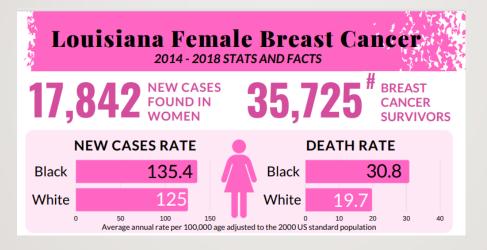
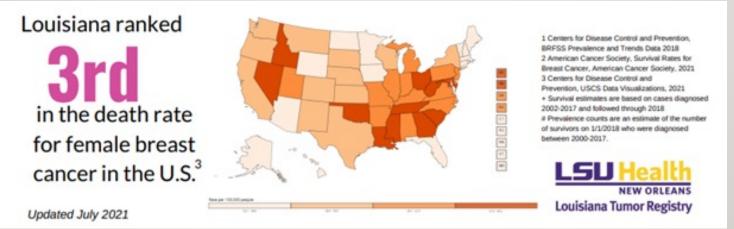
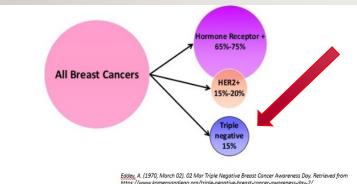


Immunotherapy for Triple Negative Breast Cancer (TNBC)

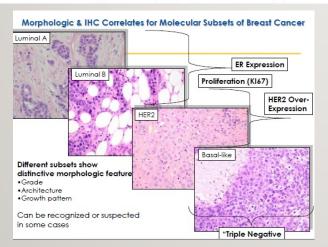
Windy Dean-Colomb, MD, PhD
Adjunct Professor
Tuskegee University
Tuskegee, AL

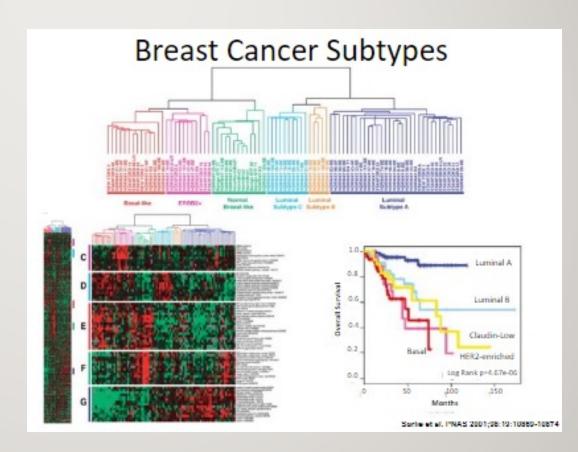

Medical Oncologist Piedmont Oncology-Newnan Newnan, GA





BREAST CANCER DISPARITIES IN LOUISIANA





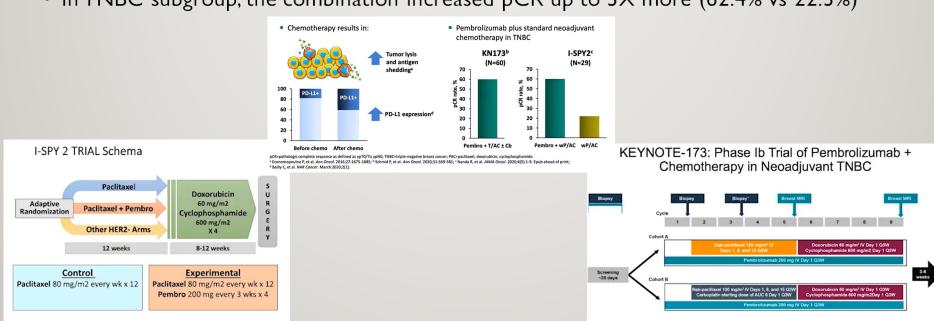
BREAST CANCER SUBTYPES

https://www.komensandiego.org/triple-negative-breast-cancer-awareness-day-2/

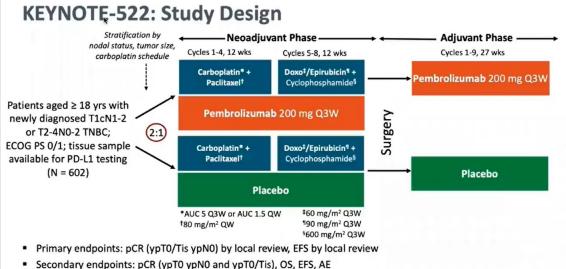
TRIPLE NEGATIVE BREAST CANCER (TNBC): IMMUNOGENIC TUMOR

- Breast cancer has traditionally been considered a non-immunogenic tumor
- However, multiple studies have shown that TNBC can stimulate the immune system
- Compared with luminal breast cancer, TNBC has:
 - higher tumor mutational burden (TMB)
 - leads to synthesis of "neoantigens" which are recognized by APC
 - elevated levels of PD-L1 expression
 - increased levels of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment—TIL infiltrate have high expression of PD-I
 - TILs are associated with higher rates of pCR to neoadjuvant chemotherapy and efficacy to immunotherapy

IMMUNOTHERAPY USE IN TREATMENT OF TNBC

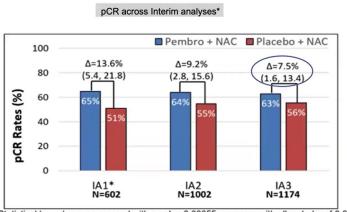

- The use of targeted therapy in TNBC has been limited
- However, the higher immune response noted in TNBC makes immunotherapy a rational option to address this unmet need
- Promising immunotherapy options for treatment of TNBC include
 - Immune checkpoint (IC) inhibitors
 - PD-I/PDLI and cytotoxic T-lymphocyte-associated antigen (CTLA-4) are the primary immune checkpoint blockades
 - Adoptive T-cell immunotherapy
 - Tumor vaccine immunotherapy
- The combination of immunotherapy with other treatments such as chemotherapy

