Blood*. 2008;111(1):86-93; 5. Sekeres MA et al. *J Clin Oncol*. 2008;26(36):5943-5949.

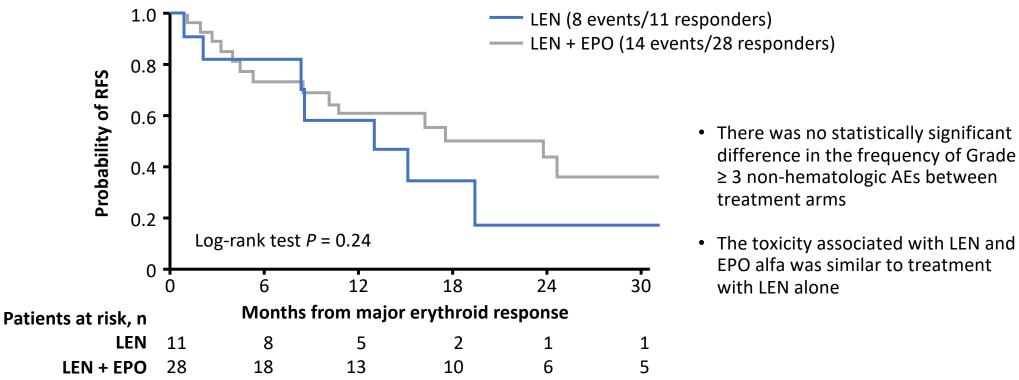
Sintra-REV Trial

	Total (N = 61)	Len (n = 40)	Placebo (n = 21)	<i>P</i> value	
Age, median (range)	72 (37-89)	72 (37-86)	71 (46-89)	ns	^{1.0} Time to Transfusion Dependency
Gender M/F	11/50	8/32	3/18	ns	Time to Transfusion Dependency
Hb (g/dL), median (range)	9.8 (7.7-11.7)	9.6 (8.8-11.7)		ns	
Neutrophils, median (range)	2.15 x 10 ⁹ /L (0.8-14.2)			ns	
Platelets, median (range)	243 x 10 ⁹ /L (78-706)			ns	
% Blasts in PB, median (range)	0 (0-2)	0 (0-1)	0 (0-2)	ns	
% Blasts in BM, median (range)	1.5 (0-7)	1.5 (0-5)	2 (0-7)	ns	0.6-
WHO 2008 classification, n (%)					750.0.0
RCUD	2 (3.3)	2 (5)	0	ns	me TFS 6.3 y
RARS	1 (1.6)	0	1 (4.8)		0.4-
RCMD	15 (24.6)	10 (25)	5 (23.8)		t ⊪−+−−+ me TFS 2.8 y
MDS with EB-1	3 (4.9)	1 (2.5)	2 (9.5)		
MDS with isolated del(5q)	40 (65.6)	27 (67.5)	13 (61.9)		
IPSS, n (%)					0.2-
0	43 (70.5)	29 (72.5)	14 (66.7)	ns	Median follow-up 2.1 y (0.02-4.4): 2.2 vs 1.9, P= n
0.5	9 (14.8)	6 (15)	3 (14.3)		
1	9 (14.8)	5 (12.5)	4 (19)		0.0 100 150 200 2
Cytogenetics					Months
Del(5q) isolated	56 (93.3)	38 (95)	18 (90)	ns	
Del(5q) + 1 Cy abnormality	4 (6.7)	2 (5)	2 (10)		

López-Cadenas F et al. ASH 2020. Abstract 536.

