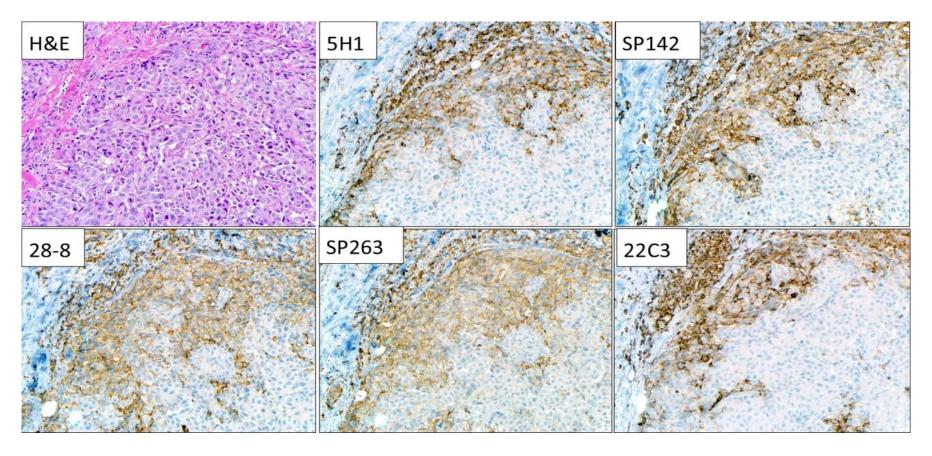

Immune checkpoint inhibitors in management of non-small cell lung cancer: practical questions and perspectives



Tejas Patil, MD
Assistant Professor
Thoracic Oncology Research Initiative
University of Colorado Cancer Center

Immune checkpoints

PD-L1 in lung cancer

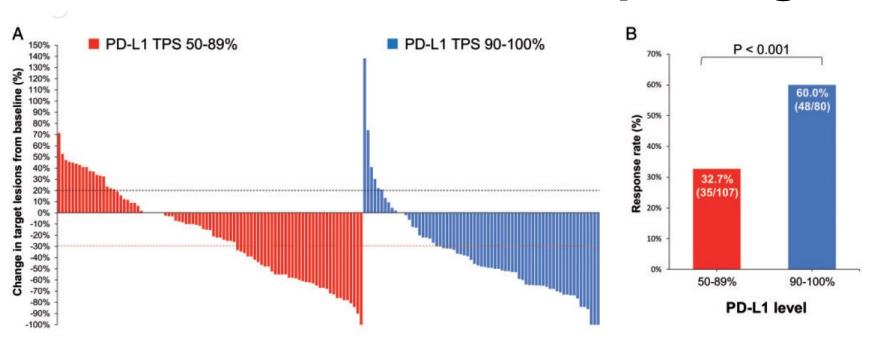
Remember that PD-L1 is a *qualitative* score (both TPS and CPS)
Remember that PD-L1 is a *continuous* variable (not binary) variable

Assay heterogeneity

	Nivoluma	ab	Pembrolizumab		Atezolizumab	Durvalumab	Avelumab
Antibody clone	28-8	SP263	22C3	SP263	SP142	SP263	73-10
Assay developer	Dako ^{5,25}	Ventana ²⁴	Dako ^{22,23}	Ventana ²⁴	Ventana ⁶	Ventana ¹⁶	Dako ⁵⁵
PD-L1 immunohistochemistry scoring*	TC	TC	TC	TC	TC and/or tumor-infiltrating IC	TC	TC
PD-L1 levels evaluated in clinical trials	TC: $\geq 1\%$, $\geq 5\%$, $\geq 10\%^5$	TC: $\ge 1\%$, $\ge 5\%$, $\ge 10\%^5$	$TC: \ge 1\%, \ge 50\%^{22}$	TC: $\ge 1\%$, $\ge 50\%^{22}$	TC: \geq 50% (TC3)† IC: \geq 10% (IC3)† ^{6,15}	$TC: \ge 25\%^{16}$	TC: ≥ 1% ⁵⁶
PD-L1 level in first-line therapy	NA	NA	TC ≥ 50%	TC ≥ 50%	NA	NA	NA
PD-L1 level in second-line therapy	None	None	TC ≥ 1%	TC ≥ 1%	None	NA	NA
Diagnostic status	Complementary: testing not required US/EU: NSQ NSCLC Japan: SQ and NSQ NSCLC	Complementary: testing not required EU: NSQ NSCLC	Companion: testing required US/EU/Japan: SQ and NSQ NSCLC	Companion: testing required EU: SQ and NSQ NSCLC	Complementary: testing not required US/EU: SQ and NSQ NSCLC	Not yet approved for durvalumab	Not yet approved for avelumab
Approved IVD PD-L1 expression levels	US/EU/Japan: all patients eligible	EU: all patients eligible	US/EU/Japan: ≥ 50% (previously untreated); ≥ 1% (previously treated)		US: all patients eligible	Not available for NSCLC	Not available fo NSCLC