EVOLUTION OF IMMUNOTHERAPY INTREATMENT OF TNBC

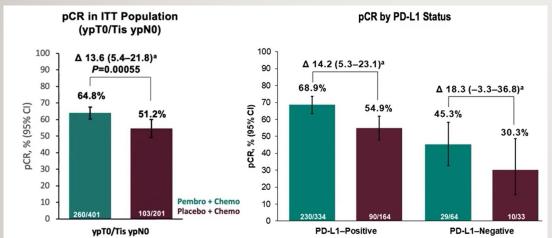

- Ist wave: immunotherapy monotherapy
 - · Showed antitumor activity with modest results in advanced disease
- 2nd wave: immunotherapy in combination with chemotherapy
 - Chemotherapy can increase release of tumor antigens, alter tumor microenvironment, upregulate PD-L1 expression—increase immunotherapy effectiveness
- 3rd wave: immunotherapy with targeted therapies
 - Keylynk-009: olaparib+pembrolizumab vs chemotherapy
 (carboplatin/gemcitabine) + pembrolizumab after initial treatment with chemo+pembro
 - ASCENT trial which lead to approval of the antibody-drug conjugate sacituzumab govitecan as 3rd line or greater in mTNBC

- Pembrolizumab monotherapy in mTNBC (KEYNOTE-012, June 2017)-Phase IB
- Showed similar antitumor activity and manageable toxicity profile
 - ORR 18.5%, SDR 25.9%, PR 14.8% and CR 3.7%
- Pembrolizumab as ≥2nd line in mTNBC (KEYNOTE-086, March 2019)-Phase II
 - After anthracyclines & taxanes for up to 2 years
 ORR in PD-L1+ 4.7%, SDR 20.6%, PR 4.1% and CR 0.6% with DOR 6.3 mo
 - OKK III 1 D-L1 1 4.7 %, 3DK 20.0%, 1 K 4.1 % and CK 0.0% With DOK 6.3 1110
- Pembrolizumab monotherapy in mTNBC (KEYNOTE-119, September 2019)-Phase III
- Compared to single agent chemotherapy in previously treated mTNBC (1-2 prior systemic treatments) stratified by PD-L1 status: all pts vs CPS≥10 vs CPS≥20
 - No OS with CPS≥10 but with CPS≥20, OS 14.9 mo vs 12.5 (HR 0.58) with chemotherapy
 - No PFS was observed
 - Grade 3-5 AEs were 14% vs 36% with chemotherapy

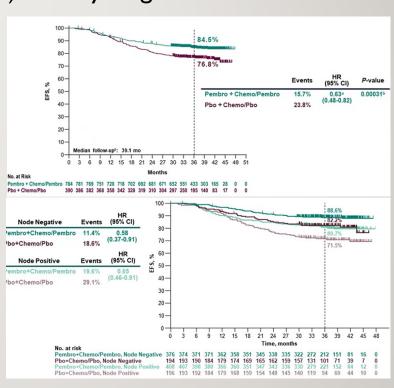
- Pembrolizumab + neoadjuvant chemotherapy in early stage II-III TNBC (KEYNOTE-173 & I-SPY2 studies
- Combined results from I-SPY2 and KEYNOTE-173 studies
 - Neoadjuvant paclitaxel ± pembro followed by AC
 - In TNBC subgroup, the combination increased pCR up to 3X more (62.4% vs 22.3%)

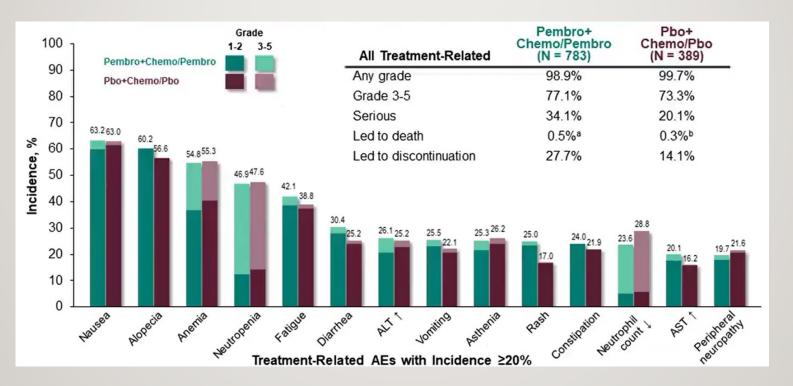


 Pembrolizumab + neoadjuvant chemotherapy in early stage TNBC (KEYNOTE-522, September 2017)-Ph2 Phase II


Exploratory endpoints: RCB, pCR by subgroups, EFS by pCR

- ' Statistical boundary was crossed with p-value 0.00055; compare with allocated α of 0.003
- Pembro improved pCR across all subgroups (64.8% vs 51.2%; p<0.001)
 - Stage IIIA (66.7% vs 42.1%, Δ 24.6) and IIIB (48.6% vs 23.1%, Δ 25.6)
 - N+ (64.8% vs 44.1%, Δ 20.6) vs N0 (64.9% vs 58.5%, Δ 6.3)

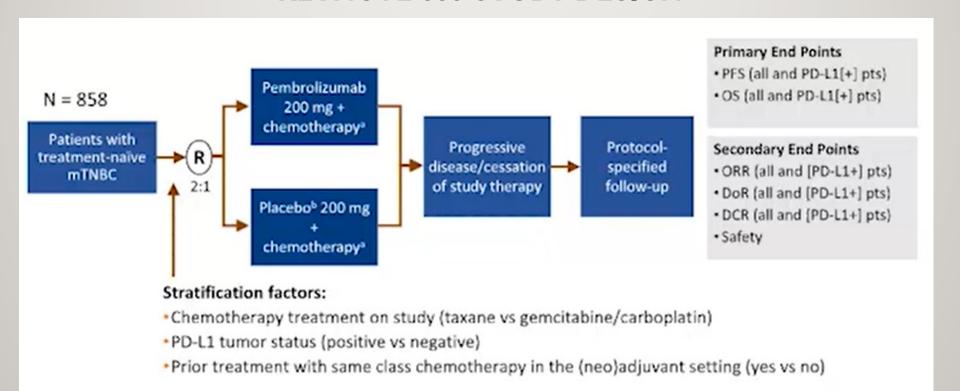

Pembrolizumab + neoadjuvant chemotherapy (CT) in early stage TNBC


- Found PDL1 did not predict benefit to therapy
- Updates at SABC 2020 showed pembro + CT