MEDALIST: Red Cell Transfusion Independence with Luspatercept in MDS-RS

Immunosuppressive Therapy (IST)

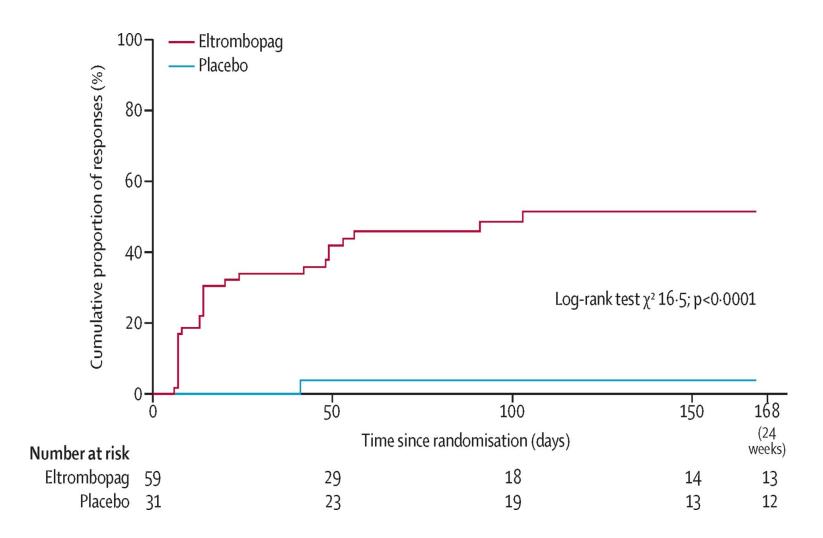

- One course ATG \pm CSA
- Positive variable for IST response^{1,2}
 Age is the strongest variable for response
 HLA-DR 15 status

 - Short Duration of disease.
 - Low transfusion burden
 - Trisomy 8
 - Hypoplastic MDS
 - PŃH clone
- Negative predictors of response
 Bone marrow fibrosis

 - Del(5q)
 - SF3B1
- Responses are durable and trilineage responses are observed³

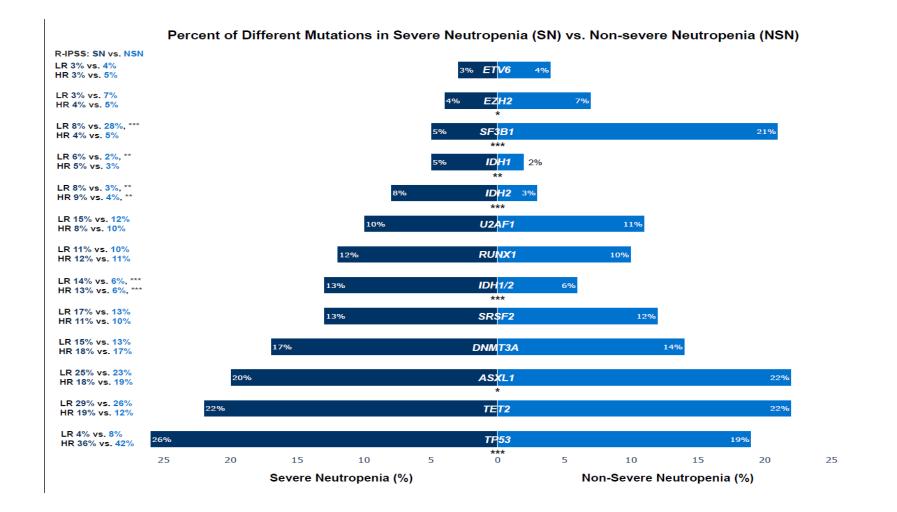
Phase III ECOG 2905 Study of Lenalidomide ± EPO Alfa in Lowerrisk MDS Non-del(5q) Refractory to Erythropoietin: RFS

Randomized, Phase III trial of patients with Low- or Intermediate-1 risk by IPSS; symptomatic anemia either untransfused with hemoglobin < 9.5 g/cL or RBC-TD (N = 247; n = 195 evaluable)