Abbreviations: IC, immune cells; IVD, in vitro diagnostic; NA, not applicable; NSCLC, non-small-cell lung cancer; NSQ, non-squamous; PD-L1, programmed death-ligand 1; SQ, squamous; TC, tumor cells. *All assays score cells at any intensity.

There are multiple assays to test for PD-L1 with different scoring guidelines and thresholds


28-8 (ipilimumab + nivolumab): 1%, 5% and 10% 22C3 (pembrolizumab): <1%, 1-49%, and ≥50%

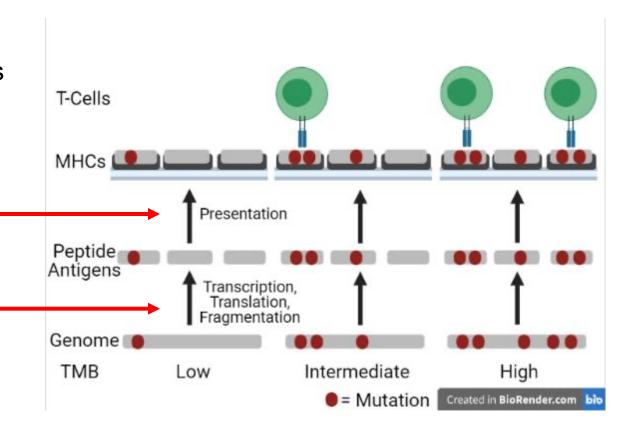
⁺TCO < 1%, TC1 1% to < 5%, TC2 5% to < 50%, TC3 ≥ 50%, IC0 < 1%, IC1 1% to < 5%, IC2 5% to < 10%, IC3 ≥ 10%.

Caveats with PD-L1 testing

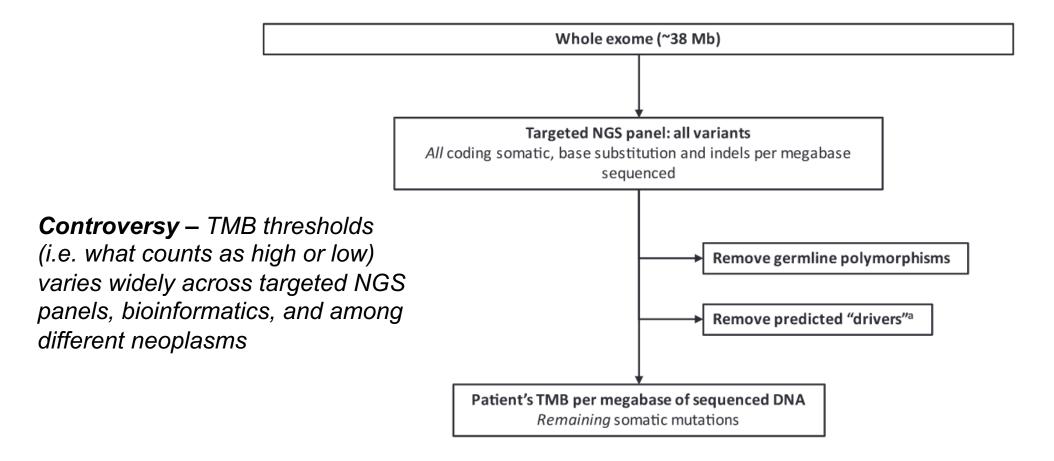
- Cytologic materials excluded from PD-L1 assessment in trials
 - Nearly 1/3 of lung samples are FNAs or from pleural sample
 - How well do FNA reliably represent immune compartment?
- Potential spatial heterogeneity
 - To what extent is their concordance between primary and metastatic sites. Some controversy here¹⁻²
- Potential dynamic heterogeneity
 - PDL1 is not a static variable! Cancers and immune microenvironment evolve in response to anti-cancer therapies³