improved PFS, ORR, durable CR and duration of

response in tumor with CPS≥10 regardless of CT partner

TREATMENT-RELATED ADVERSE EVENTS WITH PEMBROLIZUMAB

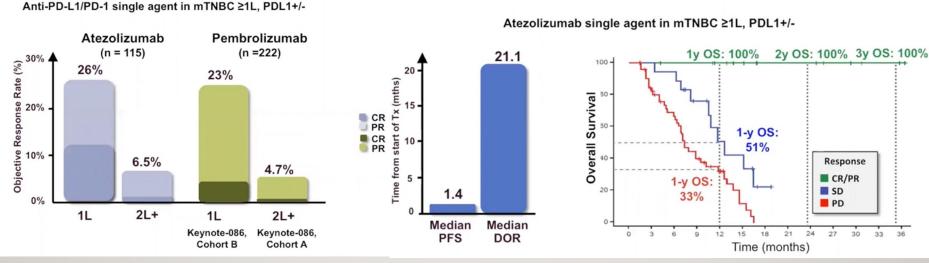

 Updates at SABC 2020 showed pembro + CT improved PFS, ORR, durable CR and duration of response in tumor with CPS≥10 regardless of CT partner

KEYNOTE-522 INVESTIGATOR CONCLUSIONS

- In patients with early-stage TNBC, neoadjuvant pembrolizumab + chemotherapy associated with a larger pCR benefit vs chemo alone
 - Particularly for patients with stage III or node-positive disease
 - Benefit seen in patients who received less than planned full chemotherapy
 - Similar benefit observed regardless of PD-L1 expression level
- Neoadjuvant pembrolizumab added to chemotherapy associated with higher rate of lower residual cancer burden
- Rate of immune-mediated adverse events in study consistent with that reported previously and no new safety signal observed
- Additional follow-up needed to confirm EFS benefit and long-term safety profile

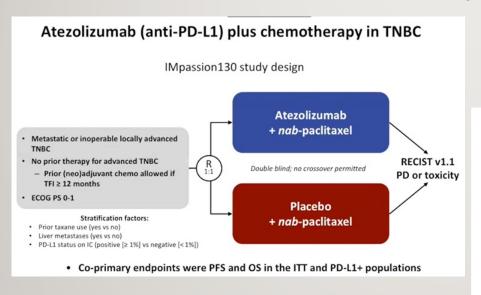
Pembrolizumab + chemotherapy in mTNBC (KEYNOTE-355, December 2020)-Ph III

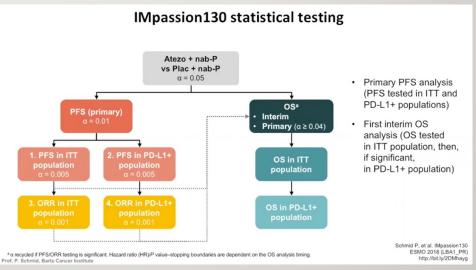
KEYNOTE-355 STUDY DESIGN


- Pembrolizumab + chemotherapy in mTNBC (KEYNOTE-355, December 2020)-Ph III
 - Untreated pts with inoperable disease or mTNBC
 - nab-paclcitaxel, paclitaxel or gemcitabine with carboplatin vs placebo/chemotherapy
 - Stratified by PD-L1 status: ITT vs CPS≥1 vs CPS≥10
 - PFS statistically significant (9.7 vs 5.6, p=0.0012, HR 0.65) in those with CPS≥10
 - Pembro effect increased in PD-L1 enriched population especially with paclitaxel (asymmetry of chemotherapy)
 - No difference in grade 3-5 AEs (68% with pembro vs 67% placebo)
 - Lead to pembrolizumab with chemotherapy as 1st line treatment option in mTNBC
 - Updates at SABC 2020 showed pembro+CT improved PFS, ORR, durable CR and duration of response in tumor with CPS≥10 regardless of CT partner
 - FDA granted accelerated approval of pembro+chemo in this setting in November 2020
 - Updates at SABC 2021 final results demonstrated improved OS over placebo with CPS≥10 reasonable cutoff to determine expected treatment benefit
 - Note: Different assays used to assess PD-L1

- Have 3 phase III atezolizumab TNBC trials with similar designs, with the primary difference being the chemotherapy component:
- <u>IMpassion130</u>: Subjects receive either atezo + nab-paclitaxel or placebo + nab-paclitaxel.
 - The four primary endpoints include PFS in PD-L1+ subjects, where the drug was most successful and the patient population for which the drug combo was ultimately <u>approved</u>.
- <u>IMpassion131</u>: Subjects receive atezo +paclitaxel or placebo + paclitaxel.
 - The study failed to hit PFS in the PD-L1+ population, the primary outcome and low-hanging fruit of this trial (PFS in the intent-to-treat population follows). Unlike -130 and -132, OS is not included as a primary endpoint.
- <u>IMpassion132</u>: This one is a bit of a free-for-all: as with -130 and -131, they're enrolling previously untreated patients, but the primary endpoint is OS in the PD-

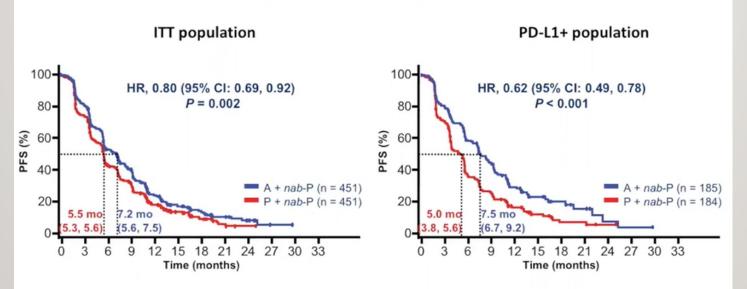
Atezolizumab monotherapy in mTNBC (Schmid et al, 2017)-Phase I


Response to single agent anti-PD-L1/PD-1


PFS & Duration of Response to anti-PD-L1/anti-PD1

- Safe and tolerable with antitumor activity in mTNBC especially as Ist line
 - OS 41% at 1 yr, 19% at 2 yrs and 16% at 3 yrs—10% of responders alive in 1 year
 - PD-LI+ had higher ORR (12% vs 0%) and higher OS (10.1 mo vs 6 mo)
 - Grade 3-5 AEs were 14% vs 36% with chemotherapy

- Atezolizumab + nab-paclitaxel in mTNBC (Impassion I 30, November 2018)-Phase III
 - 1st line in mTNBC or unresectable locally advanced vs placebo+nab-paclitaxel