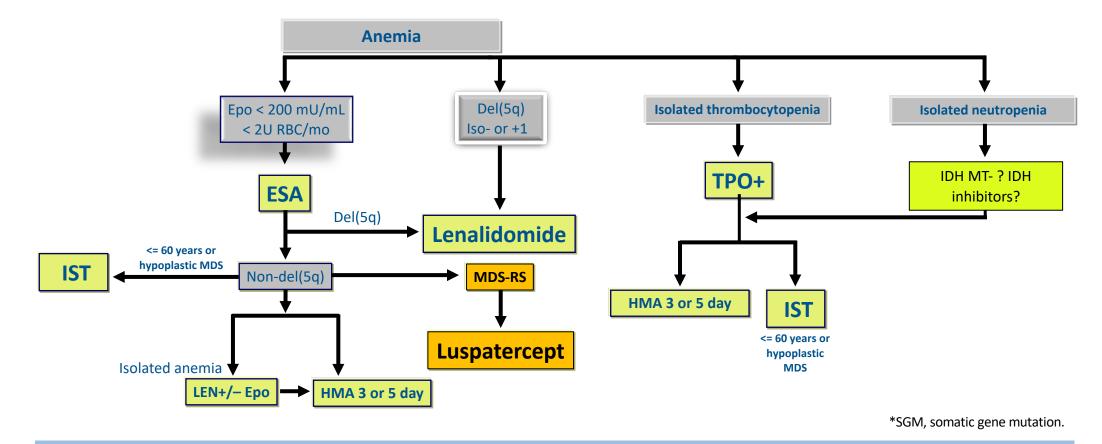

Low-Dose HMAs in LR-MDS: Response Rates

Response,* %	Decitabine (n = 70)	Azacitidine (n = 39)	<i>P</i> value	Response,* %	Decitabine (n = 70)	Azacitidine (n = 39)	<i>P</i> value
ORR	70	49	.03	Blasts ≥5%	(n = 21)	(n = 11)	
CR	37	36	.90	ORR	100	36	<.001
mCR	9	5	NR	CR	52	18	.06
н	24	8	NR	Blasts <5%	(n = 45)	(n = 27)	
SD	26	44	NR	HI – ≥1 lineage	36	48	.29
PD	4	8	NR	HI – All lineages	22	26	.72
CCyR	25	6	.12	TI at response	32	16	.20
PCyR	36	19					
CCyR + PCyR	661	25	.02				

*Median treatment cycles (range): 9 (1-41)


 Strongest predictors of response included BM blasts ≥5%, MDS/MPN or CMML diagnosis, high MDA LR MDS score, and IPSS intermediate-1 risk

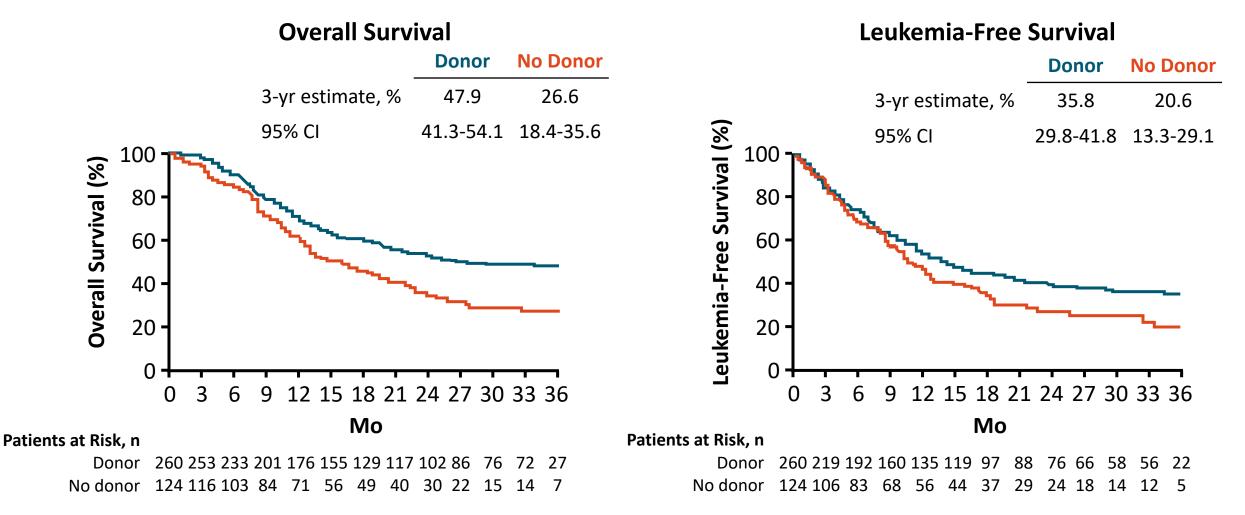
Eltrombopag Responses


Oliva EN et al. Lancet Haematol. 2017;4(3):e127-e136.