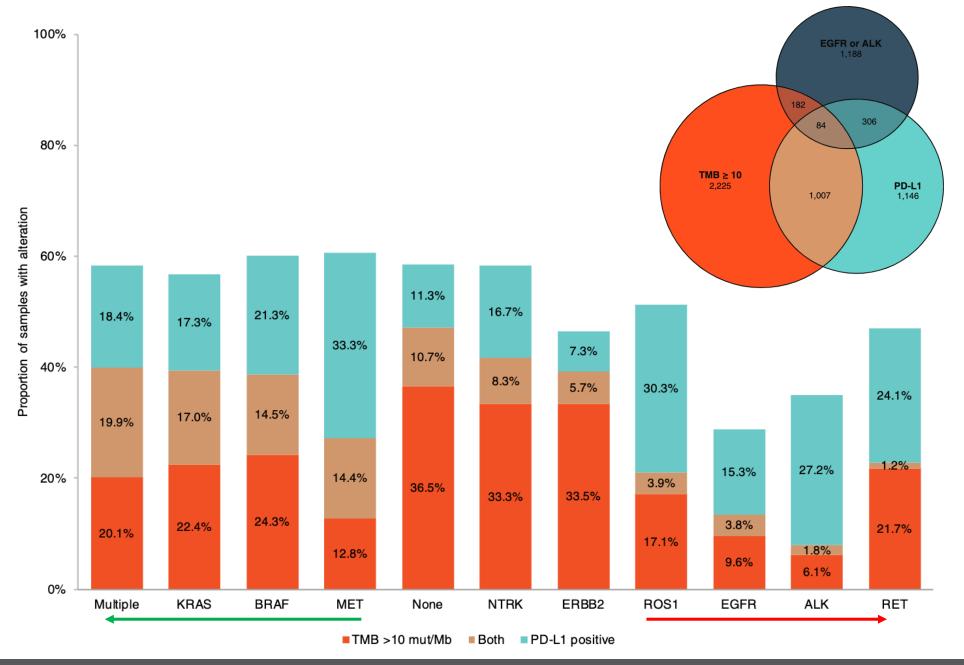
Caveats with PD-L1 reporting

Figure 2. (A) The best objective response to pembrolizumab is shown as a percent change of target lesions from baseline in evaluable patients in patients with a non-small-cell lung cancer programmed death-ligand 1 (PD-L1) expression level of 50%–89% versus 90%–100%. (B) Histograms showing the response rate to first-line pembrolizumab in the PD-L1 expression 50%–89% versus 90%–100% groups.