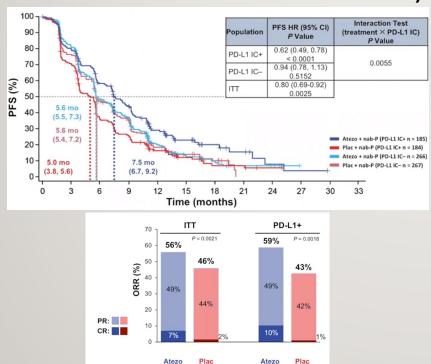

- Atezolizumab + nab-paclitaxel in mTNBC (Impassion I 30, November 2018)-Phase III
 - Ist line in mTNBC or unresectable locally advanced vs placebo+nab-paclitaxel IMpassion130 baseline characteristics

	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)			
Median age (range), y	55 (20-82)	56 (26-86)			
Race, n (%)a					
White	308 (68%)	301 (67%)			
Asian	85 (19%)	76 (17%)			
Black/African American	26 (6%)	33 (7%)			
ECOG PS, n (%)b,c					
0	256 (57%)	270 (60%)			
1	193 (43%)	179 (40%)			
Prior (neo)adjuvant treatment, n (%)	284 (63%)	286 (63%)			
Prior taxane	231 (51%)	230 (51%)			
Prior anthracycline	243 (54%)	242 (54%)			

	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)
Metastatic disease, n (%)	404 (90%)	408 (91%)
No. of sites, n (%)d		
0-3	332 (74%)	341 (76%)
≥ 4	118 (26%)	108 (24%)
Site of metastatic disease	, n (%)	
Lung	226 (50%)	242 (54%)
Bone	145 (32%)	141 (31%)
Liver	126 (28%)	118 (26%)
Brain	30 (7%)	31 (7%)
Lymph node only ^d	33 (7%)	23 (5%)
PD-L1+ (IC), n (%)	185 (41%)	184 (41%)

- Atezolizumab + nab-paclitaxel in mTNBC (Impassion I 30, November 2018)-Phase III
 - Ist line in mTNBC or unresectable locally advanced vs placebo+nab-paclitaxel

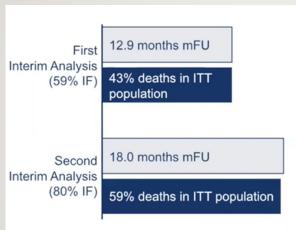
Atezolizumab (anti-PD-L1) plus chemo: Progression-free Survival

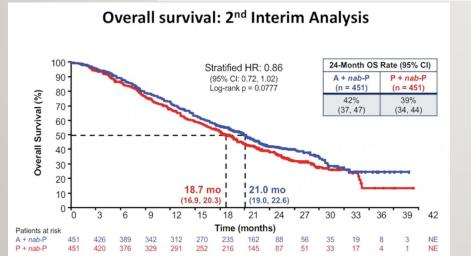

- PFS benefit driven by PD-L1 IC+ patients, as a treatment effect was not observed in PD-L1 IC- patients¹
- Based on these data,² atezolizumab + nab-paclitaxel received accelerated approval by the FDA³ and is recommended for patients with PD-L1 IC+ mTNBC in the NCCN⁴ and AGO⁵ guidelines

PDL1 positivity predicts benefit of immunochemotherapy

5.5

(7.3, 9.7) (3.7, 7.1)


Ist line in mTNBC or unresectable locally advanced vs placebo+nab-paclitaxel

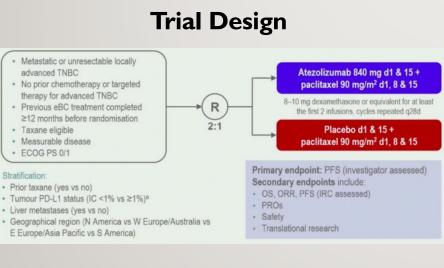

(6.9, 9.0) (5.5, 6.9)

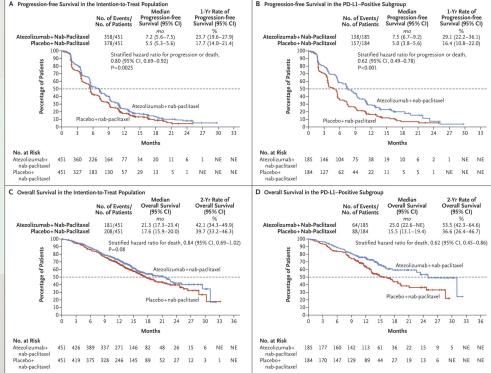
DOR, median (95% CI), mo

Characteristic		Patients		Hazard Ratio (95% CI)
All		902	⊢∳⊣	0.81 (0.70, 0.93)
Baseline liver metastases	Yes No	244 658		0.80 (0.62, 1.04) 0.79 (0.66, 0.94)
Prior taxane use	Yes No	461 441	===	0.80 (0.65, 0.97) 0.81 (0.66, 1.00)
PD-L1 status	PD-L1+ (IC1/2/3) PD-L1- (IC0)	369 533		0.64 (0.51, 0.80) 0.95 (0.79, 1.15)
Age group	18-40 y 41-64 y ≥ 65 y	114 569 219		0.79 (0.53, 1.16) 0.84 (0.70, 1.01) 0.69 (0.51, 0.94)
ECOG PS ^b	0	526 372		0.78 (0.64, 0.94) 0.82 (0.66, 1.03)
Baseline disease status	Locally advanced Metastatic ^c	88 812	-	0.66 (0.40, 1.09) 0.82 (0.71, 0.96)
No. of metastatic sites	0-3° > 3°	673 226		0.76 (0.64, 0.91) 0.89 (0.67, 1.17)
Brain metastases	Yes No	61 841		0.86 (0.50, 1.49) 0.80 (0.69, 0.93)
Lung metastases	Yes No	468 434		0.87 (0.72, 1.07) 0.74 (0.60, 0.91)
Prior (neo)adjuvant chemo	Yes No	570 332		0.85 (0.71, 1.03) 0.72 (0.57, 0.92)