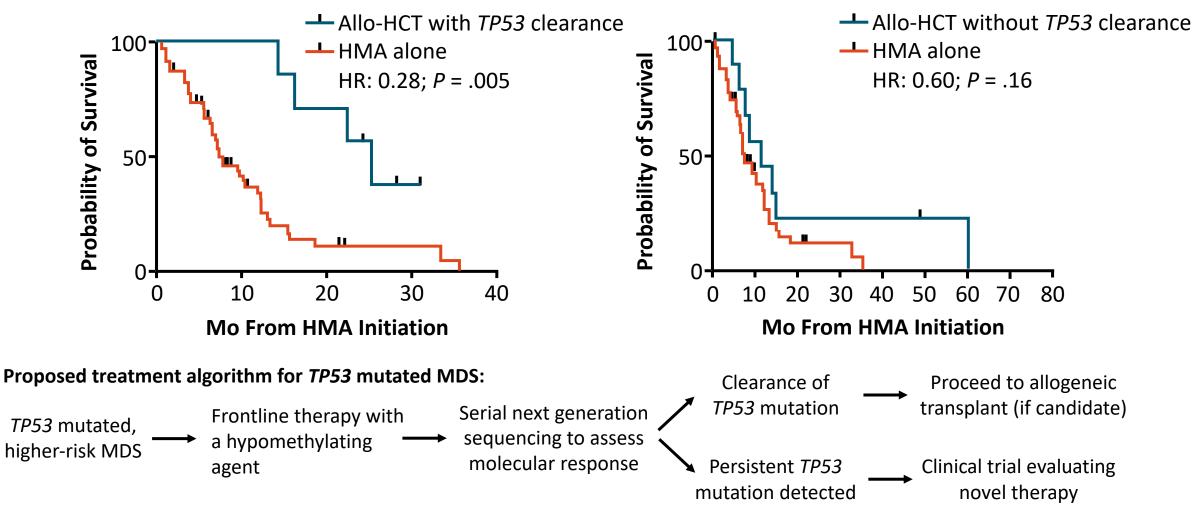
IDH Mutations are Enriched in Myelodysplastic Syndrome Patients with Severe Neutropenia: A Potential Targeted Therapy

Komrokji et al. ASH 2021

How Do I Manage LR-MDS in 2022

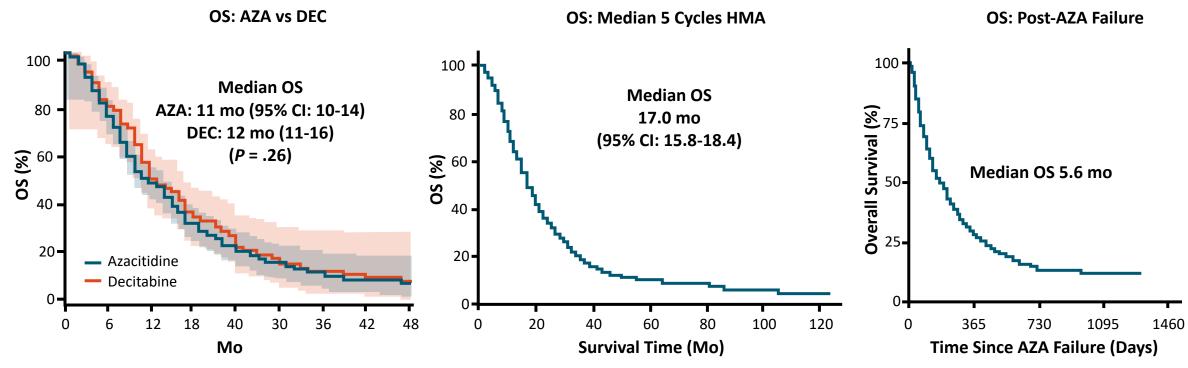


• Allogeneic stem cell transplant maybe considered after standard therapy failure or in younger patients with higher-risk disease features.