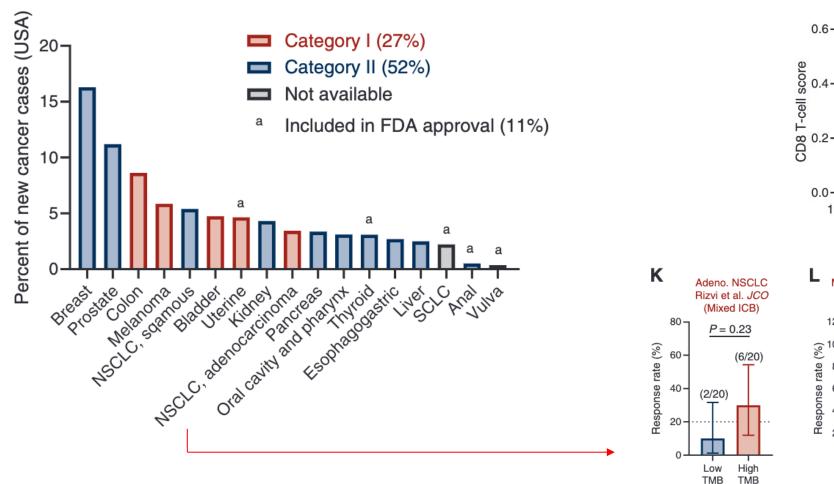

PD-L1 is a continuous variable, but trials will analyze data as categorical variable.

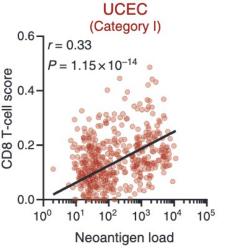
- KEYNOTE-189: PD-L1 (22C3) <1%, 1-49%, and \geq 50%
- Checkmate 227: PD-L1 (28-8) <1% vs >1%

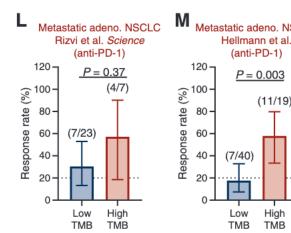

Tumor mutation burden

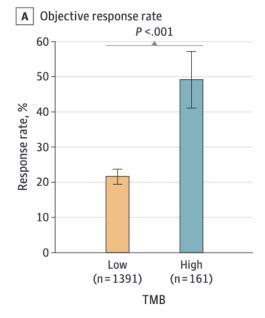

Tumor mutational burden (TMB) is a numeric index that expresses the number of mutations per megabase (muts/Mb) harbored by tumor cells in a neoplasm.

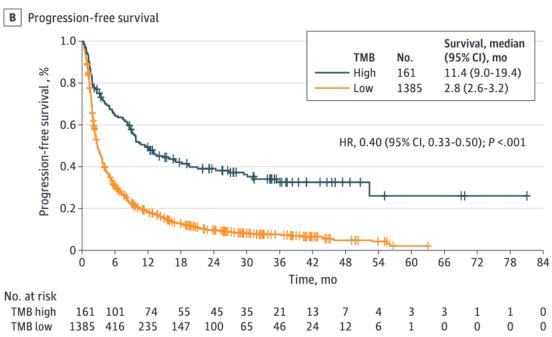
Key assumption - direct link between protein coding changes and number of potential neoantigens within tumor genome




How TMB is calculated




TMB-High relevant when CD8 T cells correlate with neoantigen load



(11/19)

High TMB (>19 Muts/Mb) associated with improved ORR and PFS in mNSCLC.

Subset analysis shows benefit irrespective of PDL1

A patient has an EGFR Exon 19 deletion and a PD-L1 of 80%.

What therapy should I use first?

Advanced NSCLC*

Oncogene driver

EGFR: Osimertinib**, erlotinib, afatinib, gefitinib, erlotinib + ramucirumab

ALK: Alectinib**, brigatinib, lorlatinib, crizotinib, ceritinib

ROS1: Entrectinib**, crizotinib, ceritinib

RET: Selpercatinib**, pralsetinib**, cabozantinib

BRAF V600E: Dabrafenib / trametinib**

MET Exon 14: Capmatinib, tepotinib, crizotinib

NTRK: Larotrectinib, entrectinib

EGFR Exon 20: Amivantamab, mobocertinib

KRAS G12C1: Sotorasib

HER2⁺: Trastuzumab deruxtecan (T-Dxd)