Second Interim OS Analysis					
Patient Disposition	Atezolizumab + nab-paclitaxel (n = 451)	Placebo + nab-paclitaxe (n = 451)			
Patients on study, n (%	6)				
Alive on treatment	39 (9%)	13 (3%)			
Alive in survival follow-up	133 (30%)	135 (30%)			
Patients who discontin	ued study, n (%)				
Dead	255 (57%)	279 (62%)			
Lost to follow-up	24 (5%)	24 (5%)			

Most common AEs regardless of attribution

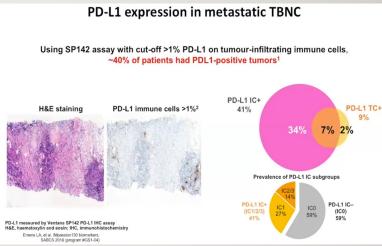

AEs in ≥ 20% (all grade) or ≥ 3% (grade 3-4) of patients in either arm, n (%)	Atezo + nab-P (n = 452)		Plac + nab-P (n = 438)	
	Any Grade	Grade 3-4	Any Grade	Grade 3-4
Alopecia	255 (56%)	3 (1%)	252 (58%)	1 (< 1%)
Fatigue	211 (47%)	18 (4%)	196 (45%)	15 (3%)
Nausea ^a	208 (46%)	5 (1%)	167 (38%)	8 (2%)
Diarrhoea	147 (33%)	6 (1%)	150 (34%)	9 (2%)
Anaemia	125 (28%)	13 (3%)	115 (26%)	13 (3%)
Constipation	113 (25%)	3 (1%)	108 (25%)	1 (< 1%)
Cough ^a	112 (25%)	0	83 (19%)	0
Headache	105 (23%)	2 (< 1%)	96 (22%)	4 (1%)
Neuropathy peripheral	98 (22%)	25 (6%)	97 (22%)	12 (3%)
Neutropaenia ^a	94 (21%)	37 (8%)	67 (15%)	36 (8%)
Decreased appetite	91 (20%)	3 (1%)	79 (18%)	3 (1%)
Neutrophil count decreased	57 (13%)	21 (5%)	48 (11%)	15 (3%)
Hypertension	22 (5%)	4 (1%)	24 (5%)	11 (3%)


Schmid, P. et al, NEJM 2018; ASCO 2019

- Atezolizumab + nab-paclitaxel in mTNBC (Impassion I 30, November 2018)-Phase III
 - After 12.9 mo followup:
 - In ITT, immunochemotherapy increased PFS (7.2 mo vs 5.5 mo, HR 0.80, p=0.002), although no increase in OS (21.3 mo vs 17.6 mo, HR 0.84; p=0.08)
 - PD-L1+ (IC≥1%), had improved PFS (7.5 mo vs 5.0 mo, HR 0.62, p<0.001) and OS (25 mo vs 15.5 mo, HR 0.62).
 - At 18. month followup, OS 21.0 mo vs 18.7 mo in ITT (p=0.0777) and PD-L1+ group with OS 25.0 mo vs 18.0 mo (HR 0.71)
 - Increased AEs leading to discontinuation in immunochemotherapy group (15.9% vs 8.2%)
 - Final analysis agreed with interim findings of prolongation of PFS (21.0 mo vs 15.5 mo)
 and OS in mTNBC subgroup with PD-L1+ but not in the ITT population
 - Achieved FDA accelerated approval in March 2019 but company voluntarily withdrew

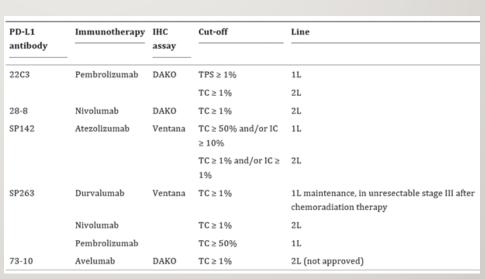
- Atezolizumab + paclitaxel vs placebo in mTNBC (IMpassion I 3 I; July 202 I)-Phase III
 - Ist line in unresectable locally advanced or mTNBC or ≥12 mo since neoadjuvant

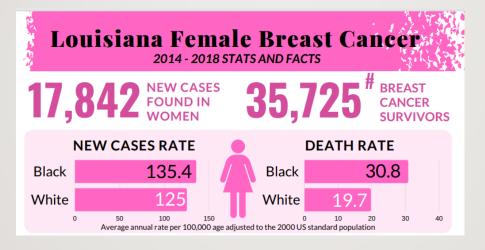
chemotherapy

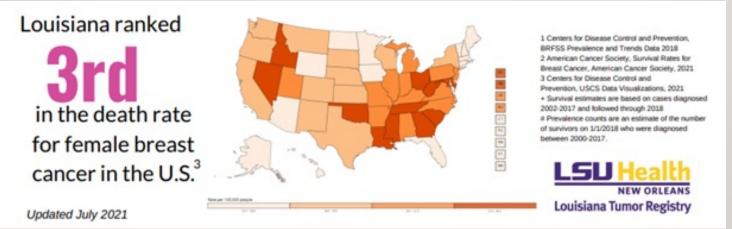


- Atezolizumab + paclitaxel vs placebo in mTNBC (IMpassion I 3 I; July 202 I)-Phase III
 - Patient characteristics:
 - 45% PD-LI-positive, 48% treated with taxanes, 31% with mTNBC, 27% with liver metastases
 - Primary endpoint was PFS: NO difference in PFS in PD-L1+ group (5.7 mo vs 6 mo, HR 0.82; p=0.20) or ITT population (5.6 mo vs 5.7, HR 0.86)
 - NO benefit demonstrated in OS in either group
- Results divergent from what was seen in the IMpassion I 30 study
 - 130 showed benefit with immunochemotherapy combination in PD-L1 positive group
 - Divergence under investigation--?steroids with paclitaxel; tumor heterogeneity; BRCA status

DIFFERENCES IN IMPASSION 130 AND KEYNOTE-355 TRIALS


- Finding from these the IMpassion I 30 are similar to the KEYNOTE-355 results, which
 evaluated pembrolizumab and more chemotherapy backbones
 - Both had similar designs and results are consistent
- However, PD-L1 biomarker assessment differed
 - Need to identify most appropriate biomarker
 - IMpassion I 30 used IC using SPI42 assay
 while KEYNOTE-355 used different antibody that
 looked at combined staining on ICs and the tumor cells.