• Iron chelation should be considered in patients with evidence of iron overload.

Management of Higher-Risk MDS

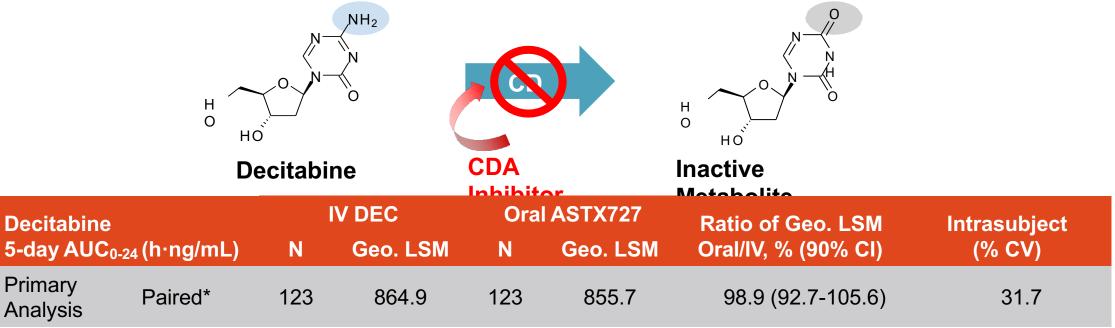
BMT CTN 1102: RIC Plus Allo-HSCT vs BSC in Older Patients With Higher-Risk MDS



Baseline and Serial Molecular Profiling Predicts Outcomes With HMAs in MDS

Hunter. Blood Adv. 2021;5:1017.

Survival of Patients With HR-MDS Remains Poor Despite Use of HMAs


532 patients ≥66 yr at diagnosis who received ≥10 days of HMA therapy

636 HR-MDS of all ages in the MDS Clinical Research Consortium who received HMA (median 5 cycles), 72% received ≥4 cycles. 68% received AZA.

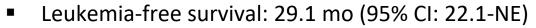
Survival post-AZA failure for patients with HR-MDS

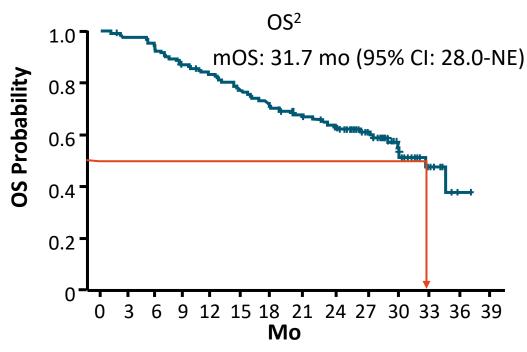
ASCERTAIN: Phase III Study of Oral HMA ASTX727 (Cedazuridine/Decitabine) vs IV Decitabine

- Oral bioavailability of HMAs decitabine and azacitidine is limited due to rapid degradation by CDA in the gut and liver
- Cedazuridine is a CDA inhibitor

*Paired patient population: patients who received both ASTX727 and IV decitabine in the randomized first 2 cycles with adequate PK samples.

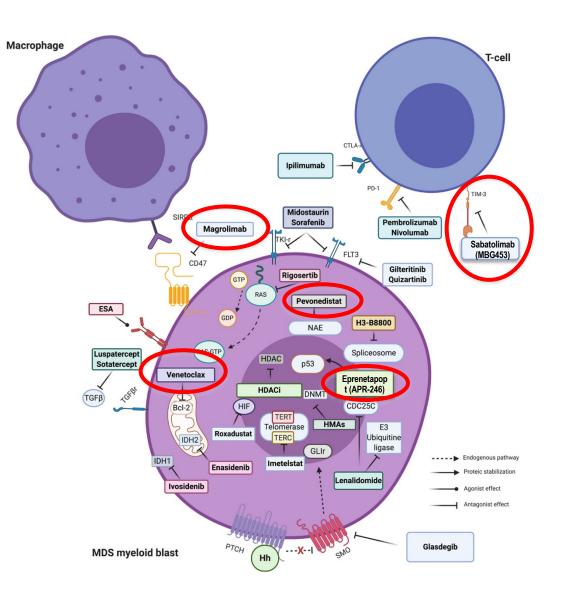
Garcia-Manero. ASH 2019. Abstr 846. Savona. ASH 2020. Abstr 1230. Savona. MDS 2021. Abstr P48.