No driver mutation

Non-squamous

Squamous

PDL1 ≥ 1%

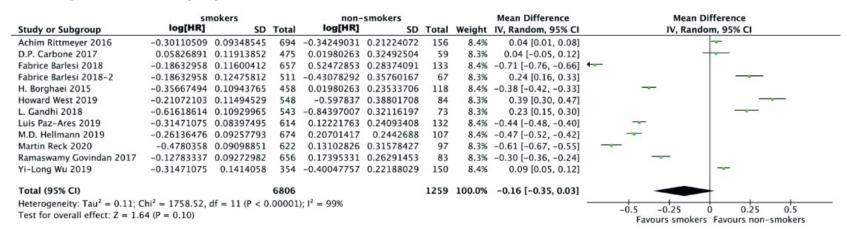
- Pembrolizumab
- Platinum + pemetrexed + pembrolizumab
- Carboplatin + paclitaxel + bevacizumab + atezolizumab
- Carboplatin + abraxane + atezolizumab
- Nivolumab + ipilimumab
- Nivolumab + ipilimumab + platinum + pemetrexed

PDL1 ≥ 50% (including above)

- Atezolizumab
- Cemiplimab

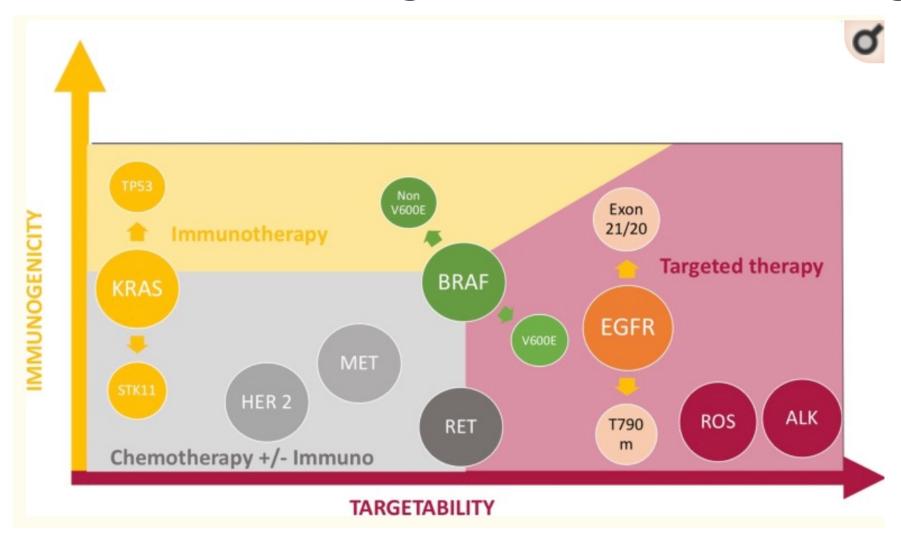
PDL1 ≥ 1%

- Pembrolizumab
- Platinum + paclitaxel + pembrolizumab
- Carboplatin + paclitaxel + bevacizumab + atezolizumab
- Carboplatin + abraxane + pembrolizumab
- Nivolumab + ipilimumab
- Nivolumab + ipilimumab + platinum + paclitaxel


PDL1 ≥ 50% (including above)

- Atezolizumab
- Cemiplimab

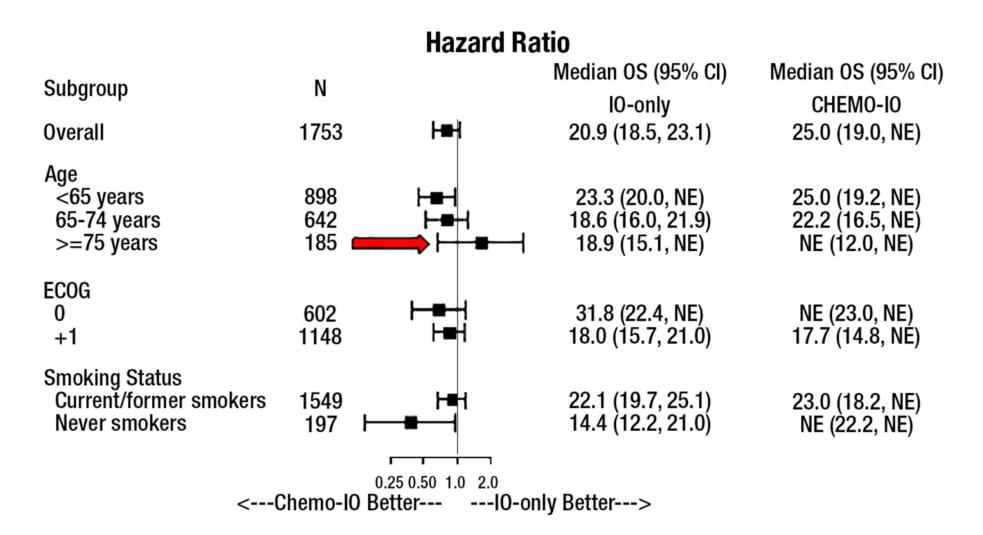
Caution with ICI monotherapy in never smokers