- KEYNOTE-355 also used several standard chemotherapy regimens whereas IMpassion I 30 used only nab-paclitaxel
 - KEYNOTE-355 not designed to compare chemotherapy but last update showed trend of benefit with taxanes instead of gemcitabine/carboplatin with pembrolizumab


FUTURE DIRECTIONS IN USE OF IMMUNOTHERAPY IN TNBC

- The benefit of immunotherapy in mTNBC was shown in the PD-L1-positive subgroup of the IMpassion I 30 trial and several KEYNOTE trials
 - However, PD-L1 is not ideal biomarker for patient selection in TNBC as has been shown in other cancers
 - So urgent need to identify novel biomarkers that can predict response to immunotherapy
- Possible biomarkers
 - Stromal TILs
 - Genetic signatures
 - TMB
 - MSI-H/dMMR
 - MHC class

BREAST CANCER DISPARITIES IN LOUISIANA

OUR SAVIOR: PRECISION MEDICINE??

- In cancer care today, genomics is the predominant factor influencing precision medicine
- However, our limited knowledge of cancer biology in racial and ethnic minorities diminishes the potential of precision medicine in these populations.
 - Genomic data without the right context, can be very misleading and can be life-threatening
- THUS PRECISION MEDICINE DIDN'T SOLVE OUR DISPARITY PROBLEM AND IN MANY INSTANCES CAUSED IT TO WIDEN!!!
 - As with many new medical treatments, there is inequity in access to care based upon socioeconomic status but also race
 - even people of color with higher SES, still experience disparity in cancer care and thus outcomes

The Role Ancestry in Addressing Cancer Disparities

scientific reports

Check for updates

www.nature.com/scientificreports

Investigation of triple-negative breast cancer risk alleles in an International African-enriched cohort

Rachel Martini^{1,2}, Yalei Chen^{3,4}, Brittany D. Jenkins^{1,2}, Isra A. Elhussin⁵, Esther Cheng⁶, Syed A. Hoda⁶, Paula S. Ginter⁶, Jeffrey Hanover⁷, Rozina B. Zeidan¹, Joseph K. Oppong⁸, Ernest K. Adjei³, Aisha Jibril¹³, Dhananjay Chitale¹¹, Jessica M. Bensenhaver¹², Baffour Awuah¹³, Mahteme Bekele¹⁴, Engida Abebe¹⁴, Ishmael Kyei¹⁵, Frances S. Aitpillah^{8,1} Michael O. Adinku¹⁵, Kwasi Ankomah¹⁶, Ernest B. Osei-Bonsu¹³, Saul David Nathansan¹², LaToya Jackson³, Evelyn Jiagge³, Lindsay F. Petersen¹², Erica Proctor¹², Petros Nikolinakos¹⁷, Kofi K. Gyan¹, Clayton Yates⁵, Rick Kittles¹⁸, Lisa A. Newman¹ & Melissa B. Davis¹⁰

"We use 'precision medicine' to apply the right dose, of the right treatment, to the right patient at the right time."

CANCER EPIDEMIOLOGY, **BIOMARKERS & PREVENTION**

ARTICLES V FOR AUTHORS V ALERTS

POSTER PRESENTATIONS - PROFFERED ABSTRACTS | JUNE 01 2020

Abstract B052: Identification of differentially expressed micro-RNAs in African American women with Quadruple Negative Breast Cancer REE

THE PREPRINT SERVER FOR HEALTH SCIENCES

Cancers (QNBC) Demonstrate **Metastatic Breast Cancer**

Anusha Angajala* ¹, Essynce Mothershed* ¹, Melissa B. Davis[†], Shweta Tripathi*, Qinghua He[‡], Deepa Bedi[§], Windy Dean-Colomb[†] and Clayton Yates

4THIS IS NOT THE REALITY FOR MANY PEOPLE OF COLOR. BOTH IN DEVELOPED AND DEVELOPING COUNTRIES

African-Ancestry Associated Gene Expression Signatures and Pathways in Triple Negative Breast Cancer, a Comparison across Women of African Descent

Rachel Martini, Princesca Delpe, Timothy R. Chu, Kanika Arora, Brittany Lord, Akanksha Verma, Yalei Chen, Endale Gebregzabher, Joseph K. Oppong, Ernest K. Adjei, Aisha Jibril, Baffour Awuah, Mahteme Bekele, Engida Abebe, Ishmael Kyei, Frances S. Aitpillah, Michael O. Adinku, Kwasi Ankomah, Ernest B. Osei-Bonsu, Dhananjay Chitale, Jessica M. Bensenhaver, Saul David Nathanson, LaToya Jackson, Evelyn Jiagge, Lindsay F. Petersen, Erica Proctor, Kofi K. Gyan, Lee Gibbs, Zarko Monojlovic, Rick Kittles, Jason White, Clayton Yates, Upender Manne, Kevin Gardner, Nigel Mongan, Esther Cheng, Paula Ginter, Syed Hoda, Olivier Elemento, Nicolas Robine, Andrea Sboner, John Carpten, Lisa Newman, Melissa B. Davis

RESEARCH ARTICLE

AR negative triple negative or "quadruple negative" breast cancers in African American women have an enriched basal and immune signature

Melissa Davis10, Shweta Tripath/20, Raymond Hughley2, Qinghua He3, Sejong Bae4, Balasubramanyam Karanam², Rachel Martini¹, Lisa Newman⁵, Windy Colomb⁶, William Grizzlo7 Clauton Vator2+

CANCER EPIDEMIOLOGY, BIOMARKERS & PREVENTION

ARTICLES V FOR AUTHORS V ALERTS

Volume 29, Issue 6 Supplement 2 1 June 2020

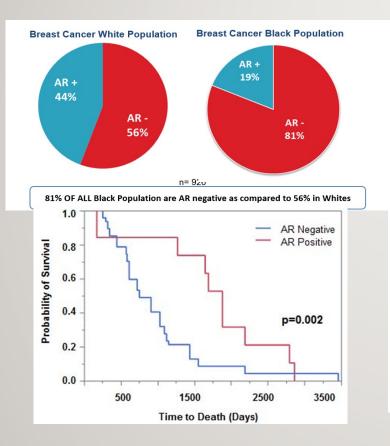
POSTER PRESENTATIONS - PROFFERED ABSTRACTS | JUNE 01 2020

Abstract D051: Targeting ubiquitin receptor ADRM1 for the treatment of quadruple-negative breast cancer FREE