ASCERTAIN: Update on Efficacy and Safety of Oral Decitabine/Cedazuridine in Patients With MDS and CMML


Response Category ^{1,2}	Treated Patients (N = 133)
CR, n (%)	29 (22)
PR, n (%)	0
mCR, n (%)	43 (32.3)
mCR with HI	22 (16.5)
HI, n (%)	10 (7.5)
 HI-erythroid 	2 (1.5)
 HI-neutrophils 	1 (0.8)
 HI-platelet 	7 (5.3)
Overall response (CR + PR + mCR + HI), n (%)	82 (61.7)
RBC transfusion independence, n/N (%)*	27/53 (51)
Platelet transfusion independence, n/N (%)*	6/12 (50)
*# patients TI/# patients TD at baseline.	

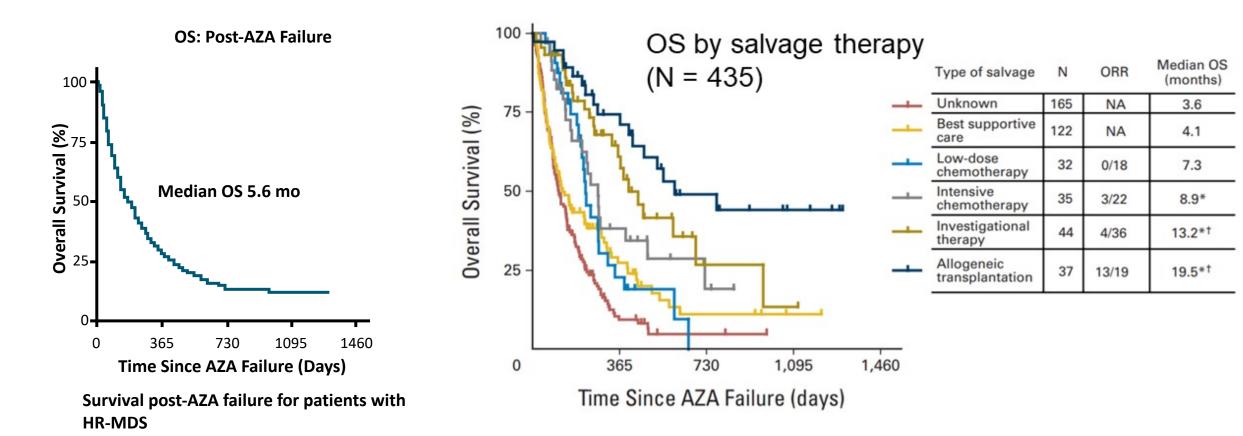
Median CR duration: 14.0 mo (range: 2-29)

 Median duration of best response: 12.7 mo (range: 1-33)


Number of patients proceeding to HCT: 34 (26%)

1. Savona. ASH 2020. Abstr 1230. 2. Savona. MDS 2021. Abstr P48.

Principal Targeted Therapies Emerging/Available in MDS


Venetoclax and HMA in Higher-Risk MDS: Efficacy of First-line Therapy

Best Response, %	HMA + Ven (n = 35)	HMA Alone (n = 1127)	P Value
ORR	77	40	<.005
■ CR	34	13	
mCR	37 (62% + HI)	11	
■ PR	3	1	
• HI	3	15	
ASXL-1 mut	(n = 16)	(n = 106)	
ORR	87	32	<.005
■ CR	44	8	
<i>TP53</i> mut	(n = 12)	(n = 137)	
ORR	75	44	.038
■ CR	25	17	.47