A Comparison of HR (OS) between smokers and non-smokers

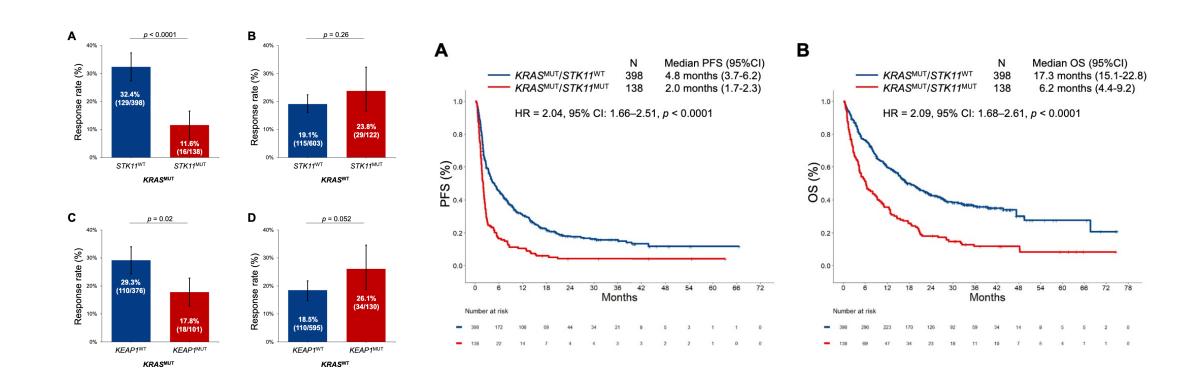
B Comparison of HR (PFS) between smokers and non-smokers

	sn	nokers		non-	smokers			Mean Difference		Mean Difference	
Study or Subgroup	log[HR]	SD	Total	log[HR]	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Caicun Zhou 2019	-0.73396918	0.18065945	257	-0.0618754	0.24141405	155	11.4%	-0.67 [-0.72, -0.63]	-	70.70	
D.P. Carbone 2017	0.10436002	0.11373407	475	0.92028275	0.33286207	59	11.3%	-0.82 [-0.90, -0.73]	-		
abrice Barlesi 2018-2	-0.49429632	0.10001074	511	-0.71334989	0.2892101	67	11.3%	0.22 [0.15, 0.29]		-	
Howard West 2019	-0.4462871	0.09528406	548	-0.46203546	0.29672214	84	11.3%	0.02 [-0.05, 0.08]		-	
Gandhi 2018	-0.61618614	0.14007852	543	-1.46967597	0.43020381	73	11.3%	0.85 [0.75, 0.95]			-
Martin Reck 2016	-0.67334455	0.15584415	281	-0.10536052	1.08012921	24	9.5%	-0.57 [-1.00, -0.14]	-		
Robert Jotte 2020	-0.35667494	0.08706713	627	-0.26136476	0.31254465	55	11.3%	-0.10 [-0.18, -0.01]		-	
J. Antonia 2017	-0.52763274	0.11232445	649	-1.23787436	0.3405615	64	11.3%	0.71 [0.63, 0.79]			-
/i-Long Wu 2019	-0.32850407	0.12385404	354	-0.13926207	0.19588539	150	11.4%	-0.19 [-0.22, -0.16]		*	
Total (95% CI)			4245			731	100.0%	-0.05 [-0.37, 0.27]			
Heterogeneity: $Tau^2 = 0$.	.24: Chi ² = 1709	9.96. df = 8 (P)	< 0.00	001): $I^2 = 1009$	6						-1
est for overall effect: Z									-1 -0. Favor	5 0 Irs smokers Favours n	0.5 i