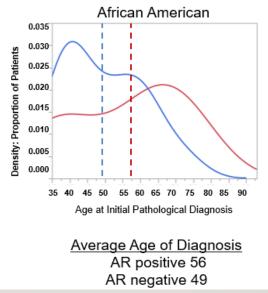
Balasubramanyam Karanam; Ravi Anchoori; Richard Roden; Clayton Yates

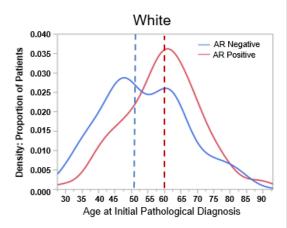
AR-TRIPLE NEGATIVE BREAST CANCER: QUADRIPLE NEGATIVE BREAST CANCER (QNBC)

- TNBC represents ~15%-20% of breast cancers and is an aggressive subtype characterized by a poorer prognosis.
 - Disproportionately affects young women of African descent
- TNBC is a highly heterogeneous group comprised of multiple independent molecular subtyp underpinned by unique biologic pathways
- 15-30% of TNBC express the androgen receptor (AR)
 - associated with a more favorable prognosis

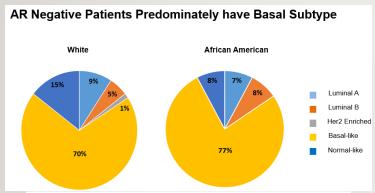

TNBC AR positive

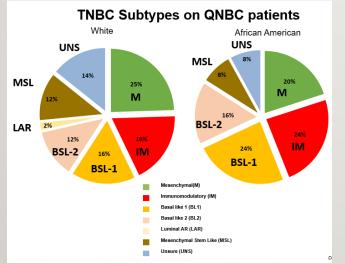
ER-, PR-, HER2-, AR +

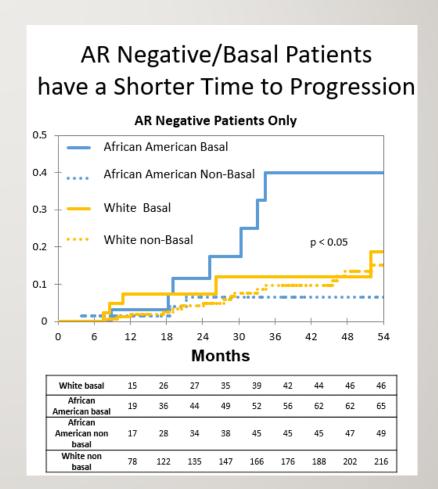

ER-, PR-, HER2-, AR-


QNBC

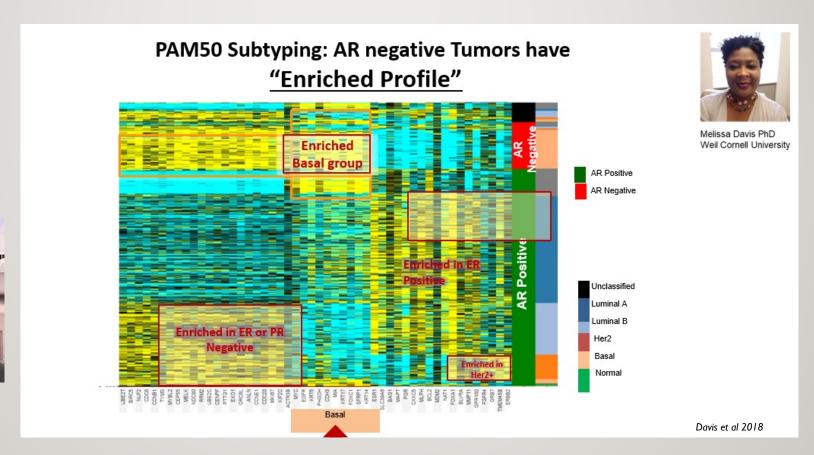
AR NEGATIVE TNBC: EMERGENCE OF QUADRIPLE NEGATIVE BREAST CANCER (QNBC)