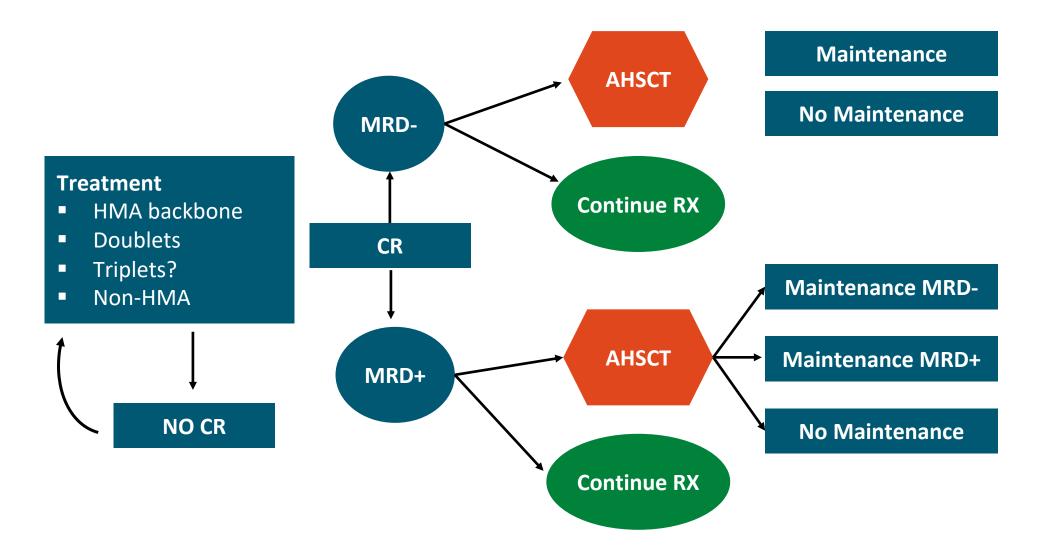
Outcome	HMA + Ven (n = 35)	HMA Alone (n = 1127)	<i>P</i> Value
Median OS, mo From diagnosis (95% CI) From start of	21 (11-32)	20 (19-22)	.86
treatment*	19.4	17.2	.88
AML transformation, %	23	37	.08
AHSCT cohort [†]	(n = 13)	(n = 256)	
Median OS, mo (95% CI)	NR	38 (27-50)	.20
2-yr OS, %	91	51	

*Median time from diagnosis to treatment was 1 mo in both arms. *Patients who went on to AHCST.

AlloSCT and Investigational Agents Best Salvage Therapy for Patients With HR MDS After HMA Failure

Prebet. JCO. 2011;29:3322.

Treatment Options in MDS After HMA Failure


- Add additional agent to HMA
- Intensive chemotherapy
- Mini-CLA ± venetoclax: normal karyotype
- *IDH2* (5-10%): enasidenib
- IDH1 (5%): ivosidenib
- *FLT3* (15%): multiple *FLT3* agents
- NPM1 (1%): ara-C based

Venetoclax and HMA in Higher-Risk MDS: Efficacy in R/R MDS Population

Best Response, %	1L HMA (n = 1127)	HMA + Ven for R/R (n = 31)	1L HMA + Ven (n = 35)	P Value
ORR	77	61	40	
CR	34	13	13	
mCR	37 (62 + HI)	48	11	
Median OS from diagnosis, mo	20	33	21	.02
(95% CI)	(19-22)	(31-36)	(11-32)	

- 31 patients with R/R MDS received median 6 cycles of first-line HMA
- 9 patients who received HMA + venetoclax for R/R MDS underwent AHSCT
 - Median OS: 31 vs 33 mo with no AHSCT (P = .70)

Total Therapy in HR-MDS

Thank You Rami.Komrokji@moffitt.org

MEET THE TEAM

Dr. Jeffrey Lancet

and the second

Dr. Rami Komrokji

Dr. Onyee Chan

Dr. Andrew Kuykendall

and the second second

Dr. Eric Padron

Dr. David Sallman

Dr. Kendra Sweet

Moffitt MDS team: Only perfect counts !!!

Acknowledgements:

- Our patients and their caregivers
- Moffitt MDS team