A word on waiting for molecular testing


Higher iRAE with sequential immunotherapy and targeted therapy

- Remember that checkpoint inhibitors have long half lives!
- Multiple studies have shown marked increase in immune toxicity when TKI is given after checkpoint inhibitor therapy¹⁻³
- Especially in never/light smoker with lung cancer, my practice
 - If clinically stable → wait for molecular testing (NGS) to rule out "drive oncogenes" such as EGFR, ALK, ROS1, RET
 - If symptomatic (needs urgent therapy) → start chemotherapy for 1-2 cycles and hold immunotherapy until molecular results.


45 pack-year smoker has stage IV NSCLC. She is minimally symptomatic. NGS with KRAS G12C, STK11, TP53. PD-L1 85%

Should I use chemo-ICI or ICI alone?

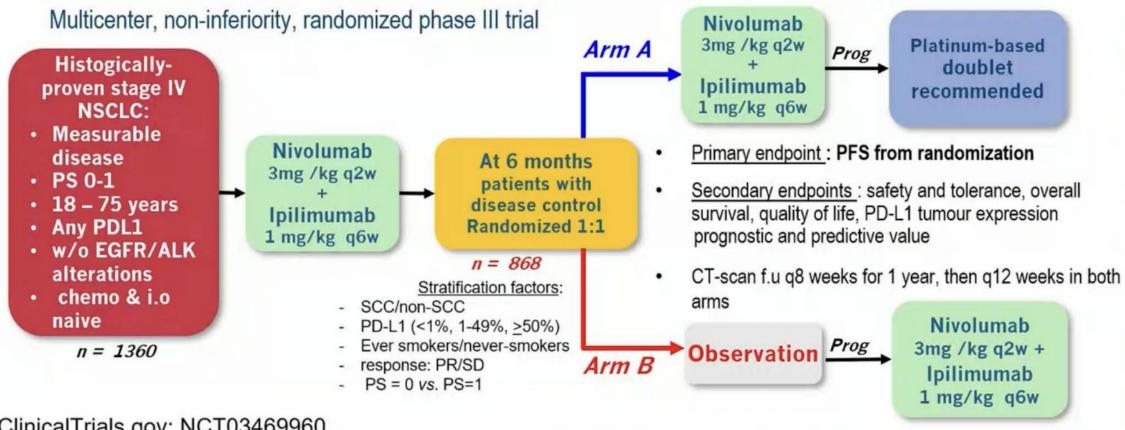
Chemotherapy + ICI versus ICI for PDL1 ≥ 50%

STK11 and KEAP1 negative prognostic markers to ICI among KRAS NSCLC

Personal practice perspective for PD-L1 ≥ 50%

ICI monotherapy	Chemotherapy + ICI
Heavy smoker	Never smoker or light smoking history
Minimally symptomatic	Symptomatic and would be benefit from cytoreduction from chemotherapy
KRAS mutation without STK11, KEAP1, TP53	+/- KRAS mutation with STK11, KEAP1, TP53
CKD Stage III or borderline renal dysfunction	Excellent renal function

65 pack-year smoker has stage IV NSCLC. He is on maintenance ipilumumab + nivolumab for 3 years. NGS with actionable drivers. PD-L1 90%


How long should I continue ICI?

Trial design and endpoints

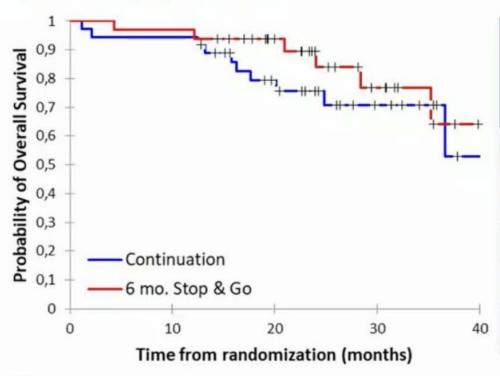
D.I.C.I.P.L.E (IFCT-1701)

Double Immune Checkpoint Inhibitors in any PD-L1 stage IV non-small Lung CancEr

ClinicalTrials.gov: NCT03469960

Presented by Gerard Zalcman, M.D. Bichat Hospital (APHP), Paris, France

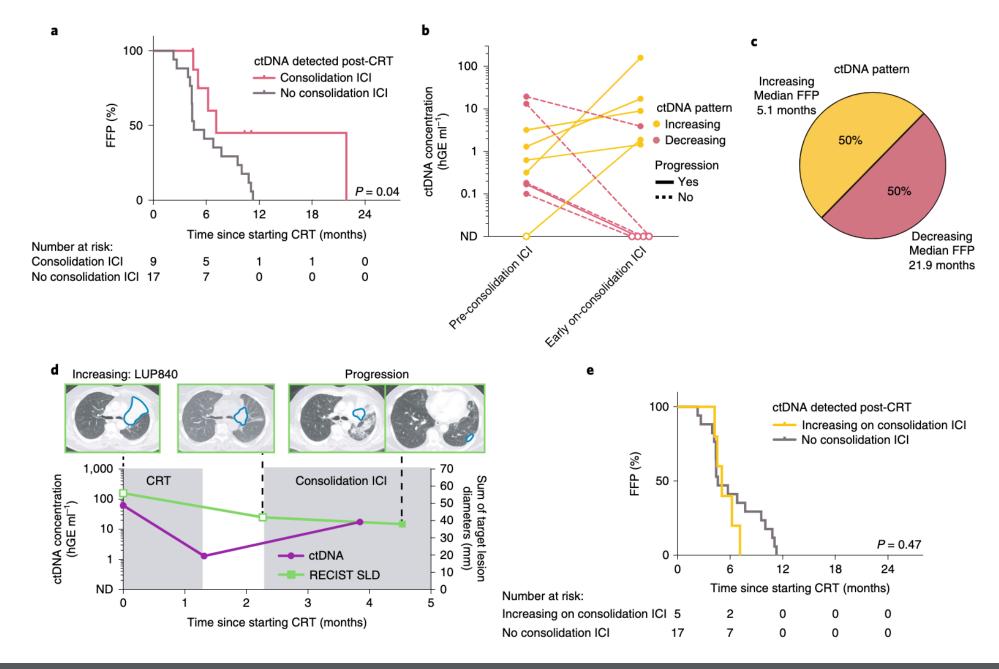
Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.


Exploratory biomarkers studies

Efficacy: Overall Survival

Terminated early due Ipi+Nivo combination no longer being reimbursed in Europe

Per protocol population


	Arm A Continuation (N= 36)	Arm B Stop & Go (N = 32)
Event: N (%)	10 (27.8)	6 (18.7)
Median OS: months [95% CI]	NR [36.7-NR]	NR [35.2-NR]
12-m OS: % [95% CI]	94.4 [79.6-98.6]	96.9 [79.8-99.5]
18-m OS: % [95% CI]	79.3 [61.3-89.6]	93.7 [77.2-98.4]
p=0.33		

Number at risk					
Continuation	36	34	22	9	2
6 mo. Stop & Go	32	31	22	10	2

Median follow-up [95% CI]: 26 months [24-31] from randomization

Personal practice pattern for duration of maintenance ICI (+/- pemetrexed)

- I typically continue pemetrexed and pembrolizumab for nonsquamous NSCLC for up to two years
 - Potentially higher rates of renal toxicity with this approach
 - Six months may be reasonable given IFCT findings
- Potential use case for tissue-informed MRD monitoring?

THANK YOU

Email: tejas.patil@cuanschutz.edu

Twitter: @TejasPatilMD