Androgen Receptor Negative Patients are diagnosed at younger age





Average Age of Diagnosis
AR positive 59
AR negative 53


QNBC ASSOCIATED WITH BASAL-LIKE SUBTYPE

QNBC EXHIBIT BASAL-LIKE GENE SIGNATURE

Clayton Yates PhD Tuskegee University

THE ROLE ANCESTRY IN ADDRESSING CANCER DISPARITIES— SRRVS QUANTIFIED ANCESTRY

SOWAHA

Decreased Gene

MTRNR2L10

MTRNR2L6

RP11_161H235

RN7SKP48

↑ 1.765

↑ 1.756

↓-4.944

↓ -4.731

-4.486

1-4.414

↓-4.236

Fold Change P-value

1.65E-03

2.18E-03

7.07E-32

1.14E-36

1.94E-38

1.67E-30

1.58E-67

ENSG00000170075

ENSG00000204771

Ensembl ID

ENSG00000196754

ENSG00000227227

ENSG00000169604

ENSG00000204262

ENSG00000072952

ENSG00000269958

ENSG00000196663

GPR37L1

S100A2

AC017101.1

ANTXR1

COL5A2

AL049840.4

TECPR2

↑ 3.04

↑ 3.45

↑ 3.78

⊥ -4.31

⊥ -2.09

⊥ -1.36

6.88E-03

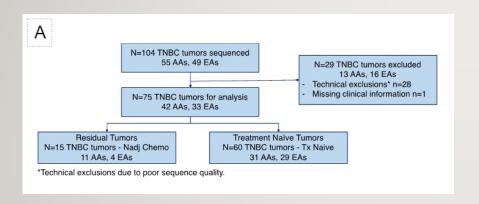
6.15E-03

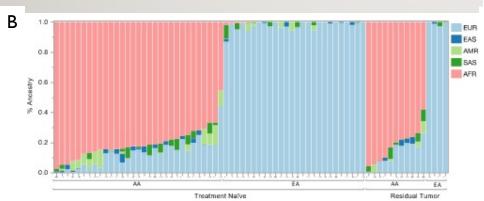
8.52E-03

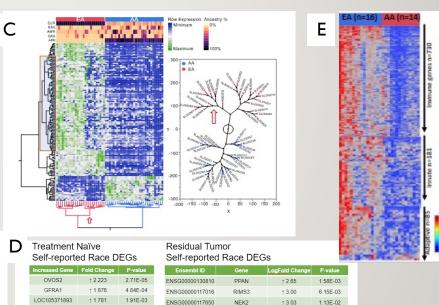
P-value

7.37E-03

6.88E-03

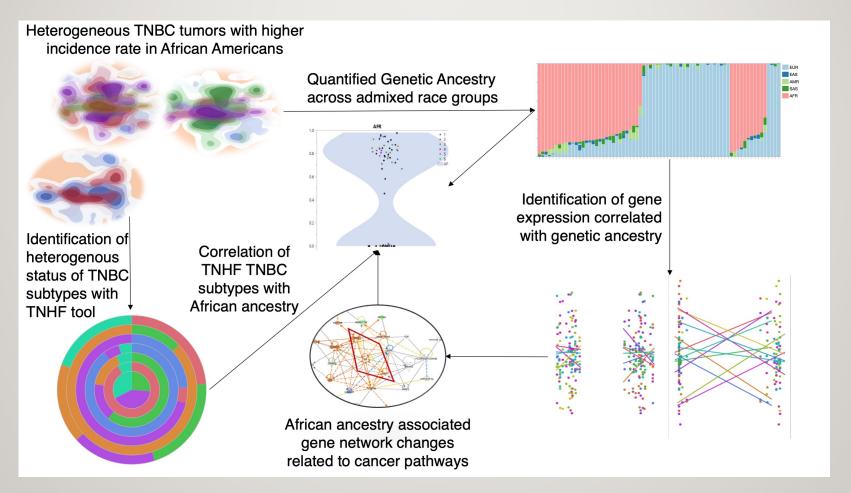

2.69E-03


6.15E-03


4 88F-03

0.047254914

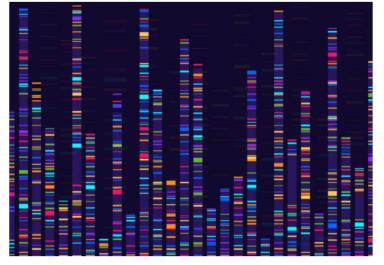
0.012084124



TNBC/QNBC AND ANCESTRY

Table. 1 Druggable Gene Targets that are associated with African Ancestry

Gene	Name	Drugs Tested in Cancer	Disease (Cancer or Other)	Organism (Human or Other)	Evidence Type (Trial, non-humn, gene-gene interactions)
AKT1	AKT Serine/Threonine Kinase 1	Arsenic Trioxide, Carboplatin, Everolimus, Cisplatin, Nelfinavir	Various Cancers	Human	Trial
CCND1	Cyclin D1	Arsenic Trioxide, Cetuximab, Aspirin, Trametinib, Palbociclib	Various Cancers and other diseases	Human	Trial
ZBTB22	Zinc Finger And BTB Domain Containing 22	Aspirin	Various Cancers	Human	Trial
SLC12A2	Solute Carrier Family 12 Member 2	Bumetanide and Furosemide	Neonatal Seizures, Autism, Heart Failure	Human	Trial
PPP2R4	Protein Phosphatase 2 Phosphatase Activator	Ceramide	Breast Cancer, Diabetes, Obesity	Human	Trial
RELA	RELA Proto-Oncogene, NF-KB Subunit	Dimethyl fumarate	Multiple Sclerosis	Human	Trial
CITED4	Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-Terminal Domain 4	Fluorouracil	Cardiac ischaemia/reperfusion (I/R) injury	Mouse	Gene-Gene Interactions
PIM3	Pim-3 Proto-Oncogene, Serine/Threonine Kinase	Fostamatinib, Gefitinib, Sunitinib, Ruboxistaurin	Cancer and others	Human	Trial
EGFR	Epidermal Growth Factor Receptor	Gefitinib, Erlotinib, Lapatinib and Cetuximab	NSCLC	Human	Trial
RAB1B	RAB1B, Member RAS Oncogene Family	Guanosine triphosphate			Not Sure
LPL	Lipoprotein Lipase	Orlistat, Fenofibrate	Obesity and Diabetes	Human	Trial
NUDC	Nuclear Distribution C, Dynein Complex Regulator	Phenethyl Isothiocyanate	Various Cancers and Cardiovascular Disease	Human	Trial
MEPCE	Methylphosphate Capping Enzyme	S-Adenosyl methionine	Not Sure	Not Sure	Not Sure
IL6	Interleukin 6	Siltuximab, Vitamin C and E, Adalimumab	Various	Human	Trial
NFKB1	Nuclear Factor Kappa B Subunit 1	Thalidomide, Donepezil, Glycyrrhizin, Triflusal	Various	Human	Trial
ADAMTS4	ADAM Metallopeptidase With Thrombospondin Type 1 Motif 4	Tinzaparin	Brain Tumors, Thromboembolism, Thrombosis	Human	Trial
TP53	Tumor Protein P53	Venetoclax, Cyclophosphamide, Fluorouracil, Cisplatin	Various	Human	Trial


OUR SAVIOR: ANCESTRY-DRIVEN PRECISION MEDICINE

OUR SAVIOR: PRECISION MEDICINE??

Racial Differences in Genomic Profiles May Help Explain Breast Cancer Outcomes

- 6652 patients with breast cancer who were treated from 2014-2020 who had complete clinical and next-generation sequencing data in the AACR Project Genomics Evidence Neoplasia Information Exchange (GENIE).
 - Black patients with metastatic breast cancer were less likely than their White counterparts to have actionable genetic variations.
 - Underrepresentation of Black patients in CTs has made it more difficult to discover mutations that can be successfully targeted in Black patients
 - This contributes to the poor outcomes observed in Black patients with breast cancer.

"As long as genome-wide association study populations are skewed toward predominately White and European patients, Dr Goel and colleagues argue, fewer actionable genomic variations will be discovered in minority populations, and treatment inequalities will persist.

- "We need to increase minority enrollment in precision oncology by increasing next-generation sequencing of both primary and metastatic breast cancer to potentially identify actionable mutations in diverse populations since studies have historically underrepresented Black and non-White breast cancer patients".
 - Although individual physicians cannot overhaul the majority of clinical trials alone, they
 can push for more sequencing of tumors in their minority patients.

THANKYOU